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Abstract: Systematic reviews (SRs) are a rigorous method for synthesizing empirical evidence to
answer specific research questions. However, they are labor-intensive because of their collaborative
nature, strict protocols, and typically large number of documents. Large language models (LLMs)
and their applications such as gpt-4/ChatGPT have the potential to reduce the human workload
of the SR process while maintaining accuracy. We propose a new hybrid methodology that com-
bines the strengths of LLMs and humans using the ability of LLMs to summarize large bodies of
text autonomously and extract key information. This is then used by a researcher to make inclu-
sion/exclusion decisions quickly. This process replaces the typical manually performed title/abstract
screening, full-text screening, and data extraction steps in an SR while keeping a human in the
loop for quality control. We developed a semi-automated LLM-assisted (Gemini-Pro) workflow
with a novel innovative prompt development strategy. This involves extracting three categories
of information including identifier, verifier, and data field (IVD) from the formatted documents. We
present a case study where our hybrid approach reduced errors compared with a human-only SR. The
hybrid workflow improved the accuracy of the case study by identifying 6/390 (1.53%) articles that
were misclassified by the human-only process. It also matched the human-only decisions completely
regarding the rest of the 384 articles. Given the rapid advances in LLM technology, these results will
undoubtedly improve over time.

Keywords: artificial intelligence; large language model; systematic review; methodology; workflow

1. Introduction

Systematic reviews (SRs) provide a rigorous and comprehensive approach to synthe-
sizing the evidence relevant to well-defined research questions. Such reviews facilitate
the assessment of intervention efficacy, underscore extant research gaps, and underpin
informed decision-making processes across many research areas [1]. Identifying research
gaps is a principal utility of SRs. Through the systematic examination of the literature, SRs
reveal domains where evidence is either insufficient or equivocal. Such insights are instru-
mental in shaping the target of subsequent research [2]. This methodology has contributed
to ensuring that the most robust and reliable evidence is available to inform practice and
policy decisions.

SRs aggregate evidence from disparate sources and present an unbiased and balanced
synthesis of the available evidence. This is achieved through a methodical process compris-
ing the identification, selection, and critical appraisal of relevant studies [3]. The resultant
synthesis provides an evidence base upon which stakeholders can base their decisions.

The Preferred Reporting Items for SRs and Meta-Analyses (PRISMA) is a widely
endorsed framework that delineates the essential elements and their reporting in SRs [1,4,5].
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These elements include the development of the research question, the reporting of the
search strategy, criteria for study selection, methods for data extraction, and the synthesis
of results [6]. However, such rigorous procedures lead to a labor-intensive and time-
consuming process that can generate a temporal lag and scope limitation [7,8].

The integration of artificial intelligence (AI) and large language models (LLMs) specif-
ically presents a promising solution to these challenges by automating the study selection
and data extraction tasks [9,10], as shown in Figure 1. However, research gaps in the
application of LLMs within SRs need to be addressed to leverage this technology fully.
These include concerns about the transparency of LLM processing and the reproducibility
of the AI-assisted process.
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In the proposed approach, the human-oriented tasks are simplified in terms of time
and effort, although they may have to be performed iteratively sometimes. Based on this,
we propose a hybrid human–LLM workflow to address these concerns. This approach
uses an LLM to extract or summarize textual information into keywords, phrases, or
succinct sentences, while human expertise is leveraged to make quick decisions based
on the short extracted keywords and phrases. It allows for the initiation of clear and
reproducible selection criteria and the rapid human validation of exclusion decisions. This
can also reduce the cognitive burden and improve the accuracy and time efficiency of article
screening and data extraction. We can use this workflow for other similar review methods
as well, such as scoping reviews, which follow a systematic approach to map evidence on a
topic and share the same processes for screening and extracting data in a wider scope [11].

This article is organized into the following sections: Section 1 states the research aims
and questions. Section 2 discusses the SR process and LLM-related approaches. Section 3
follows with our proposed methodology and a case study of developing and testing an
LLM application for the proposed methodology. Finally, Section 4 contains a brief report
on our results, and Section 5 summarizes our conclusions.

1.1. Research Aims and Contributions in This Work

This article outlines and demonstrates a methodology for conducting an SR using
LLM assistance. The primary research contributions of this work are as follows:

1. A human-oriented workflow that effectively blends with an existing LLM and reduces
the human workload for performing SRs. The aim is to lessen the cognitive burden of
a human-only approach to increase accuracy while maintaining the transparency and
reproducibility of the review process.

2. A novel strategy of prompt engineering, categorizing extracted data/information into
identifiers, verifiers, and data fields (IVD), which is particularly efficient for extracting
information from a large volume of research articles for performing SRs. The IVD
strategy may be applied in other applications involving fixed-format documents
using LLMs.

3. A novel approach to study selection in SRs, leveraging the capabilities of LLMs for
efficient data extraction. This strategy employs an LLM to extract short, meaningful
information from full-text articles. Humans can make quick, manual decisions based
on pre-determined exclusion criteria with these extractions. This process is not only
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faster but may also reduce the human bias that has been linked to conventional
SRs [12]. These techniques could set the foundation for future advancements in
the field.

1.2. Focus and Limitations of This Work

In this work, we propose a workflow assuming a functional online LLM service is
available. We do not propose any specific algorithm. LLMs are an evolving technology
with no specific, efficient way to use them to obtain desired open-ended results. Also, this
workflow’s efficiency depends on the field of study, the specific LLM used, the research aims,
and the expertise level of the human researchers. As such, the computational complexity of
this method is out of the scope of this paper. We have, however, developed new metrics,
such as completeness, to measure the effectiveness of the input prompts.

Our goal is to create a workflow suitable for non-programmers. The strategies used
in the workflow and prompt engineering are suitable for such a human with no technical
background. It should also be noted that the proposed methods may be less helpful for
humans with better cognitive capabilities. Such people may already be able to read many
articles and process them manually with relative ease. However, the impacts of such human
factors are out of the scope of this work. We aim to show that, as a proof of concept, the
proposed hybrid workflow will complete the following:

• Reduce the workload of a researcher;
• Give the correct classifications regarding inclusion and exclusion.

