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Abstract: Detailed knowledge of soil properties is fundamentally important for optimizing agri-
culture practices and management. Meanwhile, the spatial distribution of soil physicochemical
properties is considered a fundamental input of any sustainable agricultural planning. In the present
study, ordinary kriging, regression kriging and IDW were chosen for deciphering soil spatial variabil-
ity and mapping soil properties in a reclaimed area of the Behera Governorate of Egypt where soil
arose from two different types, one sandstone and the other limestone. Geostatistics were used to
show the interrelationships and conditions of soil properties (available phosphorus, potassium and
nitrogen, EC, pH, Sp, ESP, CEC, OC, SAR, and CaCO3). The results of mapping spatial soil variability
by Geostatistics could be used for precision agriculture applications. Based on the soil test results,
nutrient management recommendations should be applied regarding variable rates of fertilizers. The
performance of the maps was evaluated using Mean square error (MSE). Inverse distance weight
(IDW) showed higher efficiency than Kriging as a prediction method for mapping the studied soil
properties in the study area. The results of the present study suggest that the application of the
selected fit model worldwide in any relevant study of soil properties of different geological sources
is feasible.

Keywords: geostatistics; IDW; Kriging; Cokriging; soil properties

1. Introduction

Detailed knowledge of soil properties is of fundamental importance for optimizing
agriculture practices and management. Meanwhile, the spatial distribution of soil physic-
ochemical properties is considered a fundamental input of any sustainable agricultural
planning [1,2]. Therefore, it could help in saving effort, time, and cost for any cultiva-
tion development process. Furthermore, collecting accurate and continuous spatial data
is important for justified decision making. However, the availability of data is not only
difficult but also an expensive process. Thus, geostatistics play an important role in rep-
resenting soil analyses spatially and highlighting variations between different parts in a
study area. Many of the previous studies preferred some geostatistics methods (Kriging)
over others [1–4] and many of the corresponding studies preferred vice versa [5,6], which
necessitates studying the suitability of the method used under the actual conditions of the
study area.

The most regularly utilized interpolation techniques [3,4] based on geostatistical
methods are kriging and co-kriging [5–7], inverse distance weighting (IDW), and linear
regression model (LR) [8–10]. In addition, the attention has been recently paid to techniques
combining two or more different approaches [11,12]. Kriging; regression kriging [13,14]
and simple kriging [15] are the most commonly used techniques for a regression model. A
previous study [13] compared two kriging methods, ordinary and regression, and stated
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that regression kriging was more accurate for interpolating soil properties in contrast-
ing landscapes. According to [16,17] ordinary kriging and IDW were the geostatistical
techniques most frequently used to predict soil properties.

The linear mixed model formulation allows for a closer integration of soil knowledge
into geostatistical prediction, and the development of models which, by allowing the
use of covariance structures that are not necessarily stationary, are more pedologically
plausible [7]. Hence, soil properties are complex variables with many processes, not all of
which are well-understood. For this reason, it is unlikely that the covariance models used
in soil geostatistics can be as tightly linked to process understanding. Therefore, the further
development of a framework is needed in which soil-forming processes are linked to likely
statistical distributions through appropriate mathematical operators [8,9]. Inverse Distance
Weighting (IDW), Global Polynomial Interpolation (GPI), Local Polynomial Interpolation
(LPI), Radial Basis Functions (RBF), Kriging, Cokriging, and regression methods have been
found to produce similar results with ordinary kriging when were applied to different
combination of data sets to create soil moisture maps [10].

The investigated area consisted of two types of soil, one of which descends from
sandstone and the other from limestone, and these differences require various agricultural
management techniques, hence the importance of choosing the right geostatistical method
to display the soil properties. Accordingly, it is necessary to choose the correct method for
land service operations, agricultural methods, and the appropriate irrigation method.

