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Abstract: The vertical transition zone of mountain vegetation is characterized by high species diversity,
and the width of the transition zone may serve as an indirect indicator of climate change. However,
research into the differential characteristics of vegetation response to climate changes at the boundary
of vertical transition zones has been limited. This study employs MODIS and climate data spanning
2001 to 2018 to investigate spatiotemporal trends in precipitation (PRE), temperature (TMP), radiation
(RAD), and Normalized Difference Vegetation Index (NDVI) across nine montane deciduous broad-
leaved forests in the eastern monsoon region of China. It explores the time-lag and -accumulation
effects of climatic variables on NDVI, quantifying their relative contributions to both its short-term
and interannual variations. Results show that, notably, with the Qinling-Daba Mountains as a
demarcation, northern regions exhibit significant increases in RAD (0.874–2.047 W m−2/a), whereas
southern regions demonstrate notable rises in TMP (0.59–0.73 ◦C/10a). Areas of lower annual PRE
correspond to the most rapid increases in annual average NDVI (5.045 × 10−3/a). NDVI’s lag time
and cumulative duration responses to TMP are the shortest (0 and 2~4 periods), while its correlation
with RAD is the strongest (0.815–0.975), generally decreasing from higher to lower latitudes. TMP
significantly affects NDVI variations, impacting both short-term and interannual trends, with PRE
driving short-term fluctuations and RAD dictating long-term shifts. This research provides critical
data and a theoretical framework that enhances our understanding of how regional vegetation’s
vertical zonation responds to climate change, thereby making a substantial contribution to the study
of mountain vegetation’s diverse adaptability to climatic variations.

Keywords: upper limit of montane deciduous broad-leaved forests; NDVI; spatial variation; the east
monsoon region of China

1. Introduction

The sixth assessment report on climate change by the Intergovernmental Panel on
Climate Change (IPCC) highlighted that greenhouse gas emissions from human activities
have led to an increase of approximately 1.1 ◦C in global temperatures since the period
1850–1950; projections suggest that global temperatures will likely reach or exceed 1.5 ◦C
within the next 20 years [1]. Against the backdrop of global warming, habitat conditions
in mountain landscapes have experienced notable changes [2]. Engler et al. conducted
simulation studies on 2632 representative species across European mountain ranges with
established long-term observation sites; they predict that in a scenario where temperatures
rise by 1.8 ◦C, between 19% and 46% of mountain forest species are at risk of losing up
to 80% of their suitable habitats [3]. There is evidence of migration phenomena in the
vertical band spectra. Through the analysis of images from the Spanish Central Mountain
range between 1957 and 1991, Sanz-Elorza et al. discovered that low-altitude shrubs,
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such as Juniperus. and Cytisus., have supplanted high-altitude alpine meadows, primarily
consisting of Festuca. [4]. Utilizing historical climate data and comparative photography,
Baker et al. observed that warming trends have resulted in glacier retreat and a rise in
the elevation of high mountain forest lines [5]. Körner posits that temperature acts as a
limiting factor for tree line positions, suggesting an upward shift of these tree lines amid
warming conditions [6]. This phenomenon exhibits spatial heterogeneity on a global level:
Wang et al. reviewed the literature and revealed that among 179 sampling points in the
Northern Hemisphere, approximately 56% of tree line positions in Europe and North
America demonstrated upward movement, compared to 64% in Asia [2]. Certain areas
that remain unchanged might be influenced by terrain conditions [7] and wind speed [8],
potentially hindering the upward movement of forest lines.

Earlier research indicates that transitional areas between vertical zones of mountain
vegetation, marked by forest and tree lines, harbor significant species diversity and turnover
rates [9], with the width of these zones indirectly mirroring the climate’s variability and
sensitivity [10]. This is attributed to the mass elevation effect and aspect effect, among
others, influencing the climate of mountains and their surroundings, thereby creating
new habitats different from the local climatic zone; and then components typical of one
vertical zone exploit this locally non-zonal habitat to expand into adjacent vertical zones,
a phenomenon that endows transitional areas between vertical zones with heightened
environmental heterogeneity and biodiversity [11]. In the context of global warming,
discerning the spatiotemporal dynamics of climate and vegetation within vertical transition
zones of mountainous areas across various regions is crucial for understanding the diverse
responses of regional vegetation to climate change.

The vegetation indices, derived from remote sensing images, are extensively utilized
for monitoring surface vegetation coverage owing to their rapid and broad-scale capabilities.
However, due to various factors including sensor calibration, atmospheric conditions,
illumination and observation angles, terrain, and soil background, vegetation indices data
are often accompanied by noise [12]. Currently, several vegetation indices have been
devised to mitigate specific noises: the Global Environmental Monitoring Index (GEMI)
targets atmospheric noise reduction [13]; the soil line-based vegetation index aims to
minimize soil background influence [14,15]; the Reduced Simple Ratio (RSR) vegetation
index suppresses surface background effects [16]; the Enhanced Vegetation Index (EVI)
concurrently diminishes the impacts of soil background and atmospheric conditions [17].
Given that nonvegetative noise often exerts a uniform directional effect on the reflectance
across different bands, employing band ratios can more effectively mitigate this noise [18].

Among these, the Normalized Difference Vegetation Index (NDVI) is notably one of
the most prevalent vegetation indices for assessing terrestrial vegetation productivity [19].
It is applied in ecologically sensitive areas including the Tibetan Plateau [20], the Loess
Plateau [21], the Greater Khingan Mountains [22], arid and semi-arid regions [23], south-
west karst regions [24], the Northeast Plain [25], the North China Plain [26], and other
regions experiencing intense human activity, as well as across the Chinese mainland [27].
However, within the context of climate change, the impact on vegetation is not always
immediate. Braswell et al. identified a time-lag effect between temperature fluctuations
and the global carbon dioxide growth rate [28]. Guo et al. discovered that the productivity
alterations in grasslands are influenced by both the delayed and accumulative effects of pre-
cipitation [29]. Currently, research on the time-lag and -accumulation effects of vegetation’s
response to climatic factors within vertical transition zones remains relatively scarce.

