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Abstract: This paper advocates for a proactive approach to traffic safety by introducing a collabora-
tive Misbehaviour Response System (MBR) designed to preemptively address hazardous driving
behaviours such as wrong-way driving and distracted driving. The system integrates with electric
vehicles (EVs), leveraging advanced technologies like ADAS, edge computing, and cloud services to
enhance road safety. Upon detection of misbehaviour, the MBR system utilizes data from intercon-
nected parking facilities to identify the nearest safe location and provides navigation guidance to
authorities and nearby vehicles. The paper presents a prototype of the MBR system, demonstrating its
efficiency in detecting misbehaviours and coordinating swift responses. It also discusses the system’s
limitations and societal implications, outlining future research directions, including integration with
autonomous vehicle systems and variable speed limit technologies, to further improve road safety
through proactive and context-aware response mechanisms.

Keywords: MBR; EV; WWD; DMS; AI; cloud; edge; 5G; IoT; urban mobility

1. Introduction

In the field of traffic safety, reactive measures to inappropriate behaviours like wrong-
way driving, distracted driving, and intoxicated driving often come into play after collisions,
posing significant risks. This paper argues for a shift towards proactive response strategies
that aim to prevent such risky behaviours before accidents occur. Our proposed solution
involves a collaborative misbehaviour response system designed to address hazardous
driving actions in advance. The system works by collecting alerts from two different misbe-
haviour detectors: wrong-way driving detection, driver monitoring for signs of distraction
or impairment, as well as collecting parking lot availability using parking lot detector ser-
vice. When an alert is received, the system quickly identifies the nearest available parking
space using data from interconnected parking facilities. It then generates a navigation
route to the safe location and includes it in the initial alert, helping authorities and nearby
vehicles guide the misbehaving vehicle to safety. To align with the evolving automotive
landscape, our system shows the potential to seamlessly integrate with electric vehicles.
Combining the MBR System with EVs, a range of advantages can be realized, especially in
the areas of energy efficiency optimization and leveraging the advanced capabilities of the
vehicles. This integration highlights our commitment to addressing emerging challenges in
road safety while ensuring compatibility with the evolving automotive landscape.

This paper details the design of a prototype misbehaviour response system, provid-
ing insights into its effectiveness in detecting misbehaviours and coordinating prompt

World Electr. Veh. J. 2024, 15, 158. https://doi.org/10.3390/wevj15040158 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15040158
https://doi.org/10.3390/wevj15040158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://orcid.org/0009-0009-9308-0380
https://orcid.org/0000-0002-2211-1890
https://orcid.org/0000-0003-0166-0898
https://doi.org/10.3390/wevj15040158
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15040158?type=check_update&version=1


World Electr. Veh. J. 2024, 15, 158 2 of 16

responses. Our results show that the time required to generate navigation recommen-
dations can be significantly reduced when we compare a general implementation with
a real-time tailored one. It also addresses the limitations of the system and potential
societal implications.

Furthermore, we outline future research directions for advancing the proposed ap-
proach, including integration with autonomous vehicle platooning and variable speed
limit systems. Through these efforts, we aim to develop collaborative and context-aware
response mechanisms in proactively suppressing risky driving behaviours and promoting
personalized navigation solutions to improve road safety. Notably, when discussing mis-
behaviour events we note drowsiness, distracted, smoking, and on a cellphone for DMS
states and wrong-way driving incidents in WWD service, which have been studied to be
some of the major causes of accidents [1–3].

The contributions of this work are summarized as follows:

• We propose two novel vision-based driving misbehaviour detection systems, Driver
Monitoring System (DMS) and Wrong Way Driving (WWD), to identify potential
hazardous driving scenarios.

• We utilize a vision-based Parking Lot Detector (PLD) system, which uses real-time
video feeds from traffic cameras to identify nearby available parking locations.

• As a response measure to driving misbehaviour scenarios, we propose a novel collab-
orative Misbehaviour Response System (MBR), which aggregates the alerts generated
by DMS and WWD applications in real-time, and suggests a shortest route to the
nearest parking location derived from the PLD system.

• We leverage the infrastructure provided by the 5GMETA platform that utilizes high-
bandwidth Ultra-Reliable Low Latency Communications (URLLC), to streamline rapid
data exchanges within our MBR system in real-time.

• We demonstrate the versatility and efficiency of the MBR system through experiments
and findings. Additionally, we explore the potential benefits of integrating the MBR
system with Electric Vehicles, which could significantly enhance overall road safety.

2. Related Work
2.1. Wrong Way Driving Detection

Roadside Units (RSUs) possess the capability to identify and acquire knowledge of the
typical movement patterns exhibited by vehicles on the road. This enables them to detect
anomalies, such as instances of wrong-way driving. Intelligent transportation systems (ITS)
employ a variety of sensors and communication technologies to detect and alert drivers of
potential wrong-way driving scenarios. These systems also facilitate real-time information
exchange and generate navigation recommendations to guide wrong-way vehicles toward
the nearest safe exit [4,5].

Connected vehicle technologies play a pivotal role in mitigating incidents of wrong-
way driving. By establishing communication between vehicles and the surrounding infras-
tructure, these technologies enable the seamless transfer of critical information in real-time.
This early detection of wrong-way driving situations allows for the provision of alternative
routes or instructions to prevent vehicles from entering the incorrect lanes. Additionally,
advanced mapping and positioning systems accurately ascertain a vehicle’s precise location,
enabling timely warnings to drivers on the verge of entering the wrong lanes [6,7].

Furthermore, the integration of these technologies not only aids in the detection of
wrong-way driving but also facilitates the dissemination of warnings to nearby vehicles,
enabling them to adopt necessary precautions. By capitalizing on the collective intelligence
of connected vehicles and infrastructure, a proactive approach can be adopted to mitigate
the inherent risks associated with wrong-way driving, ultimately enhancing road safety for
all motorists [6].
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2.2. Driver Monitoring for Risk Detection

Driver monitoring systems employ various sensors and cues to detect inappropriate
driver behaviours, including distraction, drowsiness, and impairment [8]. While these
systems offer real-time detection of risky behaviours, they often lack mitigation responses.
Recent academic research has explored the use of navigation recommendations to encour-
age drivers to adopt safer manoeuvres [9]. However, these recommendations are not
context-aware or personalized for specific behaviours and locations. Our proposed system
aims to generate context-aware recommendations tailored to the detected misbehaviour
and the vehicle’s location.

2.3. Parking Lot Detector

The existing research on parking detection methods can be divided into two main cat-
egories: sensor-based systems and computer vision-based systems. Sensor-based systems,
like those discussed in [10–14], use sensors such as ultrasonic or radar devices to moni-
tor parking space occupancy. These systems are often deployed at entry and exit points
of parking lots and provide real-time information to drivers regarding available spaces.
However, they can be costly to implement, especially in larger outdoor parking areas.

On the other hand, computer vision-based methods, explored in [15–18], have gained
prominence due to their versatility and practicality. These methods employ camera sensors
to capture parking lot scenes and determine parking space occupancy. The research distin-
guishes between two approaches: space-driven and vehicle-driven methods. The former
focuses on analysing specific regions of the scene, using features like colour vectors, to clas-
sify parking space occupancy. Initial attempts utilized techniques like hue histograms
and support vector machines (SVMs). Recent advancements include using Convolutional
Neural Networks (CNN) for classification [19]. While space-driven methods offer accuracy,
they require labour-intensive manual data labelling and calibration.

Notable datasets, such as PKLOT [16] and more recent ones [19,20], provide resources
for training and evaluating these vision-based systems. These datasets contain images
of parking spaces captured from various angles and have been used to train classifiers
achieving high accuracies.

The research also discusses the challenges of deploying computer vision-based systems
in smart cities. In-vehicle Human Machine Interfaces (HMIs) are extended to incorporate
3D interactive graphics that enable drivers to navigate within a digital twin of the city. This
application utilizes the proposed vision-based parking detection system to inform users
about parking space availability in real-time.

2.4. Collaborative Response Systems

Research has indicated that collaborative systems leveraging data from interconnected
vehicles and infrastructures have the potential to enhance safety and efficiency, a concept
particularly relevant in the context of electric vehicles (EVs) [21]. Recent studies have
explored collaborative systems for anomaly detection and misbehaviour management in
autonomous vehicles, where they identify and prevent inappropriate or malicious actions
within the Internet of Vehicles (IoV) system [22]. This is crucial for ensuring the system’s
safety and reliability, especially as EVs become more integrated into transportation net-
works. Various techniques, including traditional machine learning algorithms, artificial
neural networks, and deep learning, can be employed for misbehaviour detection, with po-
tential applications in EV safety systems. These methods involve extracting features from
transmitted vehicle messages, training detection models based on these features, and con-
tinuously updating the models with new data. However, limited research has focused on
collaborative systems that generate context-aware navigation recommendations in response
to detected misbehaviours, a crucial aspect for enhancing the safety of EV operations and
the focus of the novel approach that we describe in this paper. The proposed system aims
to address this gap by integrating data from multiple sources to provide personalized
recommendations for effectively guiding misbehaving EVs to safety.
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In summary, previous studies have primarily concentrated on misbehaviour detection
and collaborative response systems, laying a foundation for the application of similar
approaches in the context of EVs. However, to the best of our knowledge, there has been
limited investigation into the real-time generation of context-aware navigation recommen-
dations following detected misbehaviours, particularly tailored for EVs.