To avoid intensive labor consumption during soil sampling, optimizing sample density
and location is crucial and therefore using suitable interpolation techniques is highly
recommended [18]. In this research, ordinary kriging and IDW were chosen to be applied
as they are considered as the most reliable interpolation methods [19–21]. Also, regression
kriging has also been proven to be very effective [13,22–27], therefore it was also chosen
to be applied in this study. The assessment of each method was performed depending
on goodness-of-prediction statistics (G) in terms of root-mean-square-error (RMSE) and
mean-absolute-percentage-error (MAPE).

2. Materials and Methods
2.1. Study Area

For this study, soil samples were collected from two sites (30◦32′10′ ′N, 30◦11′30′ ′E and
30◦31′50′ ′ N, 30◦12′10′ ′ E) in the newly reclaimed area of south part of Behera Governorate
as shown in Figure 1. The profiles were dug before the establishment of any crop in the
reclaimed area. The area topography is semi flat with total area of 1 km2.

 

Figure 1. Location of soil profiles and land elevation in the study area.

The climate for the year 2019 had a maximum average maximum daily temperature
of 37 ◦C and a minimum of 8 ◦C as shown in Figure 2, while the mean precipitation of
2019 was about 10mm. The is semi-arid continental with average annual temperature of
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20.4 ◦C and average annual rainfall 102 mm of the last 30 years. The data from Table 1
indicates that the soil temperature regime is thermic and soil moisture regime is torric. The
soil texture is mostly homogeneous consisting of sandy loam to loamy sand and in some
subsoils contains a chill layer. The deep subsurface layers of most soil profiles contain
gypsum crystals and a few lime deposits. Most of the layers are made up of sand-based
material with loose construction. Bulk density ranges from 1.1 to 1.2. The sub surface
layer of 60–120 cm of soil material is very cohesive shale with a high percentage of salts
and gypsum.
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Figure 2. The monthly temperatures and precipitation of the study area in 2019 (Collected from Wadi El Natrun station
from 1986 to 2016).

Table 1. Average climatological data of Wadi El Natrune (1986–2016).

Meteorological Norms January February March April May June July August September October November December

Temp. mean Max ◦C 19.7 24.5 26.7 26.1 30.9 32.8 33.7 34.3 32.9 29 23.1 20.7
Temp. mean Min ◦C 8.1 7.98 10.1 12.7 15.7 18.5 19.2 22.1 20.3 18 11 9.3

Temp. average ◦C 13.9 16.24 18.4 19.4 23.3 25.65 26.45 28.2 26.6 23.5 17.05 15
Relative humidity % 64.1 60.5 60.56 56 56.1 56.2 57.8 59.9 63.2 63 67.1 65.2

Evaporation (mm/day) 5.2 6.7 8.8 11.5 12.8 14 13.3 12.4 10.7 8.7 6.2 5.1
Rain fall (mm) 5.7 4.5 3.2 1.6 1.2 0.0 0.0 0.0 0.5 0.8 12 10.2

* The climatological data are collected from Wadi El Natrun station from (1986) to (2016).

2.2. Experiment Design

Thirty-six soil profiles and 72 surface soil samples 0–30 cm in size were used in this
study. The distances among neighboring points were designed in this experiment ranging
from 50 m to 150 m. The design of slope distances was distributed uniformly and met the
Geostatistical interpolation methods requirements. The soil samples depth was based on
the difference of layers along with the profile depth. The interpolations were performed
for the surface layers of all profiles, while the interpretation of soils was described based
on the weighted average of all the soil layers.

2.3. Interpolation Methods

The following equation was used for IDW and kriging interpolation methods as
detailed in [28]:

Z∗(X0) =
n

∑
i=1

wiZ(xi) (1)
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where the Z (xi) data value of locations which were used to generate the variable Z value at
x0 the unsampled location, Z (xi) value is assigned by the weight wi, and n is the number
of the used closest neighboring data points for estimation.

wi =
1/d2

i

∑n
i=1 1/d2

i

(2)

di is the distance between the estimated point and the observed point.