Montane deciduous broad-leaved forests (MDBF) in the eastern monsoon region of
China represent a quintessential example of zonal vegetation adapted to the semi-humid
temperate climate [30] and play a pivotal role in the country’s forest biomass carbon stor-
age [31]. The eastern monsoon region of China constitutes the most extensive monsoon
climate zone in Asia, and global warming has rendered this region increasingly susceptible
to cold waves and droughts, marking it as a climate-sensitive zone within China [32,33].
Precipitation and temperature changes exhibit significant spatial variability in their impact
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on mountain vegetation cover in the eastern monsoon region of China: the correlation
between vegetation NDVI and precipitation and temperature shows an increasing trend
with increasing altitude [34–36]; the correlation between temperature and vegetation NDVI
in most mountainous areas is higher than that of precipitation [37,38]; in the Dabie Moun-
tains, the impact of temperature on NDVI changes within the same year exceeds that of
precipitation, whereas precipitation from the preceding year had a greater influence than
temperature [39]; additionally, in the Wuling and Xuefeng mountains, winter precipitation
positively impacts NDVI changes [40]. However, the specific influence of climate indicators
on the relative contributions to NDVI changes, and how these contributions vary among
different indicators across various mountains, remains unclear.

In this study, we hypothesize that the NDVI variations at the upper limit of MDBF
exhibit spatial heterogeneity, attributable to differences in geographical location and the
influence of climatic factors. This work sought to address the following questions: 1. What
spatiotemporal differences exist in climatic factors and NDVI at the upper limit of MDBF in
the eastern monsoon region of China? 2. What characterizes the spatial differentiation of the
time-lag and -accumulation effects of NDVI in response to climatic factors of the upper limit
of MDBF in the eastern monsoon region of China? 3. Which climate factors predominantly
influence NDVI changes at the upper limit of MDBF in the eastern monsoon region of
China, across both short-term and interannual scales? The research results offer data
and a theoretical foundation for understanding the differential characteristics of regional
vegetation vertical transition zones in response to climate change and are significant for
advancing the study of mountain vegetation response to climate change.

2. Materials and Methods
2.1. Study Area

The study area is situated in the eastern monsoon region of China, spanning from
104.5◦ E to 131.2◦ E and from 25.7◦ N to 45.3◦ N, and encompasses nine mountain ranges:
the Changbai, Yanshan, Taihang, Lvliang, Qinling, Daba, Dabie, Wuling, and Xuefeng
Mountains (Figure 1). The ecological boundary between the eastern monsoon region and
the northwest arid region is typically delineated by a precipitation line of 400 mm, while
the boundary with the Tibetan Plateau is roughly defined by an elevation of 4000 m and a
terrain slope greater than 7◦ [41]. The eastern monsoon region is defined by the Qinling
Mountains and the Huai River, with the northern area exhibiting a temperate continental
monsoon climate. This climate features an annual temperature below 10 ◦C and annual
precipitation ranging from 400 to 800 mm, predominantly concentrated in July and August.
The southern region is characterized by tropical and subtropical monsoon climates, with
an annual temperature of 10 to 20 ◦C and annual precipitation exceeding 800 mm, chiefly
concentrated in the summer months [32]. The MDBF constitutes the zonal forest type in the
temperate and warm-temperate regions of northern China. In the subtropical mountainous
areas, owing to the variations in vertical climatic conditions, some types of MDBF also
emerge in the upper parts of the mountains [30].

2.2. Data

The distribution data of the upper limit of MDBF were obtained from the Global
Change Science Research Data Publishing & Repository [42]. This dataset is derived
from records documented in the literature, covering 68 sampling locations across nine
mountainous areas in the eastern monsoon region of China. It utilized composite elevation
information global land surface fine classification product data and Google Earth imagery
to extract 100 data points for each sampling location. The correlation coefficient between
the extracted mean values and the literature values stands at 0.698, with a fitted line slope
of 0.959, indicating statistical significance at the 0.001 level for both. The dataset comprises
6800 sampling points for the upper limit of MDBF in the study area. The recorded data
comprise latitude, longitude, and altitude (Figure 1, Table 1).
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leaved forests.

Table 1. Distribution position and number of sample points for the upper limit of montane deciduous
broad-leaved forests in the east monsoon region of China.

The Northern Region The Central Region The Southern Region

Changbai
Mts.

Yanshan
Mts.

Taihang
Mts.

Lvliang
Mts.

Qinling
Mts.

Daba
Mts.

Dabie
Mts.

Wuling
Mts.

Xuefeng
Mts.

Latitude (◦N) 42.73 40.67 37.80 37.71 33.80 31.99 31.31 29.35 27.06
Longitude (◦E) 127.28 116.95 113.46 111.41 108.93 109.20 115.84 109.10 111.21

Altitude (m) 965.77 1582.37 1805.03 1951.11 1993.52 1874.81 1359.78 1640.27 1347.99
Slope (◦) 16.99 26.29 30.95 25.39 30.26 31.28 29.62 25.25 22.41

Total number 500 500 1300 700 2000 900 300 300 300

Note: Latitude, longitude, altitude, slope, and total number respectively denote the average longitude, latitude,
altitude, slope and the total count of sample points at the upper limit of montane deciduous broad-leaved forests.

The NDVI data are derived from the MOD13Q1 dataset of the United States Geological
Survey (MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid).
The spatial resolution of the climate data stands at 250 m, with a temporal resolution of 8 d,
spanning the period from 2001 to 2018, comprising a total of 414 images. The MODIS NDVI
products are computed from atmospherically corrected bi-directional surface reflectances
that have been masked for water, clouds, heavy aerosols, and cloud shadows [43]. To
mitigate the terrain illumination error associated with the NDVI [18,44], the data points
selected for this study, pertaining to mountainous deciduous broad-leaved forests, are
situated within relatively lower latitudes (from 27.06◦ to 42.73◦) and lower altitudes (from
965.77 m to 1951.11 m) and exhibit relatively gentle terrain slopes (from 16.99◦ to 31.28◦). In
coarser resolution images, the topographic effects might be moderated due to large samples
of slopes and illumination conditions within pixels and less illumination from adjacent
pixels [45]. Therefore, MOD13Q1 NDVI (band-ratio vegetation index) was used to analyze
vegetation dynamic characteristics without terrain correction.

Precipitation, temperature, and radiation data were sourced from the National Eco-
logical Science Data Center. Precipitation and temperature data were obtained from the
2000–2018 China Meteorological Data Spatial Interpolation Dataset. This dataset is derived
from observed data from the National Meteorological Information Center of China Mete-
orological Administration and the Daily Global Historical Climatology Net-work-Daily
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and was interpolated using ANUSPLINE software v4.4 [46]. Radiation data were obtained
from the 2000–2018 National 1 km 8-day Land Surface Net Radiation Dataset. The surface
net radiation data was derived from the simulation results of the GLOPEM-CEVSA model,
specifically utilizing the model’s radiation module [47]. The spatial resolution of the climate
data stands at 1 km, with a temporal resolution of 8 d, spanning the period from 2000 to
2018, comprising a total of 874 images.