3. Design of the Collaborative Misbehaviour Response System

This research article introduces a solution called Misbehaviour Response (MBR), which
is designed to handle real-time traffic incidents using Kafka and Avro. Our MBR system
subscribes to a Kafka topic where Misbehaviour Detectors (MBDs) such as Wrong-Way
Driving (WWD), the Driver Monitoring System (DMS), and Parking Lot Detection (PLD)
services generate messages. These services operate on the 5GMETA platform as third-party
applications, as illustrated in Figure 1.

Figure 1. Collaborative Misbehaviour Response System and Misbehaviour Detection Services.

The 5GMETA project, an innovative initiative within the European Union, has devel-
oped an edge-cloud software platform that utilizes high-bandwidth Ultra-Reliable Low
Latency Communications (URLLCs). This platform facilitates rapid and dependable data
exchange, particularly beneficial for applications relying on heterogeneous data from
various Internet of Things (IoT) sensors and devices deployed across different locations.

By leveraging the infrastructure provided by the 5GMETA Platform, our MBR system
seamlessly accesses essential resources and services, ensuring efficient processing of real-
time events. All the services discussed in this work, such as the PLD, WWD, DMS, and MBR,
emphasize the sharing of only the metadata between system modules and the 5GMETA
platform, thereby addressing privacy concerns. Furthermore, the 5GMETA platform offers
the capability to anonymize sensitive data while receiving video streams.

Upon receiving a message, the MBR system extracts pertinent information from the
event payload and devises optimized routes to the nearest available parking spot using a
routing algorithm. The recommended path is then appended to the existing JSON object,
and a new message is generated and published to a Kafka topic.

3.1. Wrong Way Driving Service

Lane Detection and Trajectory Clustering: Precise lane localization is necessary to
identify accurately vehicles travelling in the incorrect direction. To improve accuracy,
we imitate real-world road layouts by using a clustering algorithm to classify vehicle
trajectories into different road lanes as a preliminary step. We make use of the YOLO model
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for detecting vehicles and implement the ByteTrack algorithm to monitor and track vehicles’
trajectories in each frame [23,24]. By eliminating the non-moving trajectories, we can ensure
a dynamic and accurate identification of road lanes. This elimination process allows us to
focus on trajectories that are pertinent to the detection of vehicles driving in the wrong way
or the incorrect lane, without any interference from non-moving vehicles in the background
scene. Furthermore, we employ the KMEANS algorithm to group vehicle trajectories
based on direction, clustering similar moving paths. The model begins with a minimum
of five trajectories and adapts dynamically to classify vehicles into their specific lanes,
improving its ability to accommodate variations in traffic and lane configurations. This
approach enhances our system’s adaptability to traffic flow changes and lane configurations,
improving wrong-way driving detection accuracy and efficiency in real time.

Geolocation Mapping and GPS-based Detection: Our proposed approach for detecting
instances of wrong-way driving involves translating pixel trajectories into geolocation data
for vehicles. This process is accomplished by estimating the homography between the
traffic camera image and the geo-referenced satellite image using 10 key reference points.
A homography, which acts as a transformation that aligns one image with another while
preserving relative distances between points, effectively aligns the traffic camera image
with the geo-referenced satellite image. Subsequently, a perspective transformation of
the traffic camera image to the satellite image accurately maps vehicle pixel trajectories
to specific geographical locations within our test area. To facilitate real-time retrieval of
vehicle geographical coordinates, we make use of the Python GDAL library’s capabilities
in geospatial data manipulation including coordinate system conversion and extraction of
geographic information from images. This methodology allows for precise identification of
wrong-way driving incidents based on GPS data, as depicted in Figure 2.

Implementation and Integration: The combination of lane detection, trajectory clus-
tering, and geolocation mapping improves the strength and efficiency of our system for
detecting wrong-way driving. This integrated approach enables us to create a thorough
solution that can accurately detect and pinpoint vehicles travelling in the opposite direction
of traffic flow as depicted in Algorithm 1 and Figure 2.

Algorithm 1 Check Wrong-Way Driving GPS

Require: new_trajectory, lane_trajectories
Ensure: is_wwd, lane_id

1: new_polygon← Polygon(Point(pos) for (key, pos) in new_trajectory)
2: for all (lane_id, cluster) in lane_trajectories do
3: for all (trajectory_id, trajectory) in cluster do
4: if #trajectory < min_vehicles then
5: continue
6: end if
7: lane_polygon← Polygon(Point(pos) for pos in trajectory)
8: if new_polygon.intersects(lane_polygon) then
9: new_direction← calc_direction(new_trajectory[0], new_trajectory[1])

10: lane_direction← calc_direction(trajectory[0], trajectory[1])
11: if |new_direction− lane_direction| > 90 then
12: return True, lane_id
13: end if
14: end if
15: end for
16: end for
17: return False, None
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Figure 2. Wrong-way driving from live RTSP video source. Clustered geo-referenced vehicle
trajectories (top) and Wrong-way driving incident; vehicle trajectory diverging from the permitted
lane (bottom).

By implementing this specific approach, our proposed solution can accurately and
effectively detect instances of vehicles moving in the wrong direction based on GPS data.
This methodology allows our suggested solution to dynamically adjust to changes in traffic
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flow and lane configurations, resulting in an overall improvement in accuracy and efficiency
when identifying incidents of wrong-way driving. The addition of this functionality is a
critical component of our proposed strategy for the MBR and shows promise for various
transportation safety applications. It also offers potential advantages such as preventing
accidents and enhancing overall road safety measures by proactively addressing wrong-
way driving incidents.

3.2. Driver Monitoring System Service

The Driver Monitoring System (DMS) is a state-of-the-art software module that utilizes
Deep Neural Network (DNN) technology to recognize and classify the status of the driver
in real-time. The system is designed to assess whether the driver is in normal condition
or if there are anomalies, such as being drowsy, distracted, speaking on the cell phone,
or smoking, in order to prevent accidents caused by driver fatigue or distraction.

The DMS consists of three main components, each of which plays a critical role in the
overall performance of the system:

Face Detector: The Face Detector is a lightweight face detection algorithm that operates
on a single frame of size 320 × 240, based on Ultra-Light-Fast-Generic Face-Detector-
1MB. The Face Detector first locates the face region within the image and then refines the
bounding box to fit the face better. The Face Detector is optimized for real-time performance,
and can accurately detect faces even in challenging lighting conditions or when the driver
is wearing glasses or a hat.

Face Recognition module: The Face Recognition module is responsible for recognizing
the driver’s face and extracting the region of the face with a size of 160 × 160. This
component is based on MobileFaceNet implemented in Pytorch, a state-of-the-art face
recognition algorithm that achieves high accuracy with a small number of parameters.
The Face Recognition module first aligns the face region using facial landmarks and then
extracts a feature vector that represents the driver’s identity. The Face Recognition module
operates on every set of frames to ensure that the correct driver is being monitored and
that the facial features used for analysis are accurate and up-to-date. The Face Recognition
module is capable of recognizing faces even when the driver is wearing glasses or has
changed their appearance and can extract facial features that are necessary for DMS analysis.

DMS Model: The DMS Model is the core component of the system, and operates
on the region of the face extracted by the Face Recognition module. The DMS Model is
based on Deep Neural Networks and extracts facial landmarks, eye and mouth opening,
head pose, and driver’s action, such as normal, on a cellphone, or smoking. The DMS
Model incorporates a state machine that aggregates these features to have an output of
Drowsy, Yawning, Distracted (Pose), Cellphone, or Smoke. The DMS Model is trained
on a large dataset of annotated driver images and is optimized for high accuracy and
real-time performance.

The DMS operates in a continuous loop, processing each frame of the video stream in
real-time. First, the Face Detector locates the face region within the image. Then, the Face
Recognition module aligns the face region and extracts the feature vectors that represent
the identity of the driver. The DMS Model then analyses the facial landmarks, eye and
mouth opening, head pose, and driver’s action, and determines the status of the driver as
shown in Figure 3.

Overall, the DMS is a powerful tool that can significantly improve driver safety and
reduce the risk of accidents caused by driver fatigue or distraction. The combination of
the Face Detector, Face Recognition module, and the DMS model enables the system to
accurately detect and classify the driver’s status in real time, and further share these data
to the 5GMETA Platform.
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Figure 3. Driver Monitoring System (DMS) hardware setup (left), DMS visualizer application (right)
highlighting different driver states (normal, cellphone, smoking, drowsy, distracted). (User interface
presented during the 5GMETA Hackathon, available online at https://youtu.be/6Z026lECwlQ
(accessed on 1 March 2024)).

3.3. Parking Lot Detector Service

As one of the responses to the driving misbehaviour situations, we propose to provide
the nearest available parking space to the misbehaving vehicle in real-time. To achieve
this, we rely on the parking spaces provided by the Parking Lot Detector Service. The
PLD is a vision-based system that utilizes smart-city infrastructure cameras to identify
potential parking spaces and their current occupancy status by leveraging deep-learning
and computer-vision techniques. The PLD provides a feasible and convenient solution for
scaling the application across multiple city cameras as it involves higher re-utilization of
available hardware resources thereby reducing the associated overhead costs.

The PLD consists of three main components as follows:
Parking Detection Pipeline: In this stage, the objective is to reliably detect and track

all the vehicles observed in the scene. As an input to this stage, live RTSP video streams
coming from the infrastructure cameras are fed as an input. The PLD uses the YOLOv5
model [25,26] trained on the MS-COCO dataset for the object detection task. To accurately
track vehicles, the PLD uses the DeepSORT algorithm introduced by Wojke et al. [27] which
provides better performance over occluded objects as it uses a cascading association step us-
ing CNN-based object appearance features. Using the combination of these two algorithms,
bounding boxes (pixels) of the vehicles along with their tracking results are obtained.

Furthermore, the PLD uses a novel Static Object Detection (SOD) algorithm built on
top of the object detection and tracking results to determine whether the detected vehicle
is stationary or moving in the scene. First, the SOD maintains a list of all the tracked
objects and adapts them according to the changes in the observed scene. Then, it checks
the corresponding image coordinates and associated velocities of every tracked object for a
certain time duration to determine whether the object is stationary. All the stationary objects
(in this case, the vehicles) are considered potential parking spaces. Image coordinates of
these objects including their unique identification number are stored locally, which further
acts as a database of parking spots for a given camera.

Occupancy Classification: This stage aims to provide the real-time occupancy status
(free/occupied) of a given parking space from the parking database. To achieve this, the
PLD uses a Pytorch implementation of an image classifier by Amato et al. [19], trained on
the CNRPark-EXT dataset which consists of roughly 150,000 labelled images of vacant and
occupied parking spaces, built on a parking lot of 164 spaces. Parking space is retrieved
from the database, and then using the acquired bounding box an image crop on a shared
copy of the original input image frame is taken. This image crop then acts as an input to
the classifier during inference which provides real-time occupancy status prediction of the
parking space.

https://youtu.be/6Z026lECwlQ
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Data Transmission: To keep the data transmission volume to a minimum, the PLD
calculates the centroid of each parking space in the database, therefore, reducing the number
of associated data points. Then, the geo-location of these centroids is calculated manually
by estimating the homography between the traffic camera image and the geo-referenced
satellite image of our test area, with 10 image points. Using this homography matrix,
a perspective transformation of the traffic camera image to the satellite image is achieved.
Respective geographical coordinates of the parking space are then retrieved using the
Python GDAL library. All the aforementioned processed data is encapsulated in a JSON
message which contains: Traffic camera details (id and GPS coordinates) and Parking Space
Information (every space with its unique IDs, GPS position, and their respective occupancy
status). This data is then transmitted utilizing the high-bandwidth network infrastructure
provided by 5GMETA and is made available in the 5GMETA cloud platform to all potential
data consumers.

Figure 4 showcases the efficient parking space detection of the PLD through a visually
informative representation. In the top section, the real-world scenario is projected, demon-
strating the capability of the PLD to accurately identify and track potential parking spaces.
The detected parking spaces are visually marked with green icons, indicating available
spaces, and red icons, representing occupied spaces, as shown in the bottom section.

Figure 4. Parking space visualization. Parking Lot Detector (PLD) running on live RTSP video
feed (top) and its visualization in 3D Parking visualizer application (bottom), highlighting occupied
spaces (in red) and free space (in green).
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3.4. Collaborative Misbehaviour Response

To implement the misbehaviour response solution, the MBR uses the AvroConsumer
library to subscribe to the Kafka topic and consume messages in Avro format. The Keycloak
library is used to authenticate with a Keycloak server, which provides secure access to the
Kafka cluster. The proton library is used to encode and decode QPID proton messages. The
main function of MBR takes four input parameters: kafka topic, platform address, bootstrap
port, and schema registry port. These parameters are used to configure the AvroConsumer
object that subscribes to the Kafka topic where the WWD, DMS, and PLD services produce
their messages. When a message is received, the MBR checks the message content to
determine if it contains a DENM (Decentralized Environmental Notification Message) or a
PLD (Parking Lot Data) payload. If the message contains a DENM payload and the cause
code indicates a specific event, such as a wrong-way driving incident (WWD, cause code
14) or a driving monitoring system event (DMS, cause code 93), MBR generates a route to
the nearest available parking spot and produces a new message to a Kafka topic with the
recommended path. If the message contains a PLD payload, the MBR extracts the available
parking spaces and stores them in a list, while the occupancy status is updated every 10 s
on a new message coming from the PLD service. If a DENM message is received with a
corresponding WWD or DMS cause code, MBR monitors these events continuously. In the
case of WWD, the events are monitored from CCTV footage, while in the case of the DMS,
the events are monitored from the camera mounted inside the vehicle. The Collaborative
MBR efficiently generates optimized routes from the detected event position to the nearest
available parking space by seamlessly integrating the high-performance OpenStreetMap
OSRM Engine. Operating as a separate service, the OSRM Engine utilizes OpenStreetMap
data to calculate the most efficient routes. When a misbehaviour event is detected, the MBR
system promptly initiates the route generation process. It collects the event position
coordinates and coordinates of available parking spaces from the Parking Lot Detector
service. Subsequently, the MBR sends a request to the OSRM API, providing the source
(event position) and destination (nearest available parking space) coordinates. The OSRM
Engine leverages the comprehensive road data and traffic conditions from OpenStreetMap
to calculate the optimized route. The result is then delivered in the form of waypoints and
turn-by-turn instructions, enabling drivers to swiftly navigate to the recommended parking
spot. The MBR system receives the optimized route from the OSRM Engine. It adds the
route information to the existing JSON object containing the misbehaviour event details.
This updated JSON object is then used to produce a new message to a Kafka topic, which
is shared with the drivers or relevant stakeholders. Figure 5 showcases the process of the
MBR journey.

Overall, the MBR provides an efficient solution for real-time processing and response
to WWD and DMS traffic events by generating optimized routes to the nearest available
parking spot. The MBR is integrated with the 5GMETA platform, which facilitates the
seamless communication and coordination between WWD, DMS, and PLD services. Addi-
tionally, the MBR provides continuous updates of the occupancy status of detected parking
spots every 10 s by receiving messages from the PLD service. This integration of services
enhances the efficiency and accuracy of traffic management systems, resulting in improved
safety and convenience for drivers.
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4. MBR and Electrical Vehicles

By combining the Misbehaviour Response System with Electric Vehicles, a range of
advantages can be realized, particularly in the areas of energy efficiency optimization and
leveraging the advanced capabilities of the vehicles:

Optimization of Energy Efficiency: Integrating the MBR with EVs offers a significant
advantage in the optimization of energy consumption. The MBR systems can make use of
real-time data and predictive analytics to optimize driving routes and behaviour, thereby
reducing energy usage without compromising safety. For example, by utilizing the vehicle’s
braking and acceleration systems, the MBR can implement regenerative braking strategies
and smooth acceleration patterns, maximizing energy recovery and extending the vehicle’s
driving range. In contrast to traditional vehicles that require manual intervention to
optimize energy efficiency, EVs equipped with MBR systems can dynamically adjust
driving parameters based on real-time traffic conditions, terrain, and energy availability.
This adaptive approach ensures that EVs operate at peak efficiency, reducing overall energy
consumption and carbon emissions.

Enhanced Control and Monitoring: Another benefit of connecting the MBR with EVs is
the enhanced control and monitoring capabilities enabled by the vehicle’s electric drivetrain.
Unlike traditional vehicles that rely on mechanical systems, EVs offer finer control over
braking and acceleration, allowing MBR systems to implement precise interventions in
response to detected misbehaviour or safety threats. For instance, MBR-equipped EVs
can autonomously adjust braking force or throttle input to mitigate potential accidents or
dangerous driving behaviour, such as sudden lane changes or aggressive acceleration. This
proactive approach enhances overall road safety and reduces the likelihood of collisions,
benefiting both EV occupants and other road users. Moreover, the modules within the MBR,
including the Driving Monitoring System (DMS), are designed as edge models that require
minimal power to operate. These energy-efficient components operate at 12 V, allowing for
seamless integration with EVs’ onboard systems without causing a noticeable impact on
battery life or vehicle performance. By leveraging the inherent benefits of EV technology
and incorporating them into MBR functionalities, vehicles can attain increased levels of
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energy efficiency, safety, and performance, thereby contributing to a more sustainable and
intelligent transportation environment.

5. Results & Evaluation

In this section, we present the setup with results and evaluation of the Collaborative
Misbehaviour Response System, including the deployment in two different levels with
latency measurements.

The Collaborative MBR is composed of several key components, as summarized
in Table 1. At its core, the MBR system serves as the real-time traffic event processing
engine, receiving inputs from Misbehaviour Detectors (WWD, DMS) alongside the PLD
service, which operates on top of the 5GMETA Platform. The Misbehaviour Detectors are
responsible for detecting misbehaviour events such as wrong-way driving incidents, driver
monitoring, and parking lot information, providing valuable data to the MBR for response
generation. The 5GMETA Platform acts as the infrastructure for the MBR, providing access
to the necessary resources and services required for efficient event processing. To gen-
erate optimized routes for response, the MBR system integrates the high-performance
OpenStreetMap OSRM Engine, which calculates the most efficient routes based on Open-
StreetMap data and traffic conditions. This integrated approach enables the MBR to
promptly respond to misbehaviour events and provide real-time recommendations to
drivers, ultimately contributing to improved road safety and traffic management.

Table 1. MBR System Setup.

Component Description

MBR System Real-time traffic event processing

Misbehaviour Detectors WWD, DMS, PLD

5GMETA Platform Infrastructure for MBR

OSRM Engine High-performance routing service

The MBR can be deployed in two different setups achieving good latency results as
demonstrated in Figure 6:

(i) Deployed on top of the 5GMETA Platform as a third-party application: In this
configuration, the MBR utilizes the infrastructure and resources provided by the 5GMETA
Platform to process real-time traffic events and communicate with the OSRM Engine.
The maximum latency observed in this deployment is approximately 1.2 s, suitable for
non-critical applications.

(ii) Deployed on 5GMETA MEC (Multi-Access Edge Computing) for low latency: In
this low latency deployment, the MBR is hosted closer to the edge of the network, reducing
the latency between the MBR and other components. The measured latency from the
moment the event was captured to the vehicle receiving the recommended route is stable
at approximately 40 ms, ensuring near-instantaneous responses in critical situations.

Additionally, the MBR goes beyond providing responses solely to the misbehaving
vehicle; it also ensures collaborative sharing of responses with the Multi-Access Edge
Computing (MEC) handling the specific geographic area. This approach enables the MBR
to make its response accessible to other vehicles within the same MEC domain. By sharing
response information with the MEC, the MBR contributes to a dynamic and interconnected
traffic management ecosystem, where valuable insights and timely solutions can be shared
among multiple vehicles operating in the same vicinity. This collaborative sharing fosters
a cooperative environment, enhancing overall traffic efficiency, safety, and coordination.
Other vehicles handled by the MEC can benefit from the MBR’s optimized routing to the
nearest available parking space, enabling them to make informed decisions and efficiently
navigate through congested areas or potentially hazardous situations. Consequently,
the MBR’s ability to share responses with the MEC extends the benefits of its real-time



World Electr. Veh. J. 2024, 15, 158 13 of 16

misbehaviour response system to a broader network of vehicles, fostering a more intelligent
and cooperative transportation ecosystem. The results of the MBR System are showcased
in Figure 7.

Figure 6. MBR Latency Measurement on different deployment levels (1.2 s as third party (top), 40 ms
deployed on Edge (bottom)).

Figure 7. The Collaborative Misbehaviour Response System visualizer application in action. Warning
symbol in yellow highlights where the DMS or WWD system alerts were generated, upon which
the shortest path (yellow and black arrows) to the nearest available parking spot (in green) is
recommended to the vehicle.
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6. Discussion

In this section, we discuss the implications and insights drawn from the experiments
conducted, particularly within the context of Electric Vehicles, limitations, as well as
potential avenues for future research.