2. Related Works
2.1. The Systematic Review Process

SRs are essential for evidence-based research. They use strict design and protocols
to ensure objectivity, reduce bias, and enable replication of valuable evidence synthesis
in various domains [5,11,13,14]. Protocols like PRISMA provide frameworks to uphold
reporting standards and quality control [1]. Within an SR process, several key steps facilitate
objective knowledge synthesis. For instance, a well-defined search strategy employs
reputable databases, precise Boolean operators, and meticulously chosen keywords [14].
In conjunction, well-articulated inclusion and exclusion criteria govern the selection of
relevant studies [15]. Furthermore, study selection is typically conducted independently by
at least two reviewers working in parallel, with a third reviewer resolving any conflicts.
This collaborative process helps maintain transparency and objectivity throughout [5].
These carefully structured procedures underscore the fundamental commitment of SRs to
rigorous methodology, ensuring the reliability of evidence for informed decision-making.

SR methodologies that encompass literature searching, screening, data extraction,
and synthesis are notoriously time-consuming [7]. The breadth of a review topic or a
vast literature base can further increase the time burden. Given the dynamic nature of
research fields, the time taken to publish an SR may lead to the omission of new, relevant
findings, leading to a temporal lag that potentially diminishes the utility of the review’s
recommendations [8]. The optimal frequency for updating SRs remains a contentious
issue, with a balance needed between practicality and currency [4]. Further research is
needed to determine optimal strategies for mitigating this temporal lag and scope limitation,
exploring technological tools, collaborative models, and methodologies designed for rapid
knowledge synthesis.

2.2. General AI Application

In response to these challenges, various AI techniques have been used to enhance
the process’s efficiency and accuracy. A support vector machine (SVM) is a supervised
machine learning model used to select studies. For example, Bannach-Brown et al. [16]
automatically identified relevant records with a high accuracy of 98.7% with a training set
(n = 5749) consisting of manually screened records. However, a major practical limitation
of SVM frameworks is the reliance on extensive training through manual title and abstract
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screening [17,18]. It remains unclear when it is “safe” for reviewers to stop this manual
process [19].

2.2.1. LLM-Based SR Approach

Recent breakthroughs in LLMs offer enticing possibilities for tasks like question-
answering, summarization, and data extraction [9,20–22]. Researchers have investigated
LLMs’ potential to fully automate screening and decision-making within SRs with several
pre-trained models. For example, Guo’s team found that an LLM (GPT-3.5-Turbo) could
achieve an overall accuracy of 90% when used for automatic title/abstract screening [22].
However, when Syriani, David, and Kumar [10] extended this approach with a larger set
of more recent studies, they found that the application’s (ChatGPT) performance only
correctly classified articles for inclusion and exclusion above 70% and 60%, respectively.
Others noted that this drop in accuracy was due to a high reliance on pre-existing data,
which can become less accurate when dealing with new knowledge [9,20]. Despite these
promising findings, certain limitations of LLMs still pose challenges for their widespread
adoption in SR methodology. One significant concern that has been raised is the lack of
transparency in the automatic study selection process [23]. Studies have highlighted that
the opaque nature of fully automatic approaches makes it challenging to the transparency
and validity of the results, limiting these methods in the development stage [19,24].

2.2.2. LLM-Assisted Human-in-the-Loop Approach

The black-box nature of automatic approaches can create a lack of academic acceptance.
Thus, hybrid workflows are a potential method to ensure rigorous, trustworthy SR pro-
cesses using AI assistance. Most practical tools used in SRs are designed as semi-automated
processes. For example, Alshami, Elsayed, Ali, Eltoukhy, and Zayed [20] explored human–
ChatGPT collaboration, with humans verifying ChatGPT’s title screening decisions (APA
style citations) and selectively providing abstracts for additional context. However, context-
length or token limitations hinder this method from being used for full article extraction. To
address this, Khraisha, Put, Kappenberg, Warraitch, and Hadfield [9] tested the screening
from full-text articles using GPT-4 and achieved an inclusion/exclusion decision accuracy
of 88% with English peer-reviewed articles, while data extraction achieved an accuracy of
84%. This demonstrates the potential for LLMs in data extraction procedures, a task previ-
ously considered difficult [7,24]. As these LLM approaches continue to improve workflow
transparency and performance accuracy, researchers may be provided with powerful tools
to conduct more efficient and effective reviews.

Overall, developing novel LLM-assisted workflows that include rapid human verifi-
cation and validation has the potential to cope with existing SR processes. Our proposed
hybrid workflow is presented in the next section.

3. The Proposed Hybrid Workflow

We propose a new hybrid workflow that combines human reviewers and an LLM for
screening and data extraction (Figure 2b) based on an existing SR workflow (Figure 2a) [13].
Our approach capitalizes on the LLM’s efficiency in extracting information from full-
text articles, coupled with the human capability for reasoning and logical thinking when
dealing with keywords and short phrases. To ensure accuracy and reliability, we integrate
human decision-making at key stages of the workflow. Human researchers are particularly
adept at scanning and filtering concise and meaningful keywords extracted from full-text
articles, enabling them to make effective decisions based on the extracted information. By
combining the strengths of both humans and LLMs, our hybrid workflow aims to improve
the productivity and accuracy of the SR process.
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Our modified workflow replaces the title and abstract screening, full-text screening,
and data extraction steps of a typical SR, shown in Figure 2b. The workflow consists
of using the full-text articles and the SR selection criteria to inform the development of
prompts to extract the necessary IVD information. These outputs are defined below. Several
iterations of IVD prompt engineering are performed to refine the prompts. The prompts
are then used to enable the LLM to extract data from each study, which are converted
and stored in a spreadsheet file. The filtering, screening, and data cleaning steps are then
performed by a person using the spreadsheet file in CSV format to determine, through
filtering, a study’s inclusion or exclusion and to perform data extraction procedures. These
steps are fully described below and include descriptive examples taken from our own SR
case study.

3.1. Retrieve Data in Full Text

The LLM extracts the prompted information from full-text articles to enable humans
to perform the initial inclusion/exclusion screening. This is different from the traditional
SR methodology, where only the title and abstract are used in the initial screening and
full-text articles are obtained later in the process [13]. To proceed, researchers must retrieve
the full-text articles after identifying potential studies via the literature search strategy.

3.2. Define Selection Criteria

Prior to extracting data from full-text files, inclusion and exclusion criteria from the
SR are collated by the research team. For example, in our case study below, we chose
desk-based workers as our population of interest. At the end of this stage, we had a list of
exclusion reasons, such as “not desk-based workers” to help eliminate unwanted articles.

3.3. IVD Prompt Development and Testing

As mentioned above, decision-making requires logical foundations and clear reason-
ing, areas where the inner workings of LLMs remain unclear. Two of the areas where
LLMs excel are in summarizing information and data extraction. Data extraction accuracy
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depends on the engineering of appropriate prompts, which are inputs given to an LLM.
For this application of LLM-supported SRs, we propose a set of prompts to guide LLMs
in extracting data from full-text articles. These prompts were developed based on the SR
selection criteria. This stage is an iterative phase and can be performed on an initial subset
of all the articles chosen in the previous steps. It involves creating/updating prompts and
testing them for refined outputs.

This initial set of articles can be termed seed articles. Every researcher would start their
SR with at least a set of these initial articles. The human must first read them well enough
to be confident that these seeds are relevant to the SR being performed and will be selected
for inclusion. Once the prompts have been developed satisfactorily with the k seed articles,
they can be used on the entire set of n articles.

3.3.1. Development of the Prompt Engineering Methodology

The goal of the IVD prompts is to accurately extract or summarize information from
the full-text articles to allow humans to make inclusion/exclusion decisions. An example of
a prompt is “summarize the method in one or two sentences”. In the proposed hybrid workflow,
the prompted outputs of the LLM are used by humans to make inclusion/exclusion
decisions and to extract data from the studies. In our proposed methodology, the prompts
are designed to output three types of information including identifiers, verifiers, and data
fields (IVD). Identifiers and verifiers are used to make inclusion/exclusion decisions, while
data fields are the extracted data from the studies. They are defined more specifically
as follows:

(a) Identifiers are the prompted outputs of the LLM, which are used by humans to make
inclusion/exclusion decisions. The identifier prompts are engineered to reflect the
exclusion criteria of a review and are typically one or a couple of words in length.
Strategically worded prompts can extract identifying keywords or phrases in the
output to aid human reviewers in making swift and accurate exclusion decisions. For
example, in our case study, we focused on desk-based workers, so we developed a
prompt to output an identifier that indicated the occupation of participants in the
study to aid in decision-making about inclusion and exclusion.

(b) Verifiers are prompted outputs, which are concise phrases or sentences that summa-
rize certain aspects of the study. Verifiers can be used in a similar way to conventional
abstract screening used in the SR process. The output should include clear and concise
sentences reflecting a summary of pertinent information, enabling human reviewers
to validate the exclusion decisions quickly. This method aims to replace conventional
title/abstract screening with a more efficient mechanism. For example, the LLM can
be prompted to output a summary of the study’s objective, method, or results to
enable the human reviewer to use the verifier to assess the relevance of the study.

(c) Data Fields are the prompted outputs that direct the LLM to focus on predetermined
fields that align with the data extraction employed in SRs. For example, we gathered
data on the population and context of the study design, such as “number of participants”
and “study duration”. Identifiers may be treated as data fields, as well.

The LLM prompts also need to be tailored to maximize the accuracy of the extracted
information and to output this information in a usable format. This is accomplished by
providing additional instructions in the prompts to the LLM to refine how it should extract
data and output the extracted information [25]. These instructions should be clear and
specific to minimize the risk of incorrect or irrelevant data extraction, adhering closely to
the SR’s protocol. For example, “Act as a researcher, extract the following information from a
research article above”. Then, the researcher can provide a list of required information.

Figure 3 shows an IVD prompt design to output in JavaScript Object Notation (JSON)
format. A number of keys specify the identifiers, verifiers, and data fields with a short
description of each. There are non-JSON entries as well, which are instructions for the LLM
on how the output should be constructed or specific sections of the article to focus on.
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Formulating appropriate instructions for the verifier, identifier, and data fields is the
key to the success of LLM extraction. Common prompting techniques, such as defining
the scope of the task, might achieve higher accuracy. While the exact values may vary
across studies, the relatively fixed structure of research articles offers opportunities to
target keywords within specific sections (see Table 1). This table serves as a guideline
for researchers to improve their prompts by defining the zones for data extraction from
research articles.

Table 1. Potential article section for locating appropriate prompt shots.

Section of a Candidate Article Verifier Identifier Data Fields

Abstract High Possible Possible

Introduction High Possible Unlikely

Literature review Unlikely Unlikely Unlikely

Methodology Unlikely High High

Experimental setup Unlikely High High

Results Unlikely Unlikely High

Discussions Possible Unlikely Unlikely

For example, one of the prompts used in our case study as a verifier was “objective”.
We defined it as “Look for the study’s objective in the abstract section” to instruct the LLM to
look into the abstract section instead of other sections.

To facilitate the easy conversion of the extracted data into spreadsheets or other
formats suitable for analysis, we also instructed the LLM to format outputs using JavaScript
Object Notation (JSON). This offers a structured, machine-readable format, allowing for the
transition into the data synthesis stages. For example, “Structure the extracted information as
a JSON. Use “NA” if information is not found”.

The prompts and instructions described above serve as the basis for prompt engineer-
ing, which effectively harnesses the capabilities of LLMs in the SR workflow. This ensures
that the integration of AI tools complements and enhances the human component of the
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review process. At the end of this stage, we have an initial set of prompts for the LLM to
extract data from a subset of articles (see Figure 3).

3.3.2. Prompt Testing and Refinement

There are several methods to refine the prompts to obtain more accurate data extraction.
One method is few-shot prompting, which is a technique where a small number of examples
are provided to the LLM to guide it toward the desired output [26]. A basic prompt can
extract verifiers and identifiers and exclude many irrelevant studies. A refined prompt can
further reduce labor time in manual data extraction by better handling synonyms and
formats. The procedure for few-shot prompting is as follows:

1. Prepare initial few-shot prompts: Examples improve performance regardless of their
correctness. This is not solely because of the accuracy of each individual example
but also because they assist in formatting the outputs. Furthermore, we demonstrate
that using “examples” explicitly leads to better results compared with not using
examples [27]. Therefore, random examples could be added based on user experience.

2. Design initial few-shot prompt based on a relevant SR example: Develop prompts
that concisely instruct the LLM on the task, incorporating the few-shot examples to
illustrate the expected output. An LLM application could be utilized by providing the
instruction, “You need to improve the following prompt to extract information from a
research article,” followed by the initial draft prompt.

3. Test the initial few-shot prompt: Input an initial few-shot prompt on a limited number
of full-text articles. Review the outputs to improve the prompt with more relevant
examples from the extraction.

4. Implement more broadly: Once the few-shot prompting is optimized, implement them
for the broader data extraction task across the full dataset. Monitor the outputs to
verify that the LLM maintains performance consistency as it processes varying articles.

Prompt refinement through few-shot prompting can result in more useful and accurate
prompt outputs, especially identifier fields. Thus, reducing errors and inconsistencies in
the data output, and, consequently, the amount of data cleaning required. For example,
in Figure 4 our refined prompt contains the field “experiment location”; with few-shot
prompting, we were able to add the examples of “laboratory”, “field”, and “laboratory and
field”, as these frequently appeared after our initial few-shot prompt. At the end of this
stage, we had a prompt consisting of headings, their definitions, and a preview of data
output to execute and collect outputs for further synthesis and catalog (see Figure 4).
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In each iteration, the output is in the form of JSON with prompts as keys and extracted
information as their values. All these keys are then aggregated into a CSV with the keys
as column headers. This CSV will have at most k rows for k seed articles. Based on this
CSV, the quality of the prompt is determined, and it is decided whether to stop this prompt
development. If the prompt development is stopped, then the final prompts are used on
the whole set of n articles.

The proportion of identifiers, verifiers, and data field prompts could vary across
different cases. However, the proposed IVD prompt techniques can be generalized as they
can be tailored to various fields of study. Regardless of the research area, the human user
would look for short, precise, directly extracted information (identifiers and data fields)
along with short, summarized texts for other factors (verifiers).

3.3.3. Assessment of the Prompt Development and LLM Outputs

There are multiple methods to assess the success of prompt development, which can be
quickly implemented and inform the iterative improvement of the prompts. One method is
to measure the prompt output completeness, which is defined as the percentage of articles
for which the LLM was able to find meaningful information for all the prompts that were
asked for in the input JSON. Typically, a good set of prompts will return a very high level
of completeness for the identifiers and data fields. A second measure of prompt success is
to quantify the percentage of responses that align with the intent of a prompt. For example,
a response describing a location aligns with a prompt asking for an experiment’s location.
There are diminishing returns to multiple prompt development cycles. However, they do
not have to be 100% complete or aligned before proceeding to the next stage.

This process of refinement with more field-specific examples is small in terms of
time consumed and can be performed after reviewing the previous LLM outputs. While
processing thousands of articles may take several hours, the advantage lies in the autonomy
of the LLMs, which operate without the need for continuous human input.

3.4. LLM Data Extraction and Formatting: JSON and CSV

Once the IVD prompts are finalized, they are used to extract information for all the
articles (not just the seed articles). Then, the research has to consolidate all the JSON
outputs for each article retrieved from an LLM into a single CSV file with n rows.

The next step is to format the headings. This step requires particular attention to detail
as it involves maintaining consistency across all data fields. The process is critical as it
allows for easy filtering, ensuring the accuracy of the analysis, especially in meta-analysis.
It was noted that the LLM may give an output keyword that is slightly different from the
desired keywords mentioned in the input prompt. For example, output headings may
contain a mix of plural and singular terms, e.g., “devices” and “device”, as multiple devices
may be found in one article. In this case, all device details should be ensured under the
same header to simplify the spreadsheet for the next stage.

The JSON data were imported into Microsoft Excel to sort and filter the studies based
on the identifiers and verifiers. At the end of this stage, we produced a CSV file that was
ready for filtering and screening. The headers (columns) of the CSV file are the individual
identifiers, verifiers, and data fields asked for in the prompt. Each row represents the extracted
information for each article input to the LLM.

At this stage, the identifier columns will have a high level of completeness, assuming a
proper set of prompts were given, and the articles are relevant to the SR. It is also expected
that the verifier columns will have near 100% or 100% completeness. It is possible the data
fields may have a lower level of completeness as not all articles report all the data field
variables. The final LLM output’s completeness and accuracy are dependent on the quality
of the refined prompt.
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3.5. Selecting the Articles: Decision-Making

Now, with the assistance of the LLM output, humans are prepared to make the decision
to select or reject an article by filtering, screening, and cleaning the data. These steps can be
viewed in the hybrid workflow in Figure 2b.

Identifier Filtering: Rows can be filtered out by one of the identifiers that do not match
the selection criteria. For example, we excluded rows that contained keywords such as “bus
drivers” or “factory workers” because they were not relevant to our study of desk-based
workers. Articles that pass this stage go through the data-cleaning step.

Verifier Screening: Those articles that were excluded by the identifier filtering process
are then screened based on the verifiers to check the validity of this decision. Humans
manually screen verifiers, representing the traditional abstract screening process. This step
helps catch any articles where identifiers were missed by the LLM during the extraction
process. Articles that are included at this stage are also moved to the data-cleaning stage.
By following these steps, researchers can filter and verify the extracted data with a high
degree of efficiency. After this screening, an inclusion dataset is ready for data cleaning.

Data Cleaning: Following the preliminary steps of filtering and screening, a data
cleaning procedure is undertaken. Data cleaning is the process of identifying and correcting
errors, inconsistencies, and inaccuracies in the output to improve data quality, ensuring the
accuracy and validity of the analysis and insights derived from the LLM assistance [28].
Like the conventional SR process, human experts screen and extract data from full-text
articles. With the LLM-assisted workflow, the full-text screening and data extraction task
is simplified to human search, verification, and correction of extracted data. A key aspect
of the data-cleaning process is handling missing values. This step involves manual data
search and human input. Minimizing missing data is crucial to reducing workload, and this
can be achieved by refining the prompt and using techniques such as few-shot prompting
to refine the prompt further.