2.3. Methods

This study initially examined the spatial distribution and temporal trends of climate
factors and NDVI, as illustrated in Figure 2. Subsequently, it investigated the time-lag,
accumulation, and combined effects of these climatic factors on NDVI. Utilizing the periods
of maximum correlation between climatic factors and NDVI, the study quantified their
relative contributions to both short-term and interannual NDVI variations.
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2.3.1. Preprocessing of Climatic Factors and NDVI

Step 1: First, we reproject, concatenate, and apply a scale factor transformation to the
obtained NDVI data. Then, S-G filtering is applied to the time series NDVI data (with
the smoothing polynomial of order 3 and a sliding window width of 7). Secondly, quality
control is performed using the SummaryQA band of MOD13Q1. A mask is created using
pixels with a SummaryQA value of 0 (indicating good data, use with confidence) to extract
these data. Then, pixel values with a SummaryQA value that is not 0 are substituted with
S-G filtering values. Finally, pixels with NDVI values greater than 1 or less than 0 are
replaced with the mean of their adjacent pixels in the time series.

Step 2: We aggregate precipitation [48], temperature [49], and radiation [50] data over
16 d to match the NDVI temporal resolution. Precipitation and radiation are aggregated
using the sum method, while temperature is aggregated using the mean method.

Step 3: The ArcMap software v4.4 (https://desktop.arcgis.com/en/arcmap/, accessed
on 15 March 2024) is used to extract the aforementioned data to 6800 locations representing
the upper limit of MDBF.

Step 4: To analyze the spatial distribution of climatic factors and NDVI, calculations
of annual average precipitation, temperature, and radiation flux from 2001 to 2018 are
conducted. For the analysis of short-term and interannual trends in climatic factors and
NDVI, precipitation, temperature, and radiation are calculated for each period and year
from 2001 to 2018.

2.3.2. Spatial Distribution of Climatic Factors and NDVI

The spatial distribution of climatic factors and NDVI at the upper limit of MDBF was
explored using the mean values and standard deviation [51]. Mean values represent the
overall distribution of PRE, TMP, RAD, and NDVI at the upper limit of MDBF, whereas
standard deviation indicates the dispersion among these variables at the sample points.

https://desktop.arcgis.com/en/arcmap/
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2.3.3. Temporal Variations in Climatic Factors and NDVI

The Theil–Sen method is a robust non-parametric statistical approach for trend com-
putation. Known for its computational efficiency and insensitivity to small outliers and
missing values, this method is widely used in the trend analysis of long-term time series
data [52]. In this study, Sen’s slope is utilized to estimate temporal trends in annual climatic
factors including annual precipitation, temperature, and radiation and NDVI. The formula
is presented as follows:

β =median(
xj − xi

j − i
), ∀j > i (1)

In Equation (1), the median represents the median function; i and j represent time
series data; a β value greater than 0 represents an upward trend, whereas β less than 0
indicates a downward trend in the time series.

The Mann–Kendall test, a non-parametric method, is known for its robustness and sta-
bility, enabling the accurate determination of NDVI trends within a specific time scale [53].
When applied to a time series Xt = (x1, x2, . . . , xn), the test statistic Z is used for trend
analysis, with the formula as follows:

Z =


S√

Var(S)
, S > 0

0 , S = 0
S+1√
Var(S)

, S < 0
(2)

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi
)

(3)

sgn(θ) =


1, θ > 0
0, θ = 0

−1, θ < 0
(4)

Var(S) =
n(n − 1)(2n + 5)

18
(5)

In Equations (2)–(5), sgn represents the sign function; xi and xj denote the climatic
factor or NDVI data for periods i and j (where j > i); n is the length of the time series; S is
the test statistic, and |Z| ≥ 1.96 indicates that the time series trend has passed a significance
test at the 95% confidence level, while |Z| < 1.96 indicates a non-significant trend [24].

2.3.4. Time-Lag and -Accumulation Effects of Climatic Factors

This study aims to analyze the magnitude of the time-lag and -accumulation effects
of various climatic factors on NDVI in different mountainous MDBF by comparing the
correlation coefficients [35].

This study analyzes the differential time-lag and -accumulation effects of various
climatic factors on NDVI in the upper limit of MDBF across three scenarios:

(1) Considering time-lag effects, the analysis examines the differential impacts of climatic
factors on NDVI with a cumulative period of 1 and lag periods ranging from 0 to 6.

(2) Considering time-accumulation effects, the analysis examines the differential impacts
of climatic factors on NDVI with lag period of 0 and cumulative periods ranging from
1 to 6.

(3) Considering time-lag and -accumulation effects, the analysis examines the comprehen-
sive impacts of climatic factors on NDVI through 42 combined forms of lag (from 0 to 6
periods) and cumulative (from 1 to 6 periods) periods [54], as outlined in Table 2. The
lag and cumulative periods that correspond to the maximum correlation coefficient
between climatic factors and NDVI indicate the optimal lag time and cumulative
duration for these climatic factors. Research has indicated that sequences of climatic
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factors with optimal time-lag and -accumulation effects exert a greater influence on
NDVI than scenarios considering only one of these effect [50].

Table 2. Combination of lag time and cumulative duration for climatic factors.

Lag Time
Cumulative Duration

1 2 . . . 6

0 0–0 0–1 . . . 0–5
1 1–1 1–2 . . . 1–6

. . . . . . . . . . . . . . .
6 6–6 6–7 . . . 6–11

Note: using the lag and cumulative period of 6 as an example, the range 6–11 denotes the average precipitation,
temperature, and radiation from the first 11th period to the first 6th period.

2.3.5. Relative Contributions of Climate Factors to the NDVI Variations

Using the residual trend analysis method, this study quantifies the relative contri-
butions of PRE, TMP, and RAD (with optimal time-lag and -accumulation effects) and
other factors to the upper limit NDVI of MDBF across two temporal scales: short-term and
interannual NDVI variations. The calculation steps and formulas [55,56] are as follows:

Step 1 involves computing the linear trend rate of NDVI at the upper limit of MDBF
using Equation (6).

Step 2 calculates the impact of various climate factors on the linear trend rate of NDVI
using Equation (7).

Step 3 entails calculating the force of action of each climate factor on the linear trend
rate of NDVI, according to Equation (8).

Finally, Step 4 computes the relative contribution of each climate factor to the linear
trend rate of NDVI using Equation (9).

θslope =
n × ∑n

i=1 (i × NDVIi)− ∑n
i=1 i × ∑n

i=1 NDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (6)

θslope = slope(PRE) + slope(TMP) + slope(RAD) + OF
≈ ∂NDVI

∂PRE × ∂PRE
∂n + ∂NDVI

∂TMP × ∂TMP
∂n + ∂NDVI

∂RAD × ∂RAD
∂n + OF

(7)

c(factor) =
slope(factor)

θslope
(8)

C(factor) =
c(factor)

∑|c(factor)|×100% (9)

In these equations, θslope represents the slope derived from a simple linear regression
between NDVI and n, with n being the time series length. PRE, TMP, and RAD repre-
sent precipitation, temperature, and radiation, respectively. Slope(PRE), slope(TMP), and
slope(RAD) quantify the impacts of PRE, TMP, and RAD on NDVI’s linear trend, respec-
tively. Slope(PRE) is calculated from (∂NDVI/∂PRE) and (∂PRE/∂n), where (∂NDVI/∂PRE)
represents the linear regression slope between NDVI and PRE and (∂PRE/∂n) represents the
linear regression slope between PRE and n. The methodologies for calculating slope(TMP)
and slope(RAD) follow similarly. Other factor (OF) represents the residual between NDVI’s
actual variations and those attributed to climatic factors, highlighting the effects of other
factors (e.g., natural disasters, wind) on NDVI fluctuations. Given this study’s focus on nat-
ural vegetation zone boundaries—typically minimally impacted by human activities—the
influence of human actions is not considered at this study. c(factor) measures the driv-
ing force’s magnitude from PRE, TMP, RAD, and OF on NDVI trend variations, whereas
C(factor) details the relative contributions of each climate factor.
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3. Results
3.1. Spatial and Temporal Variations in Climatic Factors at the Upper Limit of MDBF
3.1.1. Spatial Distribution

From 2001 to 2018, the annual average precipitation at the upper limit of MDBF in the
nine mountainous areas ranged from 619.65 to 1552.1 mm (Figure 3). The annual average
precipitation decreased moving from the coastal areas (the Changbai Mts., 127.28◦E) to
the inland areas (the Lvliang Mts., 111.41◦ E) and increased moving from higher latitudes
(the Qinling Mts., 33.80◦ N) to lower latitudes (the Xuefeng Mts., 27.06◦ N). The standard
deviation of the annual average precipitation varied from 32.46 to 210.57 mm. With the
increase in the annual average precipitation, the distribution of standard deviation in the
northern mountainous areas (32.46 to 105.28 mm) exhibited a dispersion. The standard
deviation of the annual average precipitation in the Wuling and Daba Mts. (210.57 and
129.21 mm) exceeded that of other mountainous areas.
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Figure 3. Distributional characteristics of the annual average precipitation, temperature, and radiation
at the upper limit of montane deciduous broad-leaved forests in nine mountainous areas. The black
vertical line denotes the standard deviation.

The annual average temperature at the upper limit of MDBF in the nine mountainous
areas ranged from 2.63 to 12.62 ◦C, and the annual average radiation varied from 705.91 to
1003.67 W m−2. The standard deviation of the annual average radiation varied from 9.13
to 33.52 W m−2, with the larger latitudinal span of the Taihang Mts. resulting in the least
concentrated distribution of the annual average radiation (33.52 W m−2) (Figure 1).

3.1.2. Temporal Variations

From 2001 to 2018, the Sen’s slope of the annual precipitation at the upper limit
of MDBF in the nine mountainous areas varied from 3.303 to 10.083 mm/a (Figure 4).
Among these regions, the Daba, Lvliang, Yanshan, and Changbai Mts. exhibited a notably
steep increase in the annual precipitation (5.01 to 10.083 mm/a), whereas the remaining
mountainous areas showed variations ranging from 3.289 to 3.375 mm/a. The Lvliang,
Yanshan, and Changbai Mts. showed a significant increase in the annual precipitation
(9.113, 6.048, and 5.025 mm/a).

The Sen’s slopes of the annual temperature and radiation at the upper limit of MDBF
ranged from 0.33 to 0.73 ◦C/10a and 0.162 to 2.047 W m−2/a, respectively. Among these
regions, the Qinling Mts. exhibited the most pronounced increase in the annual temperature
(0.73 ◦C/10a), while the Lvliang Mts. displayed the most significant increase in the annual
radiation (2.047 W m−2/a). The mountainous regions south of the Taihang and Qinling
Mts. experienced significant increases in the annual temperature, while the mountainous
regions north of the Daba Mts. exhibited notable increases in the annual radiation.
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Figure 4. Sen’s slope of the annual precipitation, temperature, and radiation at the upper limit of
montane deciduous broad-leaved forests in nine mountainous areas. * represent a significance level
of 0.05.

3.2. Spatial and Temporal Variations in NDVI at the Upper Limit of MDBF
3.2.1. Spatial Distribution

From 2001 to 2018, the annual average NDVI at the upper limit of DBLF in the nine
mountainous areas ranged from 0.503 to 0.626 (Figure 5). As precipitation and temperature
increase, the annual average NDVI exhibits an increasing trend, with the Dabie and Yanshan
Mts. recording the maximum and minimum values, respectively. The standard deviation of
the annual average NDVI ranged from 0.027 to 0.051. The distribution of the annual average
NDVI in the Xuefeng Mts. is the least concentrated, whereas the Dabie Mts. displayed the
opposite pattern.
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Figure 5. Distributional characteristics of the annual average NDVI at the upper limit of montane
deciduous broad-leaved forests in nine mountainous areas. The black vertical line denotes the
standard deviation.

3.2.2. Temporal Variations

From 2001 to 2018, the Sen’s slope of the annual NDVI at the upper limit of MDBF
in the nine mountainous areas ranged from −0.541 to 5.045 × 10−3/a (Figure 6). Only
the Xuefeng Mts. showed a decreasing trend in the annual NDVI, whereas the other
mountainous areas exhibited an increasing trend, with Lvliang Mts. recording the highest
slope of increase (5.045 × 10−3/a). The Sen’s slope of the annual NDVI demonstrated a
clear north–south variation, with a trend of increasing followed by decreasing from the
Changbai Mts. to the Xuefeng Mts. The mountainous areas north of the Daba Mts. showed
a significant increase in the annual NDVI (2.271 to 5.045 × 10−3/a), whereas the trend in
the southern mountainous areas (−0.541 to 2.413 × 10−3/a) was not significant.

3.3. Analysis of the Time-Lag and -Accumulation Effects of Climatic Factors at the Upper Limit
of MDBF
3.3.1. Analysis of the Time-Lag Effect

From 2001 to 2018, the lag time of PRE, TMP, and RAD at the upper limit of MDBF in
the nine mountainous areas was 0 to 4, 0 to 2, and 2 to 4 periods, respectively (Figure 7). The
impact of climatic factors on NDVI was found to be in the order of RAD > TMP > PRE. As
the lag time increased, the correlation between PRE, TMP, and NDVI showed a significant
decreasing trend, while RAD exhibited an initial increase followed by a significant decrease.
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The changing trends of each climatic factor were more pronounced, with a significant
increase in NDVI in the area north of the Daba Mts. The correlation between climatic
factors and NDVI showed significant spatial differentiation during the lag periods of 0 to
4, exhibiting a significant decreasing trend from high latitude (the Changbai Mts.) to low
latitude (the Daba Mts.).

Forests 2024, 15, x FOR PEER REVIEW 10 of 22 
 

 

annual average NDVI in the Xuefeng Mts. is the least concentrated, whereas the Dabie 

Mts. displayed the opposite pattern.  

 

Figure 5. Distributional characteristics of the annual average NDVI at the upper limit of montane 

deciduous broad-leaved forests in nine mountainous areas. The black vertical line denotes the stand-

ard deviation. 

3.2.2. Temporal Variations 

From 2001 to 2018, the Sen’s slope of the annual NDVI at the upper limit of MDBF in 
the nine mountainous areas ranged from −0.541 to 5.045 × 10−3/a (Figure 6). Only the 

Xuefeng Mts. showed a decreasing trend in the annual NDVI, whereas the other moun-

tainous areas exhibited an increasing trend, with Lvliang Mts. recording the highest slope 

of increase (5.045 × 10−3/a). The Sen’s slope of the annual NDVI demonstrated a clear 

north–south variation, with a trend of increasing followed by decreasing from the Chang-
bai Mts. to the Xuefeng Mts. The mountainous areas north of the Daba Mts. showed a 

significant increase in the annual NDVI (2.271 to 5.045 × 10−3/a), whereas the trend in the 

southern mountainous areas (−0.541 to 2.413 × 10−3/a) was not significant. 

   

   

   

Figure 6. Sen’s slope of the annual NDVI at the upper limit of montane deciduous broad-leaved 

forests in nine mountainous areas. * represent a significance level of 0.05. 

  

0.4

0.5

0.6

0.7

Changbai

Mts.

Yanshan

Mts.

Taihang

Mts.

Lvliang

Mts.

Qinling

Mts.

Daba

Mts.

Dabie

Mts.

Wuling

Mts.

Xuefeng

Mts.

A
n
n
u
al

 a
v
er

ag
e

N
D

V
I

0.4

0.5

0.6

0.7
A

n
n
al

 N
D

V
I NDVI

a. Changbai Mts.

slope = 1.595 × 10−3/a 

b. Yanshan Mts.

slope = 2.982 × 10−3/a* 

c. Taihang Mts.

slope = 3.75 × 10−3/a* 

0.4

0.5

0.6

0.7

A
n
n
al

 N
D

V
I

d. Lvliang Mts.

slope = 5.045 × 10−3/a* 

e. Qinling Mts.

slope = 2.325 × 10−3/a* 

f. Daba Mts.

slope = 2.271 × 10−3/a* 

0.4

0.5

0.6

0.7

2
0
0

1

2
0
0

5

2
0
0

9

2
0
1

3

2
0
1

7

A
n
n
al

 N
D

V
I

Year

g. Dabie Mts.

slope = 2.413 × 10−3/a* 

2
0
0

1

2
0
0

5

2
0
0

9

2
0
1

3

2
0
1

7
Year

h. Wuling Mts.

slope = 1.041 × 10−3/a 

2
0
0

1

2
0
0

5

2
0
0

9

2
0
1

3

2
0
1

7

Year

i. Xuefeng Mts.

slope = −0.541 × 10−3/a 

Figure 6. Sen’s slope of the annual NDVI at the upper limit of montane deciduous broad-leaved
forests in nine mountainous areas. * represent a significance level of 0.05.
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3.3.2. Analysis of the Time-Accumulation Effect

From 2001 to 2018, the cumulative duration of PRE, TMP, and RAD at the upper limit
of MDBF in the nine mountainous areas was 3 to 6, 2 to 5, and 5 to 6 periods, respectively
(Figure 8). The correlation between climatic factors and NDVI was found to be in the
order of RAD > TMP > PRE. The cumulative duration increased and the correlation of
PRE and TMP, and NDVI showed a trend of initially increasing and then decreasing, while
RAD exhibited a consistently increasing trend. However, there is little difference in the
correlation between climatic factors and NDVI at different cumulative periods. It was
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observed that the climatic factors at the lag 0 period had a greater impact on NDVI, while
the time-accumulation effects were not significant. The correlation between climatic factors
and NDVI at different lag times showed distinct spatial variations, with the influence
decreasing significantly from higher latitudes (the Changbai Mts.) to lower latitudes (the
Xuefeng Mts.).
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3.3.3. Analysis of Time-Lag and -Accumulation Effects

The optimal lag time for PRE, TMP, and RAD at the upper limit of MDBF in the nine
major mountainous areas is 0 to 2, 0, and 0 to 3 periods, respectively, and the optimal
cumulative duration is 2 to 6, 2 to 4, and 2 to 5 periods, respectively (Table 3). The lag time
and cumulative duration of climatic factors in the Yanshan, Taihang, and Qinling Mts. were
equal, while the Changbai and Wuling Mts. were similar. The correlation between PRE,
TMP, RAD, and NDVI corresponding to the optimal lag time and cumulative duration is as
follows: RAD > TMP > PRE, and it shows a significant decreasing trend from high latitude
(the Changbai Mts.) to low latitude (the Daba Mts.).

Table 3. Combination of optimal lag time and cumulative duration.

Changbai
Mts.

Yanshan
Mts.

Taihang
Mts.

Lvliang
Mts.

Qinling
Mts.

Daba
Mts.

Dabie
Mts.

Wuling
Mts.

Xuefeng
Mts.

PRE
r 0.84 0.865 0.853 0.816 0.779 0.845 0.738 0.716 0.63

Lag time 0 0 0 0 0 0 0 0 2
Cumulative
duration 4 3 3 2 3 3 6 5 6

TMP
r 0.953 0.924 0.94 0.93 0.944 0.939 0.885 0.82 0.813

Lag time 0 0 0 0 0 0 0 0 0
Cumulative
duration 3 3 3 3 3 3 2 3 4

RAD
r 0.975 0.939 0.949 0.941 0.946 0.946 0.897 0.815 0.815

Lag time 1 0 0 0 0 1 1 1 3
Cumulative
duration 3 5 5 5 5 4 2 4 3

Note: r represents the correlation coefficient. The correlation between climatic factors and NDVI at the upper limit
of montane deciduous broad-leaved forests is significant at the 0.05 level.

3.4. The Relative Contribution of Climate Factors to the NDVI Variations at the Upper Limit of
MDBF
3.4.1. Short-Term Scale

TMP and PRE are the main climate factors for the temporal NDVI variation at the
upper limit of MDBF in nine mountainous areas, with relative contributions ranging from
20.17% to 38.88% and 1.08% to 40.71%, respectively (Figure 9). PRE, TMP, and RAD all
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contribute positively to the temporal NDVI variation in nine mountainous areas, while
OF are all negative. The Taihang and Lvliang Mts. are less affected by OF (−16.87% and
−17.17%).
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Figure 9. Relative contribution of different climate factors to the short-term NDVI variation at the
upper limit of montane deciduous broad-leaved forests in nine mountainous areas.

3.4.2. Interannual Scale

TMP and RAD are the main climate factors for the annual NDVI variation at the
upper limit of MDBF in nine mountainous areas, with relative contributions ranging from
−37.62% to 86.76% and −4.15% to 43.65%, respectively (Figure 10). TMP only has a
significant negative contribution to the annual NDVI variation of the Xuefeng Mts., with a
relative contribution of −37.62%. RAD from the Xuefeng and Wuling Mts. has a negative
contribution to annul NDVI variation (−3.75% and −4.15%). PRE has the greatest negative
contribution to the Changbai Mts. (−8.8%), while OF has the greatest negative contribution
to the Lvliang Mts.
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Figure 10. Relative contribution of climate factors to the annual NDVI variation at the upper limit of
montane deciduous broad-leaved forests in nine mountainous areas.

4. Discussion
4.1. Time-Lag and -Accumulation Effects of Climatic Factors at the Upper Limit of MDBF

At present, scholars generally realize that climate dynamically affects the growth status
of vegetation asymmetrically [48,57,58]. Ding et al. [49] confirmed that climatic factors
have a combined time-lag and -accumulation effects on global vegetation growth. The
analysis results of this work indicate that PRE, TMP, and RAD at the upper limit of MDBF
in the eastern monsoon region of China have certain lag time and cumulative duration
(Figures 7 and 8, Table 3). The above results indicate that the lag time and cumulative
duration of vegetation response to TMP in mountainous MDBF is the shortest, followed by
PRE and RAD. This analysis result is similar to Ding [49]. The time-accumulation effect
of PRE has a significant impact on the growth of global vegetation, and for MDBF, the
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cumulative duration of PRE exceeds two months [49]. This may be because MDBF have
a higher transpiration rate and require a large amount of water to maintain responsive
photosynthesis [59]. The accumulation of TMP is beneficial for the growth of vegetation at
low temperatures, and the increase in radiation can enhance the activity of photosynthetic
enzymes [60]. In summary, for individual plants, the accumulation of PRE, TMP, and
RAD affects the plant life cycle [61]; At the ecosystem scale, the geochemical cycling of soil
nutrients for plant growth and development also requires time-accumulation effects [62].

In addition, there are significant differences in the time-lag and -accumulation effects
between PRE, TMP, and RAD. As the lag time increases, the effects of PRE and TMP
on the NDVI of MDBF gradually decrease, while RAD shows a trend of first increasing
and then decreasing (Figure 7). This may be the vegetation at the upper limit of MDBF
requires a certain amount of time to utilize soil moisture and adapt to new temperature
conditions [63,64], and appropriate hydrothermal conditions are conducive to the posi-
tive impact of radiation on the growth of vegetation at the upper limit of MDBF. As the
cumulative duration increases, the correlation between PRE and TMP with NDVI does
not show significant changes, while RAD gradually increases (Figure 8). This may be
the stable state of water and heat at the upper limit of MDBF within a certain range, and
the time-accumulation effect is not significant. RAD is the main energy source for the
growth of vegetation at the upper limit of MDBF, and the accumulation of RAD promotes
vegetation growth [65]. Meanwhile, the maximum correlation between climatic factors
and NDVI also shows significant spatial differentiation (Figures 7 and 8, Table 3). The
maximum correlation coefficients between PRE, TMP, RAD, and NDVI in the MDBF of the
nine mountainous areas are the Northern Mts. > the Central Mts. > the Southern Mts. The
upper limit vegetation of MDBF in the Northern Mts. is more sensitive to climatic factors,
mainly due to the smaller amplitude of climate change in the Southern Mts. and the less
limited water and heat on the vegetation. The seasonal changes in TMP and PRE in the
Northern Mts. are significant, and the vegetation phenological characteristics are obvious,
with a more significant response to climatic factors [66,67].

4.2. The Impact of Climatic Factors on NDVI Variations at the Upper Limit of MDBF

On a global scale, climatic factors significantly impact vegetation change in terrestrial
ecosystems, with PRE, TMP, and RAD explaining 64.04% of vegetation growth changes [58].
The analysis results of this work indicate that climatic factors dominate the increasing
trend of short-term and annual NDVI in the upper limit of MDBF in nine mountainous
areas (Table 4). This is because the study subject of this work is the vertical boundary of
natural vegetation, which is rarely disturbed by human activities, and climate change has
a significant impact on vegetation growth in sparsely populated areas of China [54]. The
relative contribution of PRE to short-term NDVI variation is higher than that to annual
NDVI variation, with the greatest relative contribution being the Dabie Mts. (40.71% and
20.05%, respectively). On a longer time scale, vegetation tends to adapt to the environment,
thus developing higher water use efficiency [68]. The annual NDVI of vegetation at the
upper limit of MDBF in mountainous areas is less affected by PRE. In summary, the
difference in the relative contribution of PRE to NDVI variation at different temporal scales
is mainly due to the high water demand for vegetation growth at the upper limit of MDBF
in the short term, while the impact of PRE over the long term is relatively small, indicating
that the upper limit vegetation of MDBF has adapted to water changes.
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Table 4. Comparative analysis of this study’s findings with the existing literature.

No. Study Area Study Period Dominated
Influencing Factor References

1 Tibetan Plateau 2000–2017 Temperature [20]
2 Loess Plateau 2001–2018 Temperature [21]

3 Greater Khingan
Mountains 2000–2020 Wind speed [22]

4 Semi-arid Region 1981–2018 Climate change [23]
5 Southwest Karst Region 1999–2019 Temperature [24]
6 Northeast Plain 2000–2017 Precipitation [25]
7 North China Plain 1998–2012 Precipitation [26]
8 Chinese Mainland 1982–2015 Human activities [27]
9 Changbai Mountains 2000–2009 Temperature [35]
10 Qinling Mountains 2000–2015 Human activities [36]
11 Taihang Mountains 1998–2018 Precipitation [37]
12 Lvliang Mountains 2000–2019 Precipitation [38]
13 Dabie Mountains 2000–2019 Temperature [39]
14 Wuling Mountains 2001–2015 Temperature [40]
15 East Monsoon Region 2001–2018 Temperature This study

TMP is the first climate factor for short-term and annual NDVI variations, while RAD
is an important climate factor for annual NDVI variation. TMP and RAD are thermal factors
for vegetation growth, and their effects on long-term vegetation growth are relatively high.
This analysis result is consistent with the research conducted by Sun et al. [69]. The increase
in vegetation coverage in the Northern Hemisphere is influenced by global warming [70].
Ding et al. [49] believe that vegetation growth in the Northern Hemisphere is mainly
influenced by TMP and RAD, while in China, it is mainly driven by TMP. The analysis
results of Wu et al. [58] indicate that TMP plays a dominant role in the growth of NDVI.
Jin et al. [27] believes that the increase in NDVI during China’s growth season in the past
34 years is closely related to TMP, while Yang [71] believes that the increase in RAD is
beneficial for vegetation photosynthesis and can effectively promote vegetation to enter the
growth season earlier. For example, in the upper limit of MDBF of the Yanshan, Taihang,
and Lvliang Mts., the relative contribution of RAD to temporal NDVI variation exceeds 20%,
and that to annual NDVI variation exceeds 35% (Figures 9 and 10). TMP and RAD have a
positive contribution to the upper limit NDVI of MDBF in nine mountainous areas. While
TMP has a significant negative contribution to the annual NDVI variation at the upper
limit of MDBF in the Xuefeng Mts, this is related to the decreasing trend of annual NDVI.

4.3. The Impact of Other Factors on NDVI Variations at the Upper Limit of MDBF

Vegetation changes that cannot be explained by climatic factors may be attributed to
OF. For the temporal NDVI variation, OF have a negative contribution to the upper limit
NDVI of MDBF in nine mountainous areas, which show a decreasing and then increasing
trend from high latitude (the Changbai Mts.) to low latitude (the Xuefeng Mts.). The main
reason is that the temporal NDVI variation in vegetation growth at the upper limit of
MDBF is mainly influenced by water and heat factors. The upper limit NDVI of MDBF is
the Taihang and Lvliang Mts., which are least affected by OF, possibly due to the higher
distribution of MDBF in the nine mountainous areas (Table 1). The NDVI of vegetation
at the upper limit of MDBF is more sensitive to climatic factors (Table 3). The annual
NDVI variation reflects the fluctuation trend of the upper limit vegetation of MDBF under
long-term climate influence, and the contributions of OF to the annual NDVI variation
show significant spatial differentiation. Among them, OF promoted the increase in annual
NDVI variation in the Xuefeng, Qinling, Daba, Changbai, and Dabie Mts. (7.7% to 54.07%).
Studies have shown that carbon dioxide fertilization and nitrogen deposition promoted
vegetation growth in the region [72]. OF have the most significant negative contributions
to the Taihang and Lvliang Mts. in the northern mountainous areas (–11.65% and –21.67%),
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which indicates that under relatively low water conditions for a long time, OF have a
significant negative impact on the vegetation at the upper limit of MDBF. OF are the first
driving factors (–47.01% and 54.01%) for the short-term and annual NDVI variations of
MDBF in the Xuefeng Mts. It indicates that the vegetation at the upper limit of MDBF
is influenced by OF besides climate, which may be related to the occurrence of extreme
climate events [73].

4.4. The Impact of Elevation and Aspect on the Vegetation at the Upper Limit of MDBF

In the context of global climate change, terrain and topography are relatively constant
environmental factors. They create local microclimates by redistributing water and heat,
thus affecting the distribution pattern of terrestrial ecosystems [74]. Recent studies have
found that altitude affects the response of vegetation to climate change in the three river
source areas of the Tibetan Plateau by regulating temperature [75]. Due to the focus of this
research on the upper limit of MDBF, significant variations in altitude are observed (Table 1).
To explore the influence of altitude on PRE, TMP, RAD, and NDVI at the upper limit of
MDBF, a univariate linear regression analysis was conducted. Climatic factors and NDVI
from 68 mountain sites were treated as dependent variables and altitude as the independent
variable. Figure 11a illustrates a decreasing trend in PRE at the upper limit of MDBF as
altitude increases, and PRE decreases by 112.01 mm per 1 km increase in altitude. Previous
studies have indicated that PRE in the western Himalayas increases with altitude [76]. It is
hypothesized that, on a broader scale, the observed decrease in PRE at the upper limit of
MDBF with increasing altitude reflects alterations in PRE of their dominant tree species.
Scholars have noted that in the eastern monsoon region of China, the distribution height of
the upper limit of MDBF is unaffected by PRE, as the region’s annual precipitation suffices
for their growth and development needs, with temperature primarily determining their
distribution height [77,78]. As depicted in Figure 11b,c, both TMP and RAD exhibit an
increase with altitude, indicating that per 1 km increase in altitude, TMP and RAD increase
by 0.704 ◦C and 37.272 W m−2, respectively. This phenomenon occurs due to the high
altitude of mountains, resulting in the slopes of these terrains receiving increased solar
radiation. Solar radiation received during the day is emitted as long-wave radiation at
night, altering the thermal conditions of both the mountains and their surroundings [79].
Temperature indirectly reflects the mass elevation effect, while solar radiation serves as its
mechanistic cause and exhibits greater explanatory power than temperature [80]. Therefore,
it is evident that NDVI on the upper limit of MDBF increases with altitude, and NDVI
increases by 0.021 per 1 km increase in altitude. It should be noted that the changes in
climatic factors and NDVI with altitude are not statistically significant (p > 0.05), likely due
to the limited number and uneven distribution points of the upper limit of MDBF.

Slope orientations, considered an important topographic factor in mountain research,
have the potential to alter many ecological factors such as light, temperature, water, and
soil nutrients for plant growth. For example, in the Hengduan Mountains, due to the
influence of the mountain on the local prevailing monsoon, significant disparities exist
in water and thermal conditions between the windward and leeward slopes, resulting in
the development of different types of vertical mountain band spectra [81]. To explore the
spatiotemporal changes of vegetation in different slope orientations, we analyze the annual
average NDVI spatial distribution characteristics and interannual variation trends of shady
and sunny slopes. As illustrated in Figure 12, the annual average NDVI of the shady
and sunny slopes ranges from 0.5 to 0.65, suggesting a higher NDVI on the shady slope
compared to the sunny slope, with the Wuling and Xuefeng Mts. being the most prominent.
Bochet et al. [82] found that the soil on the sunny slope has a shorter water-holding time
compared to the shady slope. After precipitation, the soil on the sunny slope quickly
reaches the dry point, which implies that the water conservation capacity of the shady
slope is greater than that of the sunny slope [82]. Simultaneously, owing to the limitation
of available water, the vegetation coverage of the sunny slope is low, characterized by a
shallow root system, increased susceptibility to wind and water erosion, and more severe
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soil erosion [83]. The Sen’s slope of the annual NDVI for the shady and sunny slopes ranges
from –0.647 to 4.29, exhibiting an increase in all slopes except for the Xuefeng Mts. In the
mountainous areas south of the Qinling Mts., the Sen’s slope of the annual NDVI is higher
on the sunny slope than on the shady slope. Conversely, the opposite is true for other
mountainous areas. Recent studies [44] have pointed out that the NDVI on shady slopes
is not always greater than that on sunny slopes, a phenomenon attributed to the seasonal
transition from water-limitation to energy-limitation. Additional consideration is needed
regarding the impact of water evaporation and soil water availability on NDVI in different
slope orientations.
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Figure 11. Variation trend of precipitation (a), temperature (b), radiation (c), and NDVI (d) with
elevation at the upper limit of montane deciduous broad-leaved forests in nine mountainous areas.
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Figure 12. Distribution and trend of different slope orientations of the annual average NDVI at
the upper limit of montane deciduous broad-leaved forests in nine mountainous areas. Shady
slopes range from 0 to 90 degrees and from 270 to 360 degrees, while sunny slopes range from
90 to 270 degrees. Circles and triangles represent significant levels at 0.05 and insignificant levels,
respectively.

4.5. Limitations of This Study

It is essential to acknowledge certain limitations of this study. Firstly, the study faces
limitations due to the limited availability of distribution data collected at the upper limit of
MDBF. Although 100 sampling points were extracted for each upper limit position point of
MDBF, significant variations existed in the number of areas surveyed. The mean method
was employed to characterize the collective distribution traits of NDVI and climatic factors
in each mountainous area, aiming to mitigate the constraints posed by insufficient data.
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Secondly, the current analysis does not account for the effects of soil moisture, changes
in carbon dioxide concentration, and nitrogen deposition on NDVI, a topic extensively
examined by previous research. Thirdly, due to the constraints of mountain remote sensing,
a temporal resolution of 16 d was chosen, along with spatial resolutions of 1 km for climate
data and 250 m for NDVI data, to ensure coherence in capturing vegetation dynamics
and to maintain temporal and spatial consistency in data resolution. This approach was
adopted to address the potential impact of uncertainty superposition at various spatial
resolutions on the study’s findings. As this study concentrates on the eastern monsoon
region of China and encompasses a large scale, its primary focus lies in delineating the
disparities in climate and vegetation alterations across varied mountainous regions. We
maintain that the analysis results derived from this dataset continue to hold significance in
elucidating the variations in how the upper limit vegetation of MDBF respond to climate
factors across diverse mountainous regions.

The next phase of research primarily encompasses the following points: Firstly, lever-
aging multi-source remote sensing data, digital extraction of the upper limit of MDBF is
conducted to augment the sample dataset. Secondly, temperature and precipitation data
are downscaled to acquire high-precision climate data. Thirdly, to enhance the ability to
capture vegetation dynamics, high-spatial-resolution multi-vegetation index data (Landsat,
Sentinel, Himawari) are chosen. However, this approach requires consideration of the
composite processing of data from different sensors, along with the implementation of
various data correction algorithms including terrain correction, atmospheric correction, and
cloud removal processing. Simultaneously, it is crucial to account for how the sensitivity of
various spectral bands responds to changes in soil background, atmospheric conditions,
Bidirectional Reflectance Distribution Function (BRDF) effects, and the terrain of the sur-
face. Lastly, we will employ spatiotemporal geographic weighted regression analysis or
geographic detector methods to examine the spatiotemporal dynamic characteristics of
vegetation growth on the upper limit of MDBF in response to climate change at different
scales. Simultaneously, it is imperative to consider the impacts of extreme climate events
on changes in vegetation cover, thereby advancing research on the response of mountain
vegetation vertical zone boundaries to climate change.

5. Conclusions

This study utilizes MODIS NDVI and climate data from 2001 to 2018 to analyze
the spatiotemporal variation trends of PRE, TMP, RAD, and NDVI across nine MDBF in
the eastern monsoon region of China. It explores the time-lag and -accumulation effects
of climatic factors on NDVI, quantifying their relative contributions to both short-term
and annual NDVI variations. The key findings are as follows: (1) PRE, TMP, RAD, and
NDVI exhibit a general increasing trend from higher to lower latitudes. The Qinling-
Daba Mountains mark a significant geographical division, with northern mountainous
areas showing a notable trend of increasing annual RAD and southern mountainous areas
showing a significant trend in rising annual TMP; mountainous areas with comparatively
lower annual PRE demonstrate the fastest rates of increase in annual NDVI. (2) The shortest
lag time and cumulation duration in NDVI response were observed for TMP, followed by
PRE and RAD. The correlation of NDVI response is strongest with RAD, followed by TMP
and PRE, with the correlation between NDVI and these climatic factors generally decreasing
from higher to lower latitudes. (3) TMP is identified as the primary driver of both short-
term and annual NDVI variations, with short-term NDVI variation being predominantly
influenced by PRE and long-term NDVI variation by RAD. In the Taihang and Lvliang
Mountains, OF has the smallest negative impact on temporal NDVI variation but the
greatest negative impact on annual NDVI variation. The analyses presented in this paper
provide valuable data and a theoretical basis for understanding the differential responses
of regional vegetation vertical zones to climate change, offering insights significant for
advancing research into the diverse reactions of mountain vegetation to climatic variations.
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