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Abstract: Aiming to address the tracking accuracy and anti-rollover problem of the unmanned
mining truck path tracking process under the complex unstructured road conditions in mining
areas, a coordinated control strategy for path tracking and anti-rollover based on topology theory
is proposed. Moreover, optimal equilibrium weights are assigned to path tracking control and anti-
rollover control to ensure that the path tracking accuracy of the mining vehicle can be effectively
improved in a safe and stable driving state. Regarding the path tracking problem, a lateral preview
error model is established, and a path tracking controller is designed using LQR (linear quadratic
regulator) control theory. In the design of the anti-rollover controller, the effects of understeer and
trip-type rollover on the stability of the vehicle are taken into account, and the ideal transverse swing
angular velocity and trip-type rollover evaluation index are introduced for controller design, which
reduce the effects of the curves and roadway excitation on the mining truck and improve the rollover
motion. Based on a joint simulation using Trucksim and Simulink and the construction of a hardware-
in-the-loop simulation platform for verification, the single control strategy and coordinated control
strategy are compared and analyzed. The final simulation results show that the tracking error, yaw
velocity, and center of mass side deviation angle are optimized by 45%, 32.5%, and 20%, respectively.
Therefore, the Extension theory-based coordinated controller satisfies the complex road conditions
in the mining area and improves the tracking accuracy to the maximum extent while ensuring the
safety and smoothness of vehicle driving and exhibiting good adaptability and robustness.

Keywords: unmanned mining trucks; anti-roll; path following; coordinated control; Extension theory;
weight assignment

1. Introduction

In recent years, the state has attached increased importance to the construction of green
mines. The National Development and Reform Commission and eight other ministries and
commissions have jointly issued “Guiding Opinions on Accelerating the Intelligent Devel-
opment of Coal Mines”, and the development of open-pit mines to promote the high-level
and in-depth fusion of information technology and industrialization has become impera-
tive. With the rapid development of science and technology, automatic driving technology
has matured and been applied to many scenarios, one of which is the development of
automatic driving in mining areas. Path planning and path tracking are the main problems
to be solved regarding automatic driving in mining areas. Mining road networks may have
multiple alternative paths and unsafe areas [1]. In order to plan effective detour routes
around these unsafe areas, simulation-based and clustering-based optimization techniques
are used [2]. This paper mainly focuses on vehicle tracking control. The question of how
to ensure the accurate control of path tracking and smooth driving has become the focus
and main challenge in realizing the accurate and safe tracking of the target paths of mining
trucks, which has far-reaching research significance.

World Electr. Veh. J. 2024, 15, 167. https://doi.org/10.3390/wevj15040167 https://www.mdpi.com/journal/wevj

https://doi.org/10.3390/wevj15040167
https://doi.org/10.3390/wevj15040167
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/wevj
https://www.mdpi.com
https://doi.org/10.3390/wevj15040167
https://www.mdpi.com/journal/wevj
https://www.mdpi.com/article/10.3390/wevj15040167?type=check_update&version=3


World Electr. Veh. J. 2024, 15, 167 2 of 20

Lateral motion control is one of the three key issues in path tracking control and has
garnered significant attention from numerous research scholars. According to the existing
studies on lateral motion control, based on the adoption of different control methods,
they can be classified into model-free control methods [3–5], linear control methods [6],
and nonlinear control methods [7,8]. Among these methods, the common PID control
algorithms [9,10] are hindered by the need for trial-and-error in parameter selection due
to unknown or time-varying vehicle models, resulting in laborious work and suboptimal
practical efficacy. The pure pursuit algorithm [11,12] does not consider the vehicle’s force
conditions, and its tracking performance relies on the selection of the lookahead distance,
making it difficult to obtain an optimal solution and resulting in variable tracking effec-
tiveness. Sliding mode control [13,14] is prone to chattering due to delays, which affects
vehicle stability and tracking precision when sensor signals fluctuate or actuator control is
suboptimal. Model predictive control (MPC) [15,16] increases the computational burden
and time consumption with the addition of model dimensions and constraints, making
it challenging to tune for practical application. Linear quadratic regulator (LQR) control,
on the other hand, assumes control inputs are unconstrained during the solving phase,
which makes it easier to design, and it offers appreciable control effectiveness with good
real-time performance. In the design of LQR control, reference [17] incorporates the road
curvature of multiple preview points into the augmented state vector and constructs an
enhanced linear quadratic problem, the optimal solution of which can avoid issues with
significant magnitude errors. The literature [18] constructs a path tracking error model and
proposes an adjustment rule based on the vehicle–road position relationship for parameter
selection, which improves the adaptability of the controller. Building upon the literature,
this paper employs LQR control theory as the guiding principle to investigate the path
tracking controller for unmanned mining trucks.

At present, unmanned mining vehicle research mainly focuses on the improvement
of tracking accuracy, while there is a lack of consideration for safe driving. Anti-rollover
research focuses primarily on the issue of safe driving; researchers usually establish a
rollover evaluation index to determine the rollover status of a vehicle. Regarding active
anti-rollover technology for vehicles, to address the non-tripping rollover generated by
the large centrifugal force when steering the vehicle and the tripping rollover caused by
road excitation problems, commonly used solutions include differential braking, active
steering, active suspension, and lateral stabilizers. In terms of control methods, Kailerk
et al. [19] proposed a rollover warning system based on a neural network algorithm; it
considered trip-type and non-trip-type rollover as external factor inputs, set risk level
evaluation indexes, and validated a 1/5 vehicle model. Seongjin et al. [20] proposed a
rollover prevention integrated control strategy that combined an active suspension system
and differential braking and designed a robust controller characterized by linear–quadratic–
static output feedback and a reduced parameter sensitivity scheme. The differential brake
and the active suspension system acted as actuators to generate the sway moment and roll
moment, respectively. The results showed that this control strategy significantly enhanced
the vehicle’s ability to resist lateral sway. Termous et al. [21] proposed a coordinated control
scheme based on active steering, differential braking, and active suspension, considering
anti-roll and lateral stability control constraints; this effectively improved the safety and
handling stability of the vehicle studied. Wang Chunyan et al. [22] designed an integrated
controller based on active steering and active braking. An improved rollover indicator was
proposed to take into account rollover prevention and the path tracking performance, and
the tracking accuracy was improved to reduce the risk of rollover.