6.1. Summary of Experiments

The study included implementing the Collaborative Misbehaviour Response system
in conjunction with a Parking Lot Detector and a Driving Monitoring System. This compre-
hensive testing setup aimed to simulate genuine real-world scenarios where MBR interacts
with various misbehaviour detection systems to respond effectively to traffic events specific
to EV environments. The results demonstrate the system’s efficiency in processing real-time
traffic events and generating optimized routes to the nearest available parking space or
safe location, emphasizing energy efficiency and utilizing the advanced capabilities of EVs.
Notably, the low-latency MEC deployment exhibited almost instantaneous response times,
emphasizing the significance of infrastructure proximity in enhancing system performance.

6.2. System Performance and Latency

The MBR system’s effectiveness, as indicated by latency measurements across various
deployment scenarios, highlights its ability to provide prompt responses to instances
of misbehaviour. The comparison between deployment on the 5GMETA Platform and
5GMETA MEC highlights the significance of edge computing in reducing latency for
critical applications. By leveraging edge computing resources, the MBR achieves near-
instantaneous response times, crucial for ensuring the safety of drivers and passengers in
potentially hazardous situations.

6.3. Implementation Costs

The cost-effectiveness of employing multiple MECs in hosting the 5GMETA platform
presents a strategic advantage over self-dedicated data collection methods.

• While the cost of hosting the 5GMETA platform grows with the number of MECs,
this approach becomes more economically favourable when compared to the linear
escalation of expenses associated with dedicated self-data collection, particularly as
the number of hardware devices, such as cameras, increases.

• The efficiency gained through utilizing multiple MECs for broader geographical cov-
erage contributes to optimizing data collection costs, making it a superior choice
compared to the self-dedicated collection method. This makes it a preferable op-
tion compared to self-dedicated collection methods, emphasizing the benefits of the
5GMETA platform in scenarios where extensive spatial reach and scalability are crucial
factors to consider.

• Importantly, the calculated cost savings percentages (reported in [28]) are always
over 99%, further emphasizing the substantial financial benefits and efficiency gains
associated with the 5GMETA platform, solidifying its position as a better choice for or-
ganizations aiming to enhance data collection while realizing significant cost savings.

6.4. Current Approach Limitations

The Driver Monitoring System faces limitations in challenging lighting conditions like
high glare, which can compromise the performance of the Face Recognition module due
to shadows and reflections. To address this, future efforts will transition to video-based
DMS for improved adaptability to varying lighting conditions. Similarly, the real-time
Wrong-Way Driving detection approach, while effective, encounters challenges in heavy
traffic and lane changes, impacting algorithm accuracy. Additionally, variations in weather
and lighting conditions can affect system reliability. Future work aims to enhance the
algorithm’s robustness under diverse conditions, ensuring improved performance in de-
tecting wrong-way driving incidents. Despite these limitations, both systems show promise,
requiring further refinement to enhance accuracy and effectiveness in real-world scenarios.
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6.5. Future Work

Further optimization of latency, particularly in scenarios where milliseconds can
make a difference, remains an area of interest. Methods such as predictive analytics
and edge caching could be explored to allocate resources and minimize response times
even further pre-emptively. Furthermore, there is a need to scale up the deployment of
misbehaviour detection systems, such as the PLD and WWD, to cover all city cameras. This
expansion would provide comprehensive coverage of traffic incidents and misbehaviours
across urban areas, allowing for more effective monitoring and response mechanisms.
Additionally, integrating these systems with existing infrastructure and networks would
facilitate seamless data sharing and collaboration between different stakeholders involved
in traffic management and EV operation.

7. Conclusions

In conclusion, the integration of the Misbehaviour Response System with Electric
Vehicles represents a significant advancement in road safety and efficiency. By combining
the proactive capabilities of MBR with the energy-efficient and advanced features of EVs,
we can mitigate risky driving behaviours, optimize energy consumption, and enhance
overall road safety.

As we move towards a future of smart and sustainable transportation, the collaboration
between the MBR and EVs showcases the potential of innovative technologies to address
complex challenges. This synergy not only improves the safety of EV occupants and other
road users but also contributes to the broader goals of reducing carbon emissions and
promoting sustainable mobility. To further explore the capabilities and benefits of MBR
and EV integration, we encourage you to watch our demonstration video on YouTube:
https://youtu.be/lEmmjXTNAQs (accessed on 1 March 2024).
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