In terms of human time consumption, humans can save time reading through hun-
dreds or possibly thousands of full-text articles to determine inclusion or exclusion for an
SR. The time complexity can be defined as follows:

• The identifier filtering only looks through small phrases consisting of one to three
words, which would typically be repeated in multiple rows. For example, identifiers
that have the same values across multiple articles can be automated using standard
spreadsheet software.

• Next, the verifier screening is performed on the articles that failed the identifier fil-
tering steps. The verifiers summarize key aspects of the articles into a few sentences,
replacing the need to read larger excerpts of the article to make inclusion/exclusion de-
cisions faster. The amount of repetition for these fields is less likely than for identifiers,
as each article presents a different approach and solution.

• Lastly, during data cleaning, the human has fewer articles to evaluate when the
information was not found by the LLM. Assuming the prompts were good, the human
already had a good idea of what to look for in a full-text article for data cleaning. Our
experience demonstrated that any article with less than 50% completeness in the CSV
row is unlikely to be related to the research topic and may be excluded.

4. Case Study

In this section, we will evaluate the effectiveness of the proposed methodology with the
human-only method guided by PRISMA guidelines [29]. We tested our methodology with
an ongoing traditional systematic review on Tracking the Sedentary Behavior of Office Workers.

4.1. Data Resources

We conducted a systematic search of four electronic databases (Scopus, PubMed, Web
of Science, and IEEE) for articles published between January 2000 and February 2023 that
used technology to objectively measure desk-based workers’ sedentary behavior such as
sitting, standing time, and the sit–stand transition. We followed PRISMA guidelines for
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initial title and abstract screening and then performed full-text screening on the articles
included based on the title and abstract screening. This process resulted in a list of articles
included in the final SR and a list of excluded articles. A set of 390 articles were used to test
the proposed hybrid methodology.

4.2. Data Preparation

We used Endnote and Zotero to download all available PDF files for each article. We
manually retrieved the PDF files of the articles that were not found by the two software
programs that met the inclusion criteria and marked the rest as excluded. This study used
n = 390 articles. We predefined selection criteria based on the scope of the review in order
to make inclusion/exclusion decisions.

4.3. Prompt Engineering

To develop an IVD prompt, we initially identified keywords and phrases from the
research question and the inclusion/exclusion criteria for our SR. These identifiers were
used to create a search string for relevant studies. The initial prompt included examples
for identifying work-related outcomes “work-relatedoutcome” based on data from another
SR [30].

Our initial prompt to “identify the outcome of the study, e.g., work disability, work perfor-
mance, mood state, cognitive function, disability at work, work ability, sick leave” was tested on a
set of 50 seed articles, i.e., known PDF files that already met our selection criteria and were
highly likely to be included in the SR. The output files from the initial prompt were used to
optimize the prompt using a few-shot prompt strategy.

Our first output produced terms such as “prolonged sitting and physical activity in the
workplace”, “occupational sitting time”, “sedentary behavior, physical activity”, “time-in-bed,
sedentary time, physical activity”, “reduced sedentary time”, and “physical fitness”. We then
refined the “work-relatedOutcome” field into “identify the outcome of the study, e.g., physical
activity (sitting, standing, walking time); job performance; mental state (fatigue, stress); physical
state (low back pain, musculoskeletal discomfort)”.

The LLM’s efficiency in processing articles was notable (Table 2): it took approximately
7.5 min to process a batch of 50 articles, with shorter batches requiring proportionately less
time. All attempts with the LLM, using Gemini-Pro 1.0, handled articles ranging from 5000
to 12,000 words without exceeding a 9-min processing time.

Table 2. Time consumption for generating the LLM outputs.

k Time to Process

50 articles 7.5 min
25 articles 3.5 min
10 articles 1.5 min

During our trials, we encountered some inconsistencies because of technical issues
with the LLM on Google Cloud, resulting in unprocessed articles. However, we collated
the outputs for all the different executions to ensure that we considered the prompt outputs
for a given set of articles consistently. At the end of this extraction, there were 45 articles
with consistent output, the actual seed articles. Following on from Figures 3 and 4, we
report the outcomes for the two levels of prompts in Table 3 as follows:

• Initial prompt: where no examples were provided (see Figure 3).
• Refined prompt (few-shot): have examples directly from seed articles (see Figure 4).

In the table, we recorded the instances as follows:

• x is the total number of distinct terms (values) for a prompted output, e.g., identifier.
This number may be high if the articles used a range of terms to describe a certain
aspect of the study or if the prompt results in many incorrect responses.
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• y is the number of unaligned, i.e., incorrect, or unwanted values from x distinct values.
A smaller value reflects fewer erroneous responses and, thus, a better prompt.

• z is the number of rows in the spreadsheet, i.e., articles with unwanted values from y.
A smaller value results from a better prompt.

Table 3. Performance of the LLM prompt development strategy, with the few-shot strategy.

(k = 45) Identifiers Data Fields

Prompts “Occupation” “Study Type” “Work-Related
Outcome” “Device.Name” “Device.Placement”

x y z x y z x y z x y z x y z

Initial prompt 21 2 11 27 12 22 24 2 22 25 1 20 25 7 21

Refined prompt 18 0 0 4 2 4 18 0 0 34 0 0 23 1 7

Our observations indicated that the repeated use of identical prompts and prompt
settings resulted in functionally identical CSV outputs, suggesting that the LLM generated
stable outputs.

The data illustrated a decrease in variation and resultant uncertainty in human
decision-making with the implementation of a more refined prompt design for the majority
of the IVD prompts. This is because the x and y (and consequently z) consistently decrease
in every iteration of prompt development, which means less filtering and reading for the
human researcher. This improvement aligns with findings from the previous literature on
prompt engineering [27,31]. With better prompt designs, the values in the columns turn
more decisive.

Note that some data fields, such as the device name, saw an increase in x, while y
and z became 0. This happened as the refined prompt was able to extract more individual
names of devices properly without errors or unwanted values. In the initial prompt, the
y = 1 was due to z = 25 rows with blanks for device names when the LLM was not able to
find any suitable values. Thus, a better prompt should result in a decrease in y and z, but x
may increase or decrease depending on the nature of the data.

We only used 13% of the total articles (50/390) for our case study. For any other hybrid
SR, the researcher only needs to choose a smaller subset of the total set. This approach can
work better for thousands of articles, whereas a much smaller number of articles can still
work to generate a good prompt.

4.4. Evaluation Design

We designed three phases to evaluate the effectiveness of the LLM application as follows:

• Phase 1A (human-only): We followed the PRISMA flow diagram to screen articles
for the SR. We applied predefined inclusion and exclusion criteria to select relevant
articles. Each article was screened independently by two reviewers, and any conflict
was resolved by team discussion. The results were divided into two groups as follows:
inclusion (n = 170) and exclusion (n = 220). We used predefined data extraction
templates to collect information from each article.

• Phase 1B (hybrid): We used a plugin with Gemini-Pro API (Top-p = 0.1, Temper-
ature = 0.2) to extract data from the same articles. The Gemini-Pro model is an LLM
created by DeepMind from Google. This LLM (version 1.0) has an input token limit of
30,720, which corresponds to about 18,432–24,576 English words [32]. Several prompts
were engineered iteratively for articles based on the inclusion criteria and relevant
keywords from the case study. Each prompt was sent to Gemini-Pro via the plugin
and received the responses in JSON format and ran repeat three times because of the
uncertainty in the AI output [10]. The data collection period was between 13 January
2024 and 2 February 2024. We developed an LLM application using an API to send the
prompts to an LLM and collect the JSON outputs. The API was designed to handle
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multiple requests simultaneously, which allowed us to collect the data quickly and
efficiently. Once we had collected all JSON outputs, we stored them in a file (see
Figure 5a). The data were pre-processed before the filter. After converting the JSON
file to a spreadsheet using “jsoneditoronline”, one author filtered the data and removed
any records according to the identifiers using Microsoft Excel (see Figure 5b). All
records (n = 390) were filtered and screened by one author.

• Phase 2 (evaluation): One author validated the records from the hybrid workflow with
the full-text articles of the included articles. Any conflicts between the hybrid and
human-only methods were resolved by team discussion against the full-text articles to
ensure that humans screened each study twice independently.
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4.5. Results

This section includes a brief inspection of the results from our case study and an
analysis of the performance of the proposed workflow.

4.5.1. Observations from Filtering and Screening

Identifiers were developed using specific selection criteria to ensure consistency and
accuracy in identifying relevant studies. In this context, the “Field of Occupation” was specif-
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ically designed to filter out studies that did not involve “desk-based workers”. Furthermore,
the “Fields of Device Name” and “Sensor” were designed to filter out studies that did not
use “objective activity measurement devices” or that only used “pedometers”. This research-
specific filtering allowed humans to more efficiently move through this time-consuming
process. Additionally, we prompted “Field of Movement Variables” to filter out studies that
only measured changes in posture or that focused on an ergonomic assessment of posture.
To exclude a subset of research studies considered “protocol articles” from our SR, we
used verifiers to remove all articles that used future tense in the method section. Figure 6
illustrates the implementation of the proposed method.
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Figure 7 illustrates that filtering identifiers (a) are fast compared with screen verifiers
(b). We had a very high success number (n = 179) of articles in filtering identifiers to identify
exclusion; only a small number of articles (n = 15) were missed and changed to inclusion
during verifier screening. This passed only 194 articles to the data-cleaning phase. The
CSV generated by this hybrid process is equivalent to forms filled out for conventional
human-only SR. Here the data are in JSON format, while in the human-only SR, the same
data are in tabular format.
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4.5.2. Observations from Data Cleaning

Cleaning the data after data extraction can be a time-consuming process. We applied a
few strategies to refine our IVD prompts to reduce these time constraints. Our data-cleaning
process incorporated the following steps:

• Standardizing formats: This involved applying uniform names to terms that may have
several variations. For example, we standardized “activPAL” from “activPAL3”, “Ac-
tivPAL3”, “activPAL3c”, “activPAL3”, and “activPAL 3 micro” to reduce the sensitivity
of the search.

• Handling missing values: Certain headings, such as “devicemodel” had a high preva-
lence of missing data. The LLM could not differentiate between a device’s name
and its model. Extracting such missing values involved identifying articles that met
the selection criteria, particularly those with missing values in the identifiers, and
searching for the specific missing information.

• Error removal: This involved identifying and rectifying errors in the output. Specific
fields that required attention included the subjective measurements and the device
model. These fields were reviewed for any inaccuracies or inconsistencies and cor-
rected with information from the original article.

Although LLM output accuracy to assist with SR heavily relies on specific prompt
engineering and may vary across discipline areas, we obtained a high efficiency for identi-
fying the inclusion (n = 170) from full-text review articles (n = 194) simply by filtering and
screening keywords and concise sentences from the LLM output.

Figure 8 illustrates the efficiency of prompt output for the inclusion sector (a) and
exclusion sector (b) once the prompt development and LLM executions finished. We
calculated completeness as the number of rows, i.e., the article for which a value was found
by the LLM in the full-text article for the specific prompt/CSV headers, compared to the
total number of rows. So, for a prompt p:

completeness (p) =
Number o f articles with a valid extraction f or p

Total number o f articles
× 100 (1)
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Identifiers have a high rate of completeness, meaning the process of identifier filtering
works with high accuracy, thus reducing the human workload during data cleaning. It is not
surprising that all verifiers used in this case study (see Figure 3) had perfect completeness
(100%) when asking for article summaries. The data fields (some of which also acted as
identifiers) are relatively less filled in the CSV but still have over 50% completeness for most
fields of the included articles. On the other hand, the identifier and data field completeness
are considerably lower for the same prompts for the articles that were ultimately excluded.
This shows that the LLM largely succeeds in extracting the desired data from the full-text
articles, largely reducing the human’s responsibility to screen the full-text articles.

Prompt development and testing are an iterative process during which humans do not
have a clear idea of which article is included or not. However, as we started with a set of
50 articles that strongly met the selection criteria, we expected that at the end of the prompt
development and testing, the prompts would have a very high level of completeness.

To provide an additional estimate of the time-saving capacity of our hybrid workflow,
we measured the character length of the identifiers and verifiers (Table 4), comparing
the speed at which human readers may be expected to perform the filtering steps using
the LLM output compared to performing a full-text review to determine article inclusion
or exclusion for an SR. Identifiers had a range of 10–25 characters, which were much
smaller than the verifiers (150–300 characters). Both of these could be considered negligible
compared with reading a full-text article with thousands of words.

Table 4. Lengths of data extractions for some prompts (in terms of characters).

Prompt Type Average Std. Deviation

objective verifier 184.90 61.29
method verifier 294.81 108.76
result verifier 291.91 121.40

occupation identifier 18.49 11.88
movementVariables identifier 15.53 9.45

devices.name identifier, data field 15.52 9.47
devices.sensor identifier, data field 17.29 20.47
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4.5.3. Revised Human-Only Decision

The performance outcome of the hybrid workflow is shown in Table 5.

Table 5. Comparison of the two methods for inclusion/exclusion classification.

(n = 390) LLM-Assisted Hybrid Workflow Traditional Workflow

Correct Incorrect Correct Incorrect

Inclusion 170 0 167 3

Exclusion 220 0 217 3

The hybrid workflow inclusion/exclusion decisions agreed with the human-only
process in 384 out of 390 articles.

The hybrid workflow also improved the accuracy of the study selection process by
overturning six decisions that were initially erroneous in the human-only SR. In the inclu-
sion scenario, three (3/170 articles) papers were originally excluded by human reviewers,
but the hybrid workflow identified that they did meet the inclusion criteria, which was
incorrectly missed by the human-only SR. Upon further discussion and re-evaluation by
the review team, it was agreed that these papers were indeed relevant and should have
been included in the SR.

In the exclusion scenario, there was a total of 220 exclusions in the hybrid method.
There was 100% (114/114 articles) agreement with the articles that the human process
excluded during the title and abstract screening in the human-only SR. For the rest, the
human reviewers initially included several papers, but the hybrid workflow flagged three
(3/106 articles) of these as not meeting the necessary criteria. The review team’s deliberation
confirmed that these papers were not appropriate for inclusion and should be excluded.

Ultimately, for the LLM-assisted workflow, there was a total of 6/390, i.e., a
1.53% mismatch, compared with the fully human-performed SR. However, in each of
the six cases, the proposed workflow improved the results.

5. Discussion

The hybrid workflow described in this paper helped our research team improve the
accuracy and efficiency of our study selection by enabling us to identify relevant studies
with greater precision. Nonetheless, the LLM application was not free from challenges
in terms of efficiency and dependence on effective prompt engineering. Effective prompt
design has the potential to speed human decision-making and reduce labor time during
processes such as data cleaning.

5.1. How Can Prompt Engineering Be Optimized to Leverage the Capabilities of LLMs in
Extracting Relevant Information from Full-Text Articles in SRs?

Our hybrid workflow, which integrated an LLM into the SR process to validate human-
only SR results, demonstrated an increase in efficiency and accuracy by combining the
strengths of LLMs in efficient and accurate information extraction with the critical thinking
and decision-making capabilities of human reviewers. This integration capitalizes on the
computational power of LLMs to swiftly process vast quantities of text, thereby minimizing
the extensive reading typically required of human reviewers. Consequently, the human
element of the workflow is refined to focus on higher-level evaluative and interpretive tasks.

For instance, in the case study, we demonstrated some potential for using LLM to
extract occupation information about study participants. Tasks such as identifying sensor
names and their placement on the body, which once demanded considerable time and
meticulous work from human reviewers, were executed with precision by the LLM. This
illustrates the LLM’s capacity for reducing the manual burden of data extraction, allowing
researchers to allocate more time to critical analysis. However, the case study also revealed
limitations in the LLM’s logical interpretation. When the LLM classified survey-based
studies as employing “objective measurement” devices, it highlighted the model’s difficulty
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with some complex reasoning and context-understanding tasks. This example underscores
the necessity for human oversight to correct such logical discrepancies and ensure the
review’s criteria are met accurately. After data cleaning, any records lacking value in
objective measurement can be excluded.

LLMs excel in rapidly sifting through and extracting pertinent details from full-text
articles, a process that would otherwise be laborious and time-consuming for human
reviewers. By leveraging the advanced natural language processing abilities of LLMs,
researchers can swiftly gather data points that are relevant to their specific inclusion and
exclusion criteria. Even with a poorly defined prompt, it is effective in saving time, and
humans can filter out a large number of irrelevant studies. For instance, in the case study,
we used the prompt “participantsOccupation” to quickly filter records unrelated to desk-
based workers, excluding those with occupations such as bus drivers, blue-collar workers,
factory workers, etc. This was achieved by quickly sorting and filtering the CSV file using
basic sorting tools in Microsoft Excel. This streamlined the process by quickly identifying
irrelevant studies, allowing us to focus on our population of interest. This efficiency
improvement is not achieved at the expense of accuracy. Human reviewers’ oversight
ensures that the extracted information is verified and validated, maintaining the integrity
of the review process.

5.2. What Is the Impact of the Hybrid Workflow in Conducting SRs?

The effectiveness of a hybrid workflow that combines the computational prowess of
LLMs with the critical oversight of human reviewers can be substantial in reducing the
workload of human reviewers while ensuring comprehensive and accurate data extraction.
LLMs can quickly scan through thousands of articles, identifying and extracting relevant
data based on predefined criteria. This can drastically reduce the time the first author
spends on the initial screening of articles, which is typically the most time-consuming part
of the SR process.

By rapidly processing and narrowing down the selection of articles, LLMs enable a
much faster review cycle. For example, the dramatic contrast between the months it took
for a human-only method to complete full-text screening and the two weeks required for
the first author to double-check the results is a testament to the efficiency of LLMs. By
implementing a hybrid workflow, articles (n = 169) identified for exclusion had a perfect
agreement with the human-only screening results. Furthermore, conflicts that were not
originally identified by the human-only screening were reviewed by our team, resulting
in altered decisions (n = 6). The hybrid workflow, with LLMs handling the initial data
extraction, alleviates this burden by ensuring that human reviewers are not overwhelmed
with information, allowing them to focus on more complex and ambiguous cases that
require human interpretation.

Furthermore, this effectively addressed the temporal lag that often undermines the
timeliness of conventional SRs. With this accelerated process, the most recent and relevant
research can be incorporated into the SR, ensuring that the findings reflect the latest devel-
opments in the field. This rapid inclusion of up-to-date research is crucial for maintaining
the relevance and utility of SRs in informing current practice and policy decisions.

The aim of this hybrid workflow was to improve the paper classification procedure
while extracting all the meaningful information needed to write a full SR article. The
evaluation showed that the information extraction and inclusion/exclusion classification for
writing an SR paper was at least equivalent and possibly better for the hybrid workflow SR
compared with the traditional SR, as shown in Table 5, i.e., an improvement in classification
accuracy. The human decision on what to do with the information extracted and the
included articles, as part of the hybrid SR (or traditional SR), was out of the scope of
this paper.
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5.3. Comparison with the Human-Only Approach

There are certain differences in the way humans operate in the workflow compared
with a completely human-performed SR.

i Conventional SR methodology might include a snowballing strategy. It is a technique
used to identify additional relevant studies that may not have been captured by the
initial search strategy [13]. However, this manual process can be time-consuming and
labor-intensive, especially for SRs that deal with a large volume of studies [33].

In the case study, the snowballing process was not used as much. Instead, the re-
searchers collected a large number of articles based on matching keywords and then passed
them to the LLM for summarization or extraction. Because LLMs can handle many articles
in a short period of time, researchers do not have to worry about the possible chain of
connections between older and newer articles.

An advanced LLM could be deployed to re-extract the subset of studies that passed the
previous screening. An advanced LLM is more adept at recognizing the targeted context
within the studies, leading to more accurate and relevant data extraction. Consequently,
this reduces the variables that researchers need to handle and minimizes the need for
extensive data cleaning.

ii The hybrid workflow also reduces the chances of bias in selecting or reading articles.
If the process is completed manually, researchers could pay less attention to certain
articles based on meta-information. In the proposed hybrid workflow, this is not
possible as all the articles are handed over to the LLM, which treats all equally.

5.4. Limitations and Future Work

Future work can improve certain aspects or provide more insight with further analysis.
One limitation of this case study is that the accuracy of data extraction was not quantified.
A common methodology in SR is to have one author extract the data fields from each study
and then have a second author verify the extracted data. In the case study presented here,
the LLM performed the initial data extraction, but the accuracy of this extraction was not
verified. As commonly expected for LLMs in these types of applications, it was observed
that the LLM did not manufacture content outside of what was in the articles for data fields
and identifiers. However, this accuracy needs to be assessed in future research to determine
if the human verification steps can be further minimized.

Current SR rating scales such as AMSTAR [34] are designed to assess traditional SR
methodology. In the case of the hybrid workflow, two questions from the AMSTAR metric
(5 and 6) that require researchers to duplicate study selection and data extraction may
not be satisfied. Future work may demonstrate that the hybrid workflow is equivalent or
superior to the duplicate procedures suggested in AMSTAR.

In addition, the choice of LLMs affects the accuracy and completeness of the ex-
tracted data. Different LLM models may have different strengths and weaknesses in terms
of domain knowledge, reasoning ability, and natural language understanding. There-
fore, selecting the most suitable model for a given task is not trivial and may require
extensive evaluation.

Designing effective prompts requires trial and error. The quality of prompt design
and the performance of LLMs can impact the efficiency of this method and the amount
of manual labor needed for data cleaning. To overcome these limitations, the following
directions can be explored in future work. Firstly, applying a multi-agent conversation
framework where LLMs collaborate to provide improved quality of prompt writing and
output completeness. Secondly, a snowballing strategy can be developed utilizing prompts
and LLMs. Thirdly, our contribution includes the development of a swift human validation
technique. More fine-tuned use of identifier and verifier terms can be used to verify the
accuracy of automated classification approaches.

One technical limitation of the online LLM services was the smaller batches it worked
in and the technical failures to produce the outputs for all articles in a batch because of
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timeouts. This required additional time to collate the prompt developments on the seed
articles.

Another limitation encountered during the case study was related to pdf pre-processing.
Certain device-related details were absent in the extraction process either because they were
not explicitly mentioned in the text or were presented exclusively in a non-textual format
(e.g., graphs, charts). We can enhance the extraction tools by exploring PDF pre-processing
solutions using multimodal like Gemini-Pro-Vision. This model’s image description capa-
bilities may allow for the extraction of valuable information from visual elements within
articles, potentially streamlining the data-cleaning process. To assess the external validity
of our approach, one can further conduct tests with LLMs such as GPT-4 or GPT-4-Turbo.
These experiments will gauge their potential in automating aspects of data cleaning, aiming
to optimize the efficiency of the SR process.

6. Conclusions

This article demonstrates a hybrid method to integrate LLMs with human input into
SR processes. The results demonstrate the potential to reduce workload, increase accuracy,
and decrease the usual temporal lag of producing an SR. This study may contribute to
a transformative step in the evolution of evidence-based research methodologies. The
strategic fusion of the sophisticated capabilities of LLMs with the critical and interpretive
acumen of human experts has the potential to significantly bolster both the efficiency and
accuracy of knowledge synthesis. This innovative hybrid approach not only addresses
the reliability concerns associated with fully automated AI screening but also potentially
navigates the constraints conventionally imposed by the scope and temporal lag inherent
in the SR process.

This identifier and verifier approach is a significant development for human–AI
teaming in the context of large fixed-format document processing applications using LLM.
Because of the technical requirements of maintaining high-end infrastructure for LLM
service, it is foreseeable that such a service will be provided by the cloud. This would allow
users from various fields to use the services. As such, this prompting technique, which is
suitable for non-programmers, can be widely used across several LLM-based applications.
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