Based on the above analysis, there is a certain conflict between path tracking control
and anti-rollover control in the process of vehicle tracking. The use of coordinated control
can fully consider the coupling relationship between the systems, with high efficiency
and flexibility, to achieve safe and stable driving while improving the tracking accuracy.
Therefore, in this paper, to address the tracking accuracy and instability problems of
unmanned mining trucks under the complex conditions of unstructured roads in mining
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areas, we design a sliding-mode steering anti-rollover controller to solve the instability
problems caused by vehicle steering, a fuzzy PID active suspension controller to improve
the body attitude, and an LQR path tracking controller to improve the tracking accuracy
of the vehicle. We also put forward a coordinated control strategy for path tracking and
anti-rollover based on the Extension theory, as well as a coordinated control strategy for
the two systems under different working conditions. Moreover, a coordinated control
strategy based on Extension theory is proposed for path tracking and anti-roll, which
assigns weights to the two types of control under different working conditions and obtains
an optimal and balanced control strategy to satisfy the complex environmental conditions.
This effectively improves the path tracking accuracy and reduces the influence of the road
surface state on the vehicle system.

2. Establishment of the Model and Rollover Evaluation Index
2.1. Tri-Axial Mining Truck Path following the Preview Error Model

We model a three-axle mining truck based on a two-axle vehicle model. As shown in
Figure 1, the body coordinate system is established according to the mining truck; the dot
is the center of mass o of the vehicle; the x-axis is along the longitudinal axis of the body;
the y-axis is perpendicular to the direction of the longitudinal axis, that is, transverse to
the body; and the z-axis satisfies the right-hand rule and is perpendicular to the xoy plane
and upward.

Figure 1. Dynamic model of a three-axle mining truck.

As shown in Figure 1, the force analysis is carried out according to Newton’s second
law of motion, and the kinetic equations are established for the mining truck in the lateral
and yaw directions as follows:{

m
.
vy = −mvxωr + Fy f + Fym + Fyr

Iz
.

ωr = l f Fy f − lmFym − lrFyr
(1)

where vy is the lateral speed of the mining truck; vx is the longitudinal speed of the mining
truck; ωr is the yaw velocity of the mining truck; Fyf, Fym, and Fyr are the lateral forces of
the tires on the front, middle, and rear axles of the mining truck, respectively; m is the mass
of the entire vehicle; Iz is the moment of inertia of the mining truck around the vertical;

.
ωr

is the yaw acceleration of the mining truck; and lf, lm, and lr are the distances of the front,
middle, and rear wheels of the mining truck from its center of mass, respectively.

The force analysis of the mining truck tires shows that the external force on each wheel
is as follows: 

Fy f = n f Fy f tcosδ f
Fym = nmFymt
Fyr = nrFyrt

(2)

where nf is the number of front tires of the mining truck, Fyft is the tire lateral force of
the individual front wheels of the mining truck, nm is the number of mid-wheel tires of
the mining truck, Fymt is the tire lateral force of the individual mid-wheels of the mining
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truck, nr is the number of rear wheels of the mining truck, Fyrt is the tire lateral force of the
individual rear wheels of the mining truck, and δ f is the front wheel steering angle.

During the driving process of mining trucks, the tires are subjected to lateral forces,
and they produce lateral deflection angles. Considering that, in the linear region of the
tire, the tire lateral deflection force and the lateral deflection angle are approximately
proportional, the force in the y-axis direction of the tire can be expressed as follows:

Fy f t = C f α f
Fymt = Cmαm
Fyrt = Crαr

(3)

where Cf denotes the front wheel equivalent lateral deflection stiffness, Cm denotes the mid-
dle wheel equivalent lateral deflection stiffness, and Cr denotes the rear wheel equivalent
lateral deflection stiffness.

The front wheel side deflection α f , the middle wheel side deflection αm, and the rear
wheel side deflection αr are denoted, respectively, as follows:

α f =
vy+l f vφ

vx
− δ f

αm =
vy−lmvφ

vx

αr =
vy−lrvφ

vx

(4)

Moreover, the kinematic equation of the mining truck can be expressed as follows:{ .
X = vxcosφ − vysinφ
.

Y = vxsinφ + vycosφ
(5)

where X is the horizontal coordinate of the mining vehicle in the geodetic coordinate
system, Y is the vertical coordinate of the mining vehicle in the geodetic coordinate system,
and φ is the angle between the body and the geodetic coordinate axis.

Coupling Equations (1)–(5) are finally obtained as the kinetic model, as follows:

.
X = AX + Bu (6)

Among them,
.

X =

[ .
vy.
ωr

]
,

A =

 2C f +4Cm+4Cr
mvx

2C f l f −4Cm lm−4Cr lr
mvx

− vx
2C f l f −4Cm lm−4Cr lr

Izvx

2C f l2
f +4Cm l2

m+4Cr l2
r

Izvx

,

B =

[
− 2C f

m

− 2C f l f
Iz

]
, u = δ f .