γ(h) =
1

2n

n

∑
i=1

[Z(xi)− Z(xi) + h)]2 (3)

xi and xi + h are sampling locations separated by a distance h, and Z(xi) and Z(xi + h)
are the observed values of variable Z at the corresponding locations.

The least squares method which was used to estimate the linear regression is the
following equation s detailed in [29–34]:

y = B0 + (x + a)n =
n

∑
i=1

BiXi (4)

The disturbed and undisturbed soil samples were collected to determine the different
soil properties. The undisturbed soil samples were collected by metal soil cores of 2.5 and
5.0 cm thickness to determine soil available moisture range and bulk density, respectively,
as well as using soil tubes to measure hydraulic conductivity. The disturbed soil samples
were air-dried, ground gently, and sieved through 2 mm sieve to obtain the fine earth.
Then, the physical and chemical properties were determined as follows.

2.4. Physical Soil Properties

The particle size distribution was determined using the pipette method, using sodium
hexametaphosphate as a dispersing agent [35]. Soil bulk density was determined using
metal cores for the undisturbed soil samples. Meanwhile, for the shale platy samples,
the paraffin wax method was applied [36]. The measuring cylinder was used for the
single grained sandy soils [37]. The hydraulic conductivity coefficient was determined
using undisturbed soil cores, using Darcy’s law [35]. Field capacity was measured as soil
moisture content % at either 0.10 atm for the relatively coarse texture soils or 0.33 for
the fine texture ones as well as welting point at 15 atm, using the Pressure Membrane
Apparatus Method [37]. The available water range was calculated as the difference in
moisture content % between field capacity and wilting [37].

2.5. Chemical Soil Properties

The determination of chemical soil properties was carried out using the techniques
described by [38] as follows. The pH was measured in the saturated soil-water paste using
Beckman pH meter. Calcium plus Magnesium were determined by the Versenate method
using ammonium purpurate as an indicator, and magnesium was then calculated by the
difference between Calcium plus Magnesium and Calcium. Sodium and potassium were
photometrically determined using Flame-photometer. Carbonates and bicarbonates were
determined by titration with 0.01 N sulfuric acid using phenolphthalein as an indicator for
carbonates and methyl orange for bicarbonates. Chloride was determined using Mohr’s
method. Sulphate was calculated by subtracting the total soluble anions from the total
soluble cations [36,39].

3. Results and Discussion

In the selected research area, soil properties were fairly homogeneous. Tables 2 and 3
and Figure 3 summarize the descriptive statistics of soil properties. The predicted continu-
ous spatial surface of selected properties was performed using the five powers of IDW and
Ordinary Kriging and Regression Kriging methods as shown in Figures 4–7.
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Table 2. Descriptive statistics for variables within the field grid to a depth of 30 and 150 cm.

Statistics
Surface Layer Subsurface Layer

pH EC dS/m SP% CaCO3 % pH EC dS/m SP% CaCO3 %

Min 7.1 0.2 17.5 2 7.7 0.4 18.2 0.5
Max 8.9 32.7 64 11.4 8.8 6 30.5 8.5

Mean 8.5 2.2 21.9 4.6 8.5 2.2 21.8 3
Median 8.6 0.8 20 4 8.5 1.9 21 3
C.V% 4 245.3 38.5 61.7 3.7 61.9 11.9 62.2

SD 0.3 5.5 8.4 2.9 0.3 1.4 2.6 1.9
Skewness −2.6 5.2 4.3 0.9 −1.1 1.1 1.3 1.7
Kurtosis 9 29 19.5 −0.5 0.6 1.2 2.2 2.9

Table 3. Descriptive statistics for variables within the field grid to a depth of 30 and 150 cm.

Statistics
Surface Layer (Meq/L) Subsurface Layer (Meq/L)

Ca++ Mg++ Na+ K+ HCO3− Cl− Ca++ Mg++ Na+ K+ HCO3− