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Abstract: The phenotypic evaluation of root traits in soybeans presents challenges in breeding due
to its high cost and the requirement for experimental plot destruction. Establishing relationships
between aerial and root traits is crucial, given the relative ease of phenotypic evaluations for aerial
traits. Therefore, this study aims to utilize the canonical correlation technique to estimate latent
variables, subsequently employing GBLUP for the genomic prediction of the root traits (length,
volume, surface area, and dry mass) using phenotypic information from aerial part traits (hypocotyl
diameter and dry mass). Our results demonstrate the effectiveness of the technique in predicting
the root part, even when not directly evaluated. The agreement observed between the top 10% of
individuals selected based on the canonical variable and each root trait individually was considered
moderate or substantial. This enables the simultaneous selection of genotypes based on both trait
groups, providing a valuable approach for soybean breeding programs.
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1. Introduction

Soybean (Glycine max (L.) Merril) is an herbaceous oleaginous plant with a C3
metabolism and great genetic variability [1,2]. The grain is highly versatile, finding ap-
plications in the production of various products and by-products across the agroindustry,
chemical, and food sectors [3]. Consequently, soybeans are being increasingly cultivated
worldwide [3,4].

Drought stress stands out as a significant limitation to soybean yield globally [5–7].
One strategy employed to mitigate issues related to drought stress involves identifying
materials with superior phenotypes in root development, facilitating better plant perfor-
mance through more efficient water absorption [8]. Specifically, deeper root systems with
higher densities enable more efficient soil water extraction. To define the phenotype of the
material regarding root superiority, it is essential to measure root traits such as root angle,
diameter, length, surface area, and depth [8].

Despite obtaining interesting results [9,10], phenotyping root traits is a time-consuming
and challenging technique, complicating the improvement process based on these
traits [11,12]. Given the delay in measuring root traits, understanding relationships be-
tween these and easily measurable traits, such as aerial traits, becomes crucial. These
relationships may allow the selection of better genotypes for root traits based on aerial traits
without significant losses in the selection of these genotypes. In practical terms, this possi-
bility would reduce the time and cost of evaluating the roots of genotypes in a breeding
program. A statistical method that can be used to study the relationships between groups
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of traits, for example, aerial and root, is canonical correlation. Canonical correlation (CC)
analysis is a multivariate technique that seeks to determine linear combinations, denoted
by canonical variables, that maximize the correlation between the two sets of characteristics
of interest [13].

Another approach that can be employed to accelerate the development of new cul-
tivars, can increase genetic gain, and is particularly useful when measuring phenotypes
proves difficult or expensive is genome-wide selection (GWS) [14]. GWS uses information
from molecular markers, based on the principles of linkage disequilibrium between genes
and markers, to predict the genetic merit of genotypes, making it possible later to select
genotypes based on their respective genotypic information [15].

Genomic best linear unbiased prediction (GBLUP) is the most applied genomic predic-
tion method in soybeans [16]. However, genomic prediction in soybeans is usually used for
individual traits, disregarding any relationship between traits or groups of traits [17,18].
Nevertheless, since the traits could be correlated, multi-trait approaches could improve
predictive ability by borrowing information between traits controlled by pleiotropy or
linkage genes [19–21]. But generally, these methods require defining a balance in breeding
objectives during selection by the breeders [22]. Thus, an approach that simultaneously
incorporates information from multiple traits through latent variables that maximize the
correlation between those groups of traits in the selection process may be of interest.

In this context, the present study aims: (1) to investigate the relationship between root
and aerial traits in soybean through canonical correlation analysis; (2) to use canonical latent
variables as pseudo-phenotypes in genomic prediction; (3) to compare selected individuals
using canonical latent variables and individual traits with univariate GBLUP.

2. Materials and Methods
2.1. Plant Material

The experiment was conducted in the year 2021 during the period from September to
November in the greenhouse of the Federal University of Viçosa, located in Viçosa-MG at
latitude S 20◦45′14′′, longitude W 45◦52′54′′, and an altitude of 649 m [23]. One hundred
commercial soybean cultivars from different seed companies, distinct transgenic events,
growth types, and relative maturity groups were sown. The experiment was conducted
according to the methodology proposed and described by Nascimento et al. [24] in a
randomized block design with three replications, each corresponding to a plot.

Due to destructive nature of root phenotypic evaluations, to avoid root intertwining,
each experimental plot comprised a plant that was grown in a three-liter pot containing a
substrate composed of soil and sand in a 2:1 ratio. The substrate was moistened to near
field capacity, considering a clayey loam soil with tension values of −10 kPa until the V2
stage [25,26]. After the V2 stage, the tension was maintained at −1200 kPa for a period of
20 days. The pots were regularly weighed, and the volume of evapotranspiration water
was replenished [24].

Cultural practices followed technical recommendations for soybean cultivation [27].
Phenotypic traits related to aerial and root traits were destructively evaluated for each plot.
Hypocotyl diameter in millimeters (HD) was measured with a digital pachymeter for aerial
traits. Plant height in centimeters (PH) was determined as the length of plants from the
ground to the peak of the main stem.

For root traits, the roots were washed to remove substrate materials and then stored in
a 70% alcohol solution at 4 ◦C. The WinRHIZOPro® software (version 2009) [28] was used to
measure total root length in centimeters (TRL), root volume (RV), and projected surface area
(PSA). After evaluation in WinRHIZOPro®, the roots were dried in an oven at 65 ◦C for 48 h
and then weighed using a precision balance to obtain the root dry mass (RDM) in grams.

2.2. Genotypic Data Analysis

Individuals were genotyped using the iScan Illumina platform (Illumina, Inc., San
Diego, CA, USA) with the “BARC-SoySNP6k” chip at Deoxi Biotecnologia Ltd.a®, in
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Araçatuba, SP. The 5403 SNP markers obtained were subjected to quality control through
filtering based on the minor allele frequency (MAF) criterion, removing markers with
MAF < 0.05. After filtering, 3957 SNP markers were retained for subsequent analyses.

2.3. Phenotypic Data Analysis

The collected data were initially adjusted for effects of the experimental blocks. Correc-
tion for experimental effects was performed using mixed linear models (REML/BLUP) [29].
The model considered a randomized block design with three replications and the evaluation
of 100 genotypes, expressed as:

y = µ+ Xb + Zg + ε, (1)

where the vector y represents the phenotypes, µ is the general mean, and the vectors
b and g correspond to the random effects of blocks and genotypes, respectively. Here,
b ∼ N

(
0, Iσ²

b
)

and g ∼ N
(

0, Iσ²
g

)
, where I represents an identity matrix, σ²

b and σ²
g

represents the variance components of blocks and genotypes, respectively, and ε represents
the vector of residual effects, with ε ∼ N

(
0, Iσ²

ε

)
, where σ²

ε is the residual variance
components. X and Z are the incidence matrices of random effects, associated with block
and genotype effects, respectively. Genetic random effects values were predicted and
utilized in subsequent analyses.

The adjusted phenotypic data was used as input (pseudo-phenotypes) in the canonical
correlation analysis. The two trait vectors of aerial (A—group I) and root (R—group II)
parts are defined as follows:

At = [uHDuPH], (2)

Rt = [vRDMvRVvPSAvTRL], (3)

where uHD, uPH, vRDM, vRV, vPSA, and vTRL represent the corrected traits of hypocotyl
diameter, plant height, root dry mass, root volume, projected surface area, and total root
length, respectively. At and Rt represent the concatenate vectors for uHD and uPH, vRDM,
vRV, vPSA, and vTRL, respectively.

Given At and Rt as vectors of observations for the traits constituting groups I and II,
respectively. A1 and R1 represents the first linear combination (first canonical pair) of the
traits in groups I and II, it follows that:

A1 = aHDuHD + aPHuPH, (4)

R1 = bRDMvRDM + bRVvRV + bPSAvPSA + bTRLvTRL, (5)

where at = [aHDaPH] and bt = [bRDMbRVbPSAbTRL] represent two-column row vectors of
group I trait weights and a four-column row vector of group II trait weights, respectively.