The path tracking error model is a comprehensive error model that combines the
preview error model with the lateral dynamics model. The key influencing factors of the
path tracking accuracy are the lateral error and heading error, so it is necessary to establish
an error kinematic model with the lateral error and heading error relative to the desired
path as state variables. As shown in Figure 2, the preview kinematic model is represented
during vehicle travel.
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Figure 2. Path tracking preview error model.

The lateral preview error model can be represented, according to the literature [23],
as follows: { .

φe = vxk − .
φdes.

ye = Lωr + vy + vx φe
(7)

where φe is the directional deviation at the preview point (gx, gy), k is the curvature of the
road at the preview point, ye is the lateral deviation at the preview point, ωr is the yaw
velocity of the vehicle, vy is the lateral velocity, and L is the preview distance.

The following equation can be obtained by substituting Equation (6) into the differen-
tial equation of the lateral dynamics of a three-axle mining vehicle and rewriting it in the
form of a state space equation as follows:

.
err = A1err + B1U + C1G (8)

In the equation:

A1 =


0 1 0 0
0 a22 a23 a24
0 0 0 1
0 a42 a43 a44




a22 =
2C f +4Cm+4Cr

mvx

a23 = − 2C f +4Cm+4Cr
m

a24 =
2C f +4Cm+4Cr

mvx

a42 =
2C f l f −4Cm lm−4Cr lr

Izvx

a43 = − 2C f l f −4Cm lm−4Cr lr
Iz

a44 =
2C f l2

f +4Cm l2
m+4Cr l2

r
Izvx

err =


ye.
ye
φe.
φe

, B1 =


0

− 2C f
m

0

− 2C f l f
IZ

,

C1 =


0

2C f l f −4Cm lm−4Cr lr
mvx

− vx

0
2C f l2

f +4Cm l2
m+4Cr l2

r
Izvx
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U = δ f , G =
.
φdes.

2.2. Road Surface Elevation Input Model

In the closed and complex environment of an open pit mining area, we not only should
consider the variable attachment coefficient but also need to introduce the road surface
disturbance input for impact analysis. Mining trucks traveling on complex and rugged
road surfaces are often subject to discrete impacts such as bumps or pits, especially when
the vehicle is steering and driving. The unilateral wheel disturbance impacts will greatly
reduce the vehicle’s rollover stability, so it is necessary to analyze the impact of the road
bumps on the stability of the vehicle. The following road bump impact model is established
as follows:

Zr =

{
h sin(πvt/L) t0 ≤ t ≤ t0 + L/v
0

(9)

In the equation, h denotes the height of the bump, L represents the width of the bump,
v represents the vehicle speed, and t0 indicates the duration of the wheel’s contact with the
impacted road surface.

Meanwhile, in order to further reflect the actual driving environment of unmanned
mining trucks, the pavement spatial spectral density is established as the pavement eleva-
tion input. According to the pavement power spectral density specified by the International
Organization for Standardization [24], the fitting expression is as follows:

Gq(n) = Gq(n0)(
n
n0

)
−W

(10)

where Gq(n0) denotes the pavement unevenness coefficient; W is the frequency index, which
is taken as 2 in this paper; n is the spatial frequency; and n0 denotes the reference spatial
frequency.

When the speed of the vehicle is constant, the relationship between the time frequency
and the spatial frequency is as follows:

f = vn (11)

By combining Equations (10) and (11) and differentiating the resultant equation, we
derive the power spectral density of the road surface speed.

.
Gq( f ) = 4π2n2

0vGq(n0) (12)

The magnitude of the pavement velocity power spectral density is a constant k. The
representation of the pavement input model in the time domain can be built using white
noise w(t) with the following equation:

Zr(t) =
√

k
∫

w(t)dt (13)

The following equation can be obtained through the further derivation of Equation (13)
and its substitution into Equation (12):

.
Zr(t) = 2πn0

√
Gq(n0)vw(t) (14)

In order to more realistically reflect the state of the pavement in the mining area, the
lower cutoff time frequency f 0 is introduced into Equation (14), which can be used to obtain
the filtered white noise time-domain pavement elevation input model [25]:

.
Zr(t) = −2π f0Zr(t) + 2πn0

√
Gq(n0)vw(t) (15)
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where Zr(t) is the random pavement excitation displacement and
.
Zr(t) is the random

pavement excitation velocity.

2.3. Calculation of the Trip-Induced Rollover Evaluation Index

In order to accurately determine the vehicle’s motion state in real time, a rollover
evaluation index based on the dynamic driving parameters of the vehicle is constructed. In
general, vehicle rollover is categorized into trip-type rollover and non-trip-type rollover [26].
The former is caused by external inputs that lead to vehicle rollover, while the latter is
caused by excessive lateral acceleration when the vehicle turns. Since mining trucks need
to cope with potholes and rugged road conditions, the construction of a trip-type rollover
index is more in line with the analysis of the mining road environment. There is a time
interval between the contact of the front axle wheels and that of the middle and rear axle
wheels with the same section of road surface, and the vertical movement information of
the front axle wheels can more accurately reflect the discrete impact of the road surface.
Therefore, this paper utilizes one-third of the whole model of the three-axle vehicle to
establish the trip-type rollover index, as shown in Figure 3.

Figure 3. A one-third scale model of the full vehicle rollover.

If the direction of the suspension force remains perpendicular to the spring-mounted
vehicle body, the roll motion equation should be as follows:

Ix
..
ψ =

t f

2
(F2 − F1) + mshay cos ψ + mshg sin ψ (16)

The vertical motion equation for the spring-loaded mass is as follows:

F1 + F2 = ms
..
zc (17)

The vertical motion equation for the unsprung mass is as follows:

mu1
..
zu1 + F1 = Ft1 (18)

mu2
..
zu2 + F2 = Ft2 (19)

In the equation, Ix represents the moment of inertia of the sprung mass about the roll
center; ψ denotes the body roll angle; tf is the track width of the wheels; F1 and F2 are the
vertical forces of the left and right suspension, respectively; ms is the sprung mass; and
h is the vertical distance from the center of gravity of the sprung mass to the roll center.
ay represents the lateral acceleration; g denotes the acceleration due to gravity;

..
zc is the
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vertical acceleration of the sprung mass; mu1 and mu2 are the unsprung masses on the left
and right sides, respectively;

..
zu1 and

..
zu2 represent the vertical accelerations of the left and

right wheels, respectively; and Ft1 and Ft2 are the tire forces of the left and right wheels,
respectively.

Based on the formula for lateral load transfer ratio, substituting Equations (16), (18),
and (19) and assuming mu1 = mu2 = mu, the conversion yields the trip-type rollover index
as follows:

RI =
mu(

..
zu1 −

..
zu2)

mu(
..
zu1 +

..
zu2) + ms

..
zc + mg

−
2
t f
(Ix

..
ψ − mshay cos ψ − mshg sin ψ)

mu(
..
zu1 +

..
zu2) + ms

..
zc + mg

(20)

3. Path Tracking and Anti-Roll Coordinated Controller Design

During the operation of unmanned mining trucks on unstructured roads, the lateral
path tracking controller and the anti-rollover controller have their respective optimization
objectives and are interrelated through coupling. To ensure safe and stable driving in
complex road environments while effectively enhancing the vehicle’s path tracking accu-
racy, separate designs were implemented for the anti-rollover steering controller, active
suspension controller, path tracking controller, and an integrated coordinating controller.
Based on the theory of extension, a path tracking and anti-rollover coordinated controller
was designed, dynamically allocating weights to overcome the limitations and insufficient
adaptability resulting from a single control strategy. The control structure principle is
illustrated in Figure 4.

Figure 4. Schematic diagram of the path tracking and anti-rollover controller structures.

3.1. Design of a Steering Anti-Rollover Controller Based on Sliding Mode Control

In order to ensure that the vehicle still has good lateral stability when steering under
different road conditions, the design of the steering anti-rollover controller must consider
the influence of the yaw velocity and the center-of-mass lateral deflection angle at the
same time. This paper assumes that, in the ideal state of vehicle motion, based on the
two-degree-of-freedom vehicle dynamics model established in Section 2.1, we can obtain
the ideal yaw velocity and center-of-mass lateral deflection angle. At this time, the yaw
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velocity and lateral acceleration of the vehicle are constant values and can be obtained as
follows:

.
ωr = 0,

.
β = 0. Therefore, the ideal yaw rate can be obtained [27] as follows:

ωrd_i =
[(l f + lm)C f Cm + (l f + lr)C f Cr]vxδ f

[(l f + lm)
2C f Cm + (l f + lr)

2C f Cr](1 + mK1v2
x)

(21)

In that, K1 =
l f C f −lmCm−lrCr

2[C f Cm(l f +lm)2+C f Cr(l f +lr)
2]

.

Simultaneously, due to the limitations imposed by the ground adhesion limit, the
desired yaw rate needs to satisfy the following condition:

|ωr_max| = f
µg
vx

Wherein f represents the safety factor, set at 0.85; µ denotes the road adhesion coeffi-
cient; and g stands for the acceleration due to gravity. Consequently, the final desired value
for the yaw rate is obtained as follows:

ωrd = min
{
|ωrd1|,

∣∣∣∣ f
µg
vx

∣∣∣∣}·sign(δ f ) (22)

In that, ωrd1 = ωrd_i =
[(l f +lm)C f Cm+(l f +lr)C f Cr ]vxδ f

[(l f +lm)2C f Cm+(l f +lr)
2C f Cr ](1+mK1v2

x)
.

Incorporating the additional yaw moment ∆Mωr into the two-degree-of-freedom
model yields the following result:

.
β =

2C f +4Cm+4Cr
mvx

β + (
2C f l f −4Cm lm−4Cr lr

mv2
x

− 1)ωr −
2C f
mvx

δ f

.
ωr =

2C f l f −4Cm lm−4Cr lr
Iz

β +
2C f l2

f +4Cm l2
m+4Cr l2

r
Izvx

ωr −
2C f l f

Iz
δ f +

∆Mωr
Iz

(23)

The yaw rate tracking error and its derivative are defined as follows:

eωr = ωr − ωrd (24)

.
eωr =

.
ωr −

.
ωrd (25)

Simultaneously, from several sliding mode control laws, the uniform velocity ap-
proximation law is selected for its lower computational complexity, superior real-time
performance, and enhanced robustness, specifically:

.
Sωr = Kωsgn(Sωr ) (26)

In the formula, Kω represents the approach velocity to the sliding mode surface, which
is a positive constant. By converting Equation (23) to Equation (26), the additional yaw
moment can be obtained as follows:

∆Mωr = −Iz(cωr

.
eωr +

2C f l f −4Cm lm−4Cr lr
Iz

.
β +

2C f l2
f +4Cm l2

m+4Cr l2
r

Izvx

.
ωr

− 2C f l f
Iz

.
δ f +

∆
.

Mωr
Iz

− ..
ωrd − Kωsgn(Sωr ))

(27)

3.2. Design of an Active Suspension Controller Based on Fuzzy PID

The basic principle of the fuzzy PID controller is to regulate the increment of PID
parameters based on the error e between the ideal rollover evaluation index and the rate of
change of this error as inputs to the controller. In this article, the ideal rollover evaluation
index RI is set to 0. The actuating forces of the vehicle’s left and right suspension systems
are considered output parameters of the controller. In this paper, the values of the three
parameters Kp, Ki, and Kd are obtained through the empirical trial-and-error method, being
1000, 10, and 20, respectively. The input variables of error and error rate of change, as well
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as the output variable for the fuzzy controller, are all described using the following seven
fuzzy subsets:

e, ec = {NB, NM, NS, ZE, PS, PM, PB}
∆Kp, ∆Ki, ∆Kd = {NB, NM, NS, ZE, PS, PM, PB}

The fuzzy domains of the input variables and output variables are set as {−3, −2, −1,
0, 1, 2, 3}. The physical domains of error e and error change rate ec are [−1, 1] and [−25, 25],
respectively, and the physical domains of the three output variables are [−1800, 1800],
[−12, 12], and [−150, 150]. In this paper, we achieve the purpose of order of magnitude
unification by adding the scaling factor; thus, according to the above physical domains, the
quantization factor can be obtained as 3 and 0.2, respectively, and the scaling factors are
600, 4, and 50, respectively. At the same time, Gaussian and triangular affiliation functions
are selected to describe the input and output quantities and the corresponding fuzzy subset
affiliation. The fuzzy control rules are formulated according to the relevant literature [28],
as shown in Tables 1–3. Finally, the three output variables can be obtained as a function of
the input variables, as shown in Figure 5.

Table 1. Fuzzy control rule of ∆Kp.

e
NB NM NS ZE PS PM PB

ec

NB PB PB PM PM PS ZE ZE
NM PB PB PM PS PS ZE NS
NS PM PM PM PS ZE NS NS
ZE PM PM PS ZE NS NM NM
PS PS PS ZE NS NS NM NM
PM PS ZE NS NM NM NM NB
PB ZE ZE NM NM NM NB NB

Table 2. Fuzzy control rule of ∆Ki.

e
NB NM NS ZE PS PM PB

ec

NB NB NB NM NM NS ZE ZE
NM NB NB NM NS NS ZE ZE
NS NB NM NS NS ZE PS PS
ZE NM NM NS ZE PS PM PM
PS NM NS ZE PS PS PM PB
PM ZE ZE PS PS PM PM PB
PB ZE ZE PS PM PM PB PB

Table 3. Fuzzy control rule of ∆Kd.

e
NB NM NS ZE PS PM PB

ec

NB PS NS NB NB NB NM PS
NM PS NS NB NM NM NS ZE
NS ZE NS NM NM NS NS ZE
ZE ZE NS NS NS NS NS ZE
PS ZE ZE ZE ZE ZE ZE ZE
PM PB PB PS PS PS PS PB
PB PB PM PM PM PS PS PB
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Figure 5. Rule surface for fuzzy control input and output variables.

3.3. Design of a Path Tracking Controller Based on a Linear Quadratic Regulator (LQR)

The LQR control method is adopted for the design of the coupled controller in this
paper due to its ability to accommodate multiple performance indices and meet the en-
gineering practice requirements of unmanned mining trucks in complex mine area envi-
ronments. LQR optimal design theory refers to the concept in which the designed state
feedback controller K minimizes the quadratic objective function J. The quadratic objective
function J(u) can be represented as follows:

J(u) =
∞

∑
k=0

(xT
k Qxk + uT

k Ruk) (28)

In the expression, Q and R represent the weighting matrices of the controller, with R
being a positive definite matrix.

The essence of the LQR controller is to design a control law that minimizes the
quadratic objective function J(u). By employing the principle of least action to solve the
optimal control problem, one ultimately obtains the optimal control input u*(t):

u∗(t) = −K(t)e(t) (29)

In the formula, K(t) = [k1, k2, k3, k4] represents the feedback gain matrix of the LQR
controller.

Let the front wheel steering angle outputted by the feedforward control be denoted as
δq, then the feedback control law, upon incorporation of feedforward control, is expressed
as follows:

U = −Kerr + δq (30)

Substituting the above equation into Equation (2), when the system stabilizes, thus
.
err

becoming zero, it follows that:

err = −(A1 − B1K)−1(B1δq + C1
.
φdes

)
(31)

By substituting A1, B1, K, and C1 into the previous expression, we obtain:

err =


e1
0
e3
0

 (32)

In that,

e1 = (−2C f l f + 2C f l f k3 + 4Cmlm + 4Crlr)[2C f δq − θr(2C f l f − 4Cmlm − 4Crlr − v2
x)/vx]

+
(

2C f + 4Cm + 4Cr − 2C f k3)[2C f l f δq − θr(2C f l2
f + 4Cml2

m + 4Crl2
r )/vx]

/(8C f Cml f k1 + 8C f Crl f k1 + 8C f Cmlmk1 + 8C f Crlrk1)
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e3 = −
θr(8Cmlml f + 8Crlrl f + 8Cml2

m + 8Crl2
r + 2mv2

xl f )

vx(8Cml f + 8Crl f + 8Cmlm + 8Crlr)

When ye is zero, and assuming that the vehicle is traveling at a given speed, the desired
path can be approximated as a curve with a constant curvature ρ. Thus, the quantity of the
feedforward controller δq can be determined as follows:

δq = ρ[(2C f l f + 2C f l f k3 + 4Cmlm + 4Crlr)(2C f l f − 4Cmlm − 4Crlr − mV2
x )

+(2C f + 4Cm + 4Cr − 2C f k3)(2C f l2
f + 4Cml2

m + 4Crl2
r )]

/[2C f (−2C f l f + 2C f l f k3 + 4Cmlm + 4Crlr) + 2C f l f (2C f + 4Cm + 4Cr − 2C f k3)]

3.4. Design of a Path following and Anti-Roll Coordinated Control System

When unmanned mining trucks operate under unstructured road conditions, their
stability and tracking performance exhibit certain variations. Based on anti-roll control and
path tracking control strategies, this study utilizes the theory of extension to switch between
different control strategies according to vehicle state and tracking accuracy, ensuring stable
and precise vehicle operation. The yaw rate deviation and the lateral deviation angle of the
center of mass are selected as characteristic quantities in this paper.

Taking the lateral deviation angle of the center of mass as the abscissa of the extensible
set and the yaw rate error as the ordinate of the extensible set, a two-dimensional set
based on the characteristic states of the vehicle is established as S(β, ∆ω). Furthermore, the
range of variation for the extensible set is defined as (−∞,+∞), and three distinct zones
are generated that can map the vehicle tracking control state quantities in real-time: the
stable zone, the extensible zone, and the unstable zone. For the lateral deviation angle of
the center of mass, serving as the abscissa of the extensible set as β2, the boundary of the
extensible zone can be determined based on the formula for vehicle instability conditions
as follows:

|β| = |arctan(0.02µg)|

The determination of the extendable region boundary β2 varies with changes in the
road surface adhesion coefficient. On the other hand, the boundary of the stable region
β1 is ascertained based on the linear region of the yaw rate gain. By employing multiple
simulations and fitting a curve to the resulting data of vehicle speed vx, the road surface
adhesion coefficient µ, and the maximum front wheel steering angle δmax, a relationship
amongst the three parameters can be established as follows:

δmax = 0.188 − 0.0036vx + 0.125µ (33)

Substituting into Equation (12), the boundary of the stable region β1 can be obtained.
Meanwhile, for the extendable set, the longitudinal coordinate is the yaw rate error, which
is determined using the tolerance band division method.

When |ω − ωr| > |ζ2ωr| occurs, the vehicle is in an unstable state and is at risk
of rollover.

When |ζ1ωr| < |ω − ωr| < |ζ2ωr|, the state of the vehicle is within the extendable
region, corresponding to the boundary of the extendable region |∆ω2| = |ζ2ωr|.

When |ω − ωr| < |ζ1ωr|, the vehicle is in a stable condition, corresponding to the
stable boundary |∆ω1| = |ζ1ωr|.

As can be obtained from Equation (8), parameters ζ1 and ζ2, according to related
references and empirical methods, are known to be 0.05 and 0.15, respectively. Hence, the
boundary of the controllable extension set region can be determined, which varies with
changes in the road surface adhesion coefficient and the tripping-type rollover index. The
range of each region within this extension set is illustrated in Figure 6.
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Figure 6. Division of the extension set regions.

Based on the one-dimensional extension distance theory, the nearest extension dis-
tances from point S in the above figure to the stable region and the extendable region can
be represented as ρ(S, (S2, S3)) and ρ(S, (S1, S4)), respectively. Their values are as follows:

ρ(S, (S2, S3)) =


|SS2| S ∈ (−∞, S2)
−|SS2| S ∈ (S2, 0)
−|SS3| S ∈ (0, S3)
|SS3| S ∈ (S3,+∞)

(34)

ρ(S, (S1, S4)) =


|SS1| S ∈ (−∞, S1)
−|SS1| S ∈ (S1, 0)
−|SS4| S ∈ (0, S4)
|SS4| S ∈ (S4,+∞)

(35)

The formula for the correlation degree function is as follows:

K(S) =
ρ(S, (S1, S4))

ρ(S, (S1, S4))− ρ(S, (S2, S3))
(36)

Concurrently, different control strategies are selected based on the varying numerical
values of the correlation degree function. When K(S) ≥ 1, the vehicle resides within the
stable region, indicating that the current state of vehicle motion is steady, necessitating an
increase in the weight of the front wheel steering angle to ensure higher tracking precision.
When 0 ≤ K(S) < 1, the vehicle is situated in the expandable region, signifying a tendency
towards instability where solely controlling the front wheel steering angle may lead to
vehicle rollover instability. This necessitates the involvement of additional yaw torque,
and a redistribution of weights to ensure an improvement in vehicle body posture at
bends and enhance vehicle stability. When K(S) < 0, the vehicle is in the unstable region,
indicating that the vehicle has reached the conditions for instability. It is necessary to
increase the weight of the additional yaw torque and adopt anti-rollover control to prevent
vehicle rollover.

To prevent the weight distribution from being biased towards a single aspect and to
ensure greater stability in the intervention and withdrawal of the two control modes, a
sigmoid function [29] is employed to redistribute the two control strategies. Consequently,
the control weight for the front wheel steering angle can be represented as follows:

η1 =


0 K(S) < 0

1
1+e−11(K(S)−0.5) 0 ≤ K(S) < 1

1 K(S) ≥ 1

(37)
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The control weight for the additional yaw moment is denoted as η2 = 1 − η1.

4. Simulation and Results Analysis
4.1. Simulation Validation under Different Working Conditions

To validate the robustness of the proposed coordinated control strategy, with respect
to road excitation issues, a random road verification involving both Class C Road surfaces
and road bumps is set up to test the effectiveness of the fuzzy PID active suspension
controller. Regarding the vehicle instability problem caused by insufficient steering force,
and to closely reflect real mine road conditions, an unstructured road with varying road
curvatures and continuous curves is established. A simulation environment is constructed
within Trucksim and Simulink, where relevant parameters are modified and corresponding
working conditions are selected. In the simulation experiments, the vehicle’s driving speed
is set to 36 km/h, the road adhesion coefficient is set to 0.85, and the primary vehicle
parameters are as shown in Table 4.

Table 4. Key vehicle parameter values.

Parameter Name Numerical Value (Unit)

m Vehicle mass 8525 kg
lf Distance from the front axle to the center of gravity 1.3 m
lm Distance from the mid-axle to the center of gravity 4.5 m
lr Distance from the rear axle to the center of gravity 5.7 m
h Center of gravity height 1.02 m

Cij Tire stiffness −301,385 N/rad
IZ Rotational inertia 35,000 kg·m2

Simulation Scenario I Setup: An unmanned mining truck operates on a random road
surface compounded by Class C surfaces and speed bumps, with the speed bump travel
length set to 0.2 m and height set to 0.1 m. The front wheel steering angle is input as a
sinusoidal signal at 8 degrees. The simulation time is 10 s, and the front wheel steering
angle input curve is depicted in Figure 7a.

From Figure 7b,c, it can be observed that, one second into the vehicle’s journey, the
vehicle tires impact the road surface bump. The instantaneous road excitation produced
by the bump causes a lateral transfer of vertical loads on the wheels. In the absence of
suspension control, the vehicle’s rollover assessment indicator, RI, reaches approximately
0.56, with a body roll angle of 0.125 rad. This indicates a certain risk of vehicle rollover
under the impact of the bump. However, for vehicles with suspension controlled by
PID, the RI index is at 0.5, which represents a 10.7% reduction in the rollover assessment
indicator compared to the uncontrolled vehicle, suggesting the control effect on the body roll
angle is not pronounced, and thus, the performance of PID control is considered moderate.
Simultaneously, after optimization with fuzzy PID control, the vehicle’s rollover assessment
indicator is reduced to 0.38, and the body roll angle is 0.048 rad. This corresponds to a
decline of 32.1% in the rollover assessment indicator and a decrease of 61.6% in body roll
angle in relation to an uncontrolled vehicle. In addition, there is a significant reduction in
the roll angle acceleration, indicating that the control effect surpasses that of PID control.
During the 3rd to 7th second interval, where the vehicle is executing a steering maneuver,
the peak rollover assessment indicators for the three vehicles are respectively 0.6, 0.54,
and 0.23, while the peak body roll angles are 0.174 rad, 0.162 rad, and 0.145 rad. Under
control, the rollover assessment indicators decreased by 10% and 62.7%, respectively, and
the body roll angles were reduced by 6% and 16.7%, respectively. As depicted in Figure 7d,
vibrations persist throughout the 10 s duration, indicating that the Class C Road surface
poses a certain impact on vehicular driving safety. The optimization results of the controller
are shown in Table 5.
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Figure 7. Comparative simulation diagram of steering conditions on complex road surfaces.

Table 5. Comparison of optimization results for the suspension control.

Uncontrolled PID Control Fuzzy PID Control Maximum Degree of
Optimization (+)

Vehicle rollover condition Trip Non-trip Trip Non-trip Trip Non-trip Trip Non-trip
Rollover evaluation index 0.56 0.6 0.5 0.54 0.38 0.23 32.1% 62.7%

Roll angle(max)/rad 0.125 0.174 0.11 0.162 0.048 0.145 61.6% 16.7%
Roll angle velocity

(max)/rad·s−1 0.041 0.018 0.035 0.016 0.03 0.007 26.8% 61.1%

+ represents positive gain.

Simulation Scenario II Setup: To better verify the rationality and effectiveness of the
coordinated control strategy, a road that conforms to the complex environment of a mining
area is artificially planned, as shown in Figure 8a. The road curvature changes are roughly
between 0.01 and 0.02. Additionally, a road surface bump is placed at ten meters along
the road, with the road input still classified as a Class C surface. Comparative analysis is
conducted on the individual anti-roll control strategy, the path tracking control strategy,
and the coordinated control strategy.
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Figure 8b presents the graph of the rollover assessment index, from which it can
be observed that the vehicle experiences an impact from the bump at 10 m, leading to
instability. The rollover assessment index for the uncontrolled vehicle reaches 0.39, whereas
the actively controlled vehicle exhibits a rollover assessment index of 0.34, which is an
optimization of 12.8%. At 500 m, the uncontrolled vehicle presents a significant risk of
instability, but under active control, its rollover assessment index is noticeably reduced,
falling from −0.74 to −0.52, a 22% decrease. Figure 8c illustrates the allocation of weight
between path tracking control and anti-roll control throughout the driving process. When
the vehicle encounters a bump, the weight given to anti-roll control increases to improve
vehicle posture. Additionally, substantial changes in weight distribution occur at 125 m,
260 m, and 500 m due to the emphasis on anti-roll control in the corners, where the yaw
torque control intensity is increased to ensure smooth vehicle handling. The subsequent
changes in weight allocation take place on curves with small radii, where stability is
maintained while enhancing the tracking accuracy of the vehicle. From the data presented
in Figure 8d–f, it can be discerned that, compared to the individual path tracking control
and anti-roll control, the path tracking accuracy is optimal under the coordinated control,
and the vehicle is capable of driving safely and stably. Under single control strategies,
the maximum lateral displacement error reaches 0.59 m, while under the coordinated
control strategy, it is reduced to 0.32 m, an improvement of 45%. In terms of yaw rate,
all three control strategies exhibit significant changes at curves, with maximum values
of 12 deg/s, 9.8 deg/s, and 8.1 deg/s, respectively, achieving optimizations of 32.5% and
17.3%, effectively enhancing the operational stability of the vehicle during turns. As
inferred from Figure 8f, the maximum centroid lateral deviation angle under the path
tracking control is 3 degrees, whereas the maximum value under coordinated control is
reduced to 2.4 degrees, achieving an enhancement of 20%. Simultaneously, it is evident
that the vehicle’s path tracking performance deteriorates significantly when the yaw rate
and the centroid lateral deviation angle are at their peaks. Therefore, a rational allocation of
weights can ensure the maximization of safe and precise driving. The optimization results
of the controller are shown in Table 6.
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Table 6. Comparison of optimization results for the coordinated control.

Anti-Roll Control Path Tracking Control Coordinated Control Maximum Degree of
Optimization (+)

Tracking error(max)/m 0.59 0.35 0.32 45.7%
Yaw rate(max)/deg·s−1 9.8 12 8.1 32.5%

Centroid lateral deviation
angle(max)/deg 2.6 3 2.4 20.0%

+ represents positive gain.

4.2. HCU-HIL Experimental Validation

In this paper, a path tracking and anti-rollover coordinated controller is designed
based upon a three-axle mining truck utilized as the simulation vehicle. To further verify
the effectiveness of this controller, the consideration of conducting a Hardware-in-the-Loop
(HIL) simulation experiment is proposed. Figure 9 illustrates the overall scheme of the
Hardware-in-the-Loop experimental setup.

Figure 9. Overall scheme of the Hardware-in-the-Loop experimentation.

As shown in Figure 9, the full vehicle model is imported into the upper computer
simulation platform while concurrently undergoing a transcoding operation. Subsequently,
the simulation platform conveys the real-time vehicle state data to the D2P controller for
configuring the message information. After processing by the controller, the vehicular
driving parameters are output back to the simulation platform. Data exchange occurs
between the two entities, culminating in the realization of a comprehensive Hardware-
in-the-Loop control workflow. The specific operational steps are as follows: first, the full
vehicle simulation model file is imported into the NI VeriStand software; second, the control
algorithm model is inputted into the D2P controller via MotoHawk (Jiangsu University,
Zhenjiang 212013, China), and message information is configured; subsequently, a real-time
target machine and various types of board equipment are added, such as data acquisition
cards, memory cards, and CAN communication board cards; and finally, a HIL testing
environment is created for the adjustment and observation of the full vehicle model as
well as a series of setups, including input-output port mapping connections and parameter
calibration.

The correctness of the simulation results is verified by comparing them with the
outcomes from the Hardware-in-the-Loop (HIL) experiments. The vehicle travels on a
Class C Road surface superimposed with bumps at a speed of 36 km/h. The comparison
between the HIL experimental results and the simulation findings is illustrated in Figure 10.
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Figure 10. Comparison between simulation and HCU-HIL.

From the diagram, it can be observed that in the HIL experiments, the controller can
complete the trajectory tracking task under set road conditions, demonstrating good control
precision. The simulation experiment results maintain a high level of consistency with the
HIL experiment outcomes. However, there is a certain latency in controller performance
during the HIL experiment simulations. Additionally, due to the differences between the
simulated model of the tri-axial mining truck and the actual vehicle, as well as factors
such as the computational speed limitations of the controller and the latency in CAN
signal transmission, deviations exist between the simulation outcomes and HIL results.
Nonetheless, these deviations remain within an acceptable range.

5. Conclusions

Addressing the issue of poor tracking performance and vehicle rollover susceptibility
in unmanned mining trucks navigating the uneven, non-structured roadways with large
turning radii typical of mining areas, a predictive error model for path tracking of a three-
axle mining truck is established. Moreover, a trip-over-type rollover evaluation index is
obtained through calculation. For the path tracking problem, an LQR lateral controller is
designed, and for the anti-rollover issue, a sliding mode steering anti-rollover controller
and a fuzzy PID active suspension controller are developed. In addition, the extensible
theory is utilized to optimize the single control strategy, dynamically allocating the weights
of the control variables. Finally, through Trucksim and Simulink simulations, the following
research conclusions are obtained:

(1) The extensible theory-based coordinated controller, designed for unmanned mining
trucks on non-structured roads in mining areas, selects operation modes according to
different working conditions and dynamically allocates weights. This effectively enhances
the vehicle’s driving stability and tracking accuracy on non-structured roads, demonstrating
notable adaptability and robustness.

(2) Utilizing the Trucksim and Simulink simulation environments, the effectiveness of
the designed extensible theory-based coordinated controller was validated, and a compara-
tive analysis was conducted between the single control strategy and the coordinated control
strategy. Simulation results indicate that extensible theory-based coordinated control not
only ensures vehicular safety but also achieves higher tracking precision. It optimizes
parameters such as rollover assessment index, lateral displacement error, yaw rate, and
the angle of lateral deviation of the center of mass, showing improvements of 12.8%, 45%,
32.5%, and 20%, respectively. Therefore, the extensible theory-based coordinated controller
meets the complex and variable road conditions of mining areas and possesses considerable
adaptability and robustness.

(3) In this paper, for the study of trip-type rollover control, only the influence of road
bump excitation on the body is considered. However, under real mining road conditions,
there are still many disturbing factors, such as the road slope, road settlement, and shoulder
collision, which need to be considered for the study of the trip-type rollover mechanism. It
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is also necessary to examine the coupling relationship between the road and the vehicle
system to make the rollover evaluation index more reasonable. Moreover, the complex
road trajectories used in the paper are pre-set, and the relationship between trajectory
planning and tracking control should be considered in subsequent studies to carry out
dynamic response planning for the real road environment and realize the intelligent driving
of unmanned mining truck vehicles in mining areas.
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