In this manner, the first canonical correlation was defined as the one that maximized
the relationship between A1 and R1. Thus, the functions A1 and R1 constitute the first
associated pair of the canonical correlation, according to the expression below:

r =
Ĉov(A1, R1)

V̂(A1)V̂(R1)
, (6)

Ĉov(A1, R1) = atS12b, (7)

V̂(A1) = atS11a, (8)

V̂(R2) = btS22b, (9)

where S11 is the 2 × 2 covariance matrix between the traits of group I, S22 is the 4×4
covariance matrix between the traits of group II, and S12 is the 2×4 covariance matrix
between the traits of groups I and II. Therefore, the first canonical correlation (r1) between
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the linear combinations of the traits of groups I and II is given by r1 = (λ1)
1/2, where

λ1 is the largest eigenvalue corresponding to the matrix R−1
11 R12R−1

22 R21, which is square
and has asymmetric order 2. The first canonical pair is given by A1 = atA and R1 = RtY,
where a is the associated eigenvector to the first eigenvalue of R−1

11 R12R−1
22 R−1

21 and b is the
eigenvector associated with the first eigenvalue of R−1

22 R21R−1
11 R12.

The other correlations and canonical pairs are estimated using the eigenvalues and
eigenvectors corresponding to the order-specific correlation estimate. The canonical cor-
relations were carried out between group I, formed by the aerial part traits (HD and PH),
and group II, composed by the root part traits (RDM, RV, PSA and TRL), according to
the method proposed by Hotelling [30,31], through the statistical package “mVar.pt” [32]
implemented in the R software (R Version 4.3.1) [33].

2.4. Genomic Prediction Model

The adjusted phenotypes and scores from the latent canonical variables related to aerial
traits (A1) were utilized as pseudo-phenotypes to predict the genetic merit of the individuals.
The GBLUP [34] was used to estimate the additive genetic values, as expressed below:

y = Xb + Zu + ε, (10)

where y is the vector of latent canonical variables or adjusted phenotypes, b is the vector
of fixed effects, u is the vector of genomic estimated breeding values of the genotypes,
with u ∼ N

(
0, Gσ²

u
)
, where σ²

u is the additive genetic variance and G is the genomic
relationship matrix given by G = WWt

∑n
i=1 2piqi

[35], where pi and qi are the allele frequencies
of the ith marker and W is the incidence matrix for SNPs; ε is the residual effects vector,
with ε ∼ N

(
0, Iσ²

ε

)
, where σ²

ε is the residual variance and I represents an identity matrix.
X and Z are the incidence matrices of fixed and random effects, respectively.

Genomic prediction analyzes were conducted using the “sommer” package [36] in the
R software [33].

2.5. Evaluation of the Methodology

In order to assess the predictive ability (PA) of all of the fitted models, the Pearson’s
correlation between the estimated genetic merit and the adjusted phenotypic values on
each trait individually and by latent canonical variable related to aerial traits (A1) were
calculated. A five-fold cross-validation (CV) random process was carried out. This process
was repeated randomly 50 times. The data set is divided into five populations. At the k-th
fold (k = 1, . . ., 5), the k-th population is used as a validation population. The remaining
populations were used as a training population. For each of the five folds, the PA was
estimated by Pearson’s correlation coefficient between the estimated genetic merit from
each evaluated model, the adjusted phenotypic values on each trait individually, and by
latent canonical variable related to aerial traits (A1). Additionally, based on genetic merit,
the top 10% individuals were selected for each approach used. In possession of these
individuals, the agreement between the selected individuals was calculated, based on each
trait individually and by the A1, using Cohen’s Kappa coefficient (K) [37]:

K =
Po − Pe

1 − Pe
, (11)

where Po is the proportion of cases correctly classified calculated as Po =
tp+tn

nT
, Pe is the

probability of agreement calculated as Pe =
tp+fn

nT
× tp+fp

nT
× fp+tn

nT
× fn+tn

nT
, where nT is

the total of individuals in the testing sets, tp denotes the true positives, tn denotes the
true negatives, fp denotes the false positives, and fn denotes the false negatives. The
cross-validation approach was repeated 50 times.
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3. Results
3.1. Canonical Correlation Analysis

The estimated values of the Pearson correlation coefficient between the evaluated
traits were significant according to a t-test considering 1 and 5% of significance and ranged
from 0.15 to 0.96 (Figure 1).
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Figure 1. Pearson’s correlation (Corr) between phenotypic traits. HD: Hypocotyl diameter; PH: Plant
height; RDM: Root dry mass; PSA: Projected surface area; TRL: Total root length; RV: Root volume.
* Statistically significant at 5% of significance. ** Statistically significant at 1% of significance. The
color scale nearest to blue corresponds to positive and red to negative correlations.

The estimated canonical correlation values were equal to 0.59 (p < 0.01) and 0.26
(p < 0.01) for, respectively, the first and second canonical pairs (Table 1). A one-unit increase
in HD lead to a 13.79 decrease in the first canonical variable (Table 1). The canonical
coefficients from the first canonical pair showed that, for the root dry mass (RDM), a
one-unit increase resulted in a 49.58 decrease in the first canonical variable when all of
other variables are held constant. In a similar way, a one-unit increase in root volume led to
a 77.64 increase in the second canonical variable, with the other predictors held constant
(Table 1).

Table 1. Canonical correlations (r) and estimated canonical pairs (A1, R1 as first pairs and A2, R2

as second pairs) between aerial (A—Group I) and root (R—Group II) traits in commercial soybean
cultivars.

Groups Traits
Canonical Pairs

1◦ 2◦

Aerial (A1 and A2)
HD −13.79 1.89

PH 0.39 −0.10

Root (R1 and R2)

RDM −49.58 12.20

RV −10.28 77.64

PSA 1.05 −8.04

TRL −0.03 0.29

r 0.59 * 0.26 *

p-value 4.80 × 10−10 1.07 × 10−2

* Statistically significant at 5% of significance by the Wilks test. HD: hypocotyl diameter; PH: plant height; RDM:
root dry mass; RV: root volume; PSA: projected surface area; TRL: total root length.
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3.2. Heritability and Prediction Accuracy

The estimates of heritability obtained with the GBLUP model, as the proportion of
genetic variance divided by the total phenotypic variance, for the six evaluated traits (HD,
PH, RDM, RV, PSA, and TRL) ranged from low (0.09) to high (0.66) (Table 2). The estimate
of heritability for the latent variable (A1) (0.32) was higher than for the univariate traits
analysis, except for RDM (0.66) and PH (0.37) (Table 2).

Table 2. Heritability (h2) obtained using the univariate GBLUP model for each trait and based on the
latent variable obtained from canonical variable analysis.

Groups Traits h2

Aerial
HD 0.14
PH 0.37

Root

RDM 0.66
RV 0.09

PSA 0.19
TRL 0.21

Latent Variable A1 0.32
HD: hypocotyl diameter; PH: plant height; RDM: root dry mass; RV: root volume; PSA: projected surface area;
TRL: total root length; A1: Latent Variable obtained for the aerial traits group.

The estimated predictive ability (PA) ranged from 0.47 to 0.73 (Table 3). For these traits,
the highest accuracy values were 0.73 and 0.61, observed for PH and HD, respectively
(Table 3). The PA obtained for A1 (0.57) was higher than those estimated for the traits
related to Root (RV, PSA and TRL), except for RDM (0.59). In relation to aerial traits, the PA
of A1 was lower in comparison with PH and close to the HD trait (0.61) (Table 3). The low
standard deviation associated with PA revealed the good precision of the estimates of PA.

Table 3. Predictive ability (PA), standard error of predictive ability SE(PA), mean Cohen’s Kappa
coefficient (K), and standard error of Kappa coefficient of Cohen SE(K) of genomic prediction using
univariate GBLUP in each trait and based on the latent variable obtained by canonical correlation.

Groups Traits PA SE(PA) K SE(K)

Aerial
HD 0.61 0.0219 0.29 0.0401
PH 0.73 0.0153 0.52 0.0291

Root

RDM 0.59 0.0208 0.44 0.0297
RV 0.55 0.0271 0.18 0.0431

PSA 0.47 0.0272 0.25 0.0415
TRL 0.51 0.0231 0.24 0.0397

Latent variable A1 0.57 0.0246 0.35 0.0305
HD: hypocotyl diameter; PH: plant height; RDM: root dry mass; RV: root volume; PSA: projected surface area;
TRL: total root length. A1: Latent Variable obtained for the aerial traits group.

The Cohen’s Kappa coefficient (K) represents the agreement between the top 10% of
individuals selected based on each trait individually, compared with the those selected
based on A1. The estimated Cohen’s Kappa coefficient ranged from 0.32 to 0.88 (Table 4).
Specifically, the Cohen’s Kappa values between A1 and the root traits were equal to 0.50
(A1 versus PSA), 0.49 (A1 versus TLR), 0.69 (A1 versus RDM), and 0.46 (A1 versus RV)
(Table 4). The associated low standard error of the mean leads to good precision of the
calculated values.
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Table 4. Estimates of the Cohen’s Kappa coefficients (lower triangular) for the evaluated traits and
the latent variable obtained for the aerial traits group (upper triangular) The value in parentheses is
the standard error of the mean considering 50 repetitions.

Trait PSA HD TLR PH RDM RV A1

PSA 1 - - - - - -

HD 0.54
(0.03) 1 - - - - -

TLR 0.88
(0.03)

0.54
(0.03) 1 - - - -

PH 0.40
(0.02)

0.51
(0.02)

0.52
(0.02) 1 - - -

RDM 0.63
(0.03)

0.60
(0.02)

0.60
(0.03)

0.41
(0.02) 1 - -

RV 0.79
(0.03)

0.51
(0.02)

0.72
(0.04)

0.46
(0.02)

0.56
(0.024) 1 -

A1
0.50

(0.02)
0.70

(0.03)
0.49

(0.02)
0.32

(0.02)
0.69

(0.01)
0.46

(0.02) 1

HD: hypocotyl diameter; PH: plant height; RDM: root dry mass; RV: root volume; PSA: projected surface area;
TRL: total root length. A1: Latent Variable obtained for the aerial traits group.

4. Discussion

This study introduces a novel approach that combines canonical correlation analysis
and genomic prediction. The idea is to use a latent variable given by a linear combination of
aerial traits to predict the genetic merit of genotypes for root traits, which requires destruc-
tive, laborious, and expensive evaluation. The joint phenotyping of aerial and root traits
was used to evaluate predictive ability of our proposal through a cross-validation approach.

Some studies employ selection indexes considering several methods to identify promis-
ing genotypes for interested traits in soybeans [38,39], including associating these with
genomic prediction approaches [40]. However, selection indexes do not allow us to explore
the correlations between traits to predict genotypic values for unobserved phenotypes.
To circumvent this bottleneck, multi-trait models could be used to improve predictive
ability accounting for covariance between traits [21]. Nevertheless, these models do not
eliminate the need to gather the trait information into an index for select genotypes [41].
The proposal in this study could be a manner to explore the advantages of both methods in
a simpler way.

The high correlations observed between the root traits were similar to those observed
by Dayoub et al. [42], except for TLR and PSA, which the study did not observe a significant
correlation. Overall, the Pearson correlation between aerial and root traits was low but
statistically significant (Figure 1). These results suggest the possibility of using an indirect
selection approach, despite the low magnitude of Pearson correlation showing that effective
results might not be achieved.

On the hand, the magnitudes of the canonical correlation coefficients were high (0.59)
and moderate (0.26) for the first and second pair of canonical variables, respectively. The
canonical variables are constructed with the aim to maximize the correlation between the
two sets of traits [43]. Thus, our first pair of canonical variables (latent variables) maximizes
the association between the aerial and root trait sets. In a practical context, it suggests that
the canonical variable referent to aerial traits (A1) may be used as a pseudo-phenotype to
perform an indirect selection to root traits.

The use of latent variables has been used with success in plant breeding. For example,
Paixão et al. [44] used factor analysis (FA) to elucidate the structure of relations of the
evaluated traits, form new variables, and use them, as pseudo-phenotypes, to predict the
genetic merit of canephora coffee individuals. On the other hand, principal component
analysis (PCA) can be employed to extract latent variables, effectively reducing dimen-
sionality while enabling the assessment of genetic diversity [45,46]. The crucial distinction
between these approaches lies in their interpretation (construction) of latent variables.
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While canonical correlation analysis seeks to maximize the shared information between
two sets of traits, both factor analysis (FA) and principal component analysis (PCA) focus
on explaining internal structure. FA aims to capture the underlying “factors” influencing
covariance (trait associations), while PCA prioritizes explaining the bulk of variability
(individual trait variances).

The estimated heritability of the latent variable (A1) was higher than those for RV, PSA
and TRL indicating that selection based on A1 may be a promising strategy. Specifically, the
lowest estimated heritability, that is, RV = 0.09, was similar to that observed by Getnet [47].
The estimated heritabilities for RDM (0.66), HD (0.14), PH (0.37), PSA (0.19), TRL (0.21),
and PSA (0.19) were similar to those presented in Xavier et al. [48], Yan et al. [49], and
Conte et al. [50].

Overall, the PA for A1 (0.57 ± 0.02) was equal or higher than those obtained for all
root traits (RDM = 0.59 ± 0.02; RV = 0.55 ± 0.03; PSA = 0.47 ± 0.03; TRL = 0.51 ± 0.02).
Regarding the aerial traits, the PA for A1 was similar to (HD = 0.61 ± 0.02) or lower
(0.73 ± 0.02) than those obtained by individual analysis. These results demonstrate that it
is possible to use the latent variable A1 to predict the genetic merit of soybean genotypes.
The PA for some soybean traits was reported by Bandillo et al. [51], corroborating with the
results obtained in our study.

To assess the agreement between A1 and individual root traits, we estimated Cohen’s
Kappa coefficients using the top 10% of GEBVs. According to Landis and Koch [52], A1
exhibited moderate agreement with PSA (0.50) and TRL (0.49) and substantial agreement
with RDM (0.69). While agreement with RV was slightly lower (0.46), these findings collec-
tively suggest A1’s potential as a promising pseudo-phenotype for root trait evaluation in
practical applications.

Overall, this study demonstrates the effectiveness of combining the latent variable A1
with genomic selection to predict individual genetic merit for root traits in soybean breeding.
This is particularly interesting because root trait evaluation is challenging and expensive,
often hindering selection for improved genotypes. As Crossa et al. [53] emphasize, genomic
prediction shines in such scenarios, enabling the efficient culling of inferior genotypes and
reducing phenotyping costs. Our findings pave the way for utilizing A1 as a powerful tool
to accelerate development of superior soybean varieties with enhanced root systems.

5. Conclusions

The approach provides a way to predict and select promising genotypes considering
multiple traits simultaneously, differing from the use of selection indexes by exploiting a
latent variable that maximizes correlation between groups of traits. Also, it differs from
multi-trait approaches by gathering all traits’ information into a single variable, making
the selection process simpler.

The combination of canonical correlation analysis with genomic selection was efficient
to predict individual genetic merit for root traits (length, volume, surface area, and dry
mass) in soybean breeding. The agreement observed between the top 10% individuals
selected based on the canonical variable and each root traits individually was considered
moderate or substantial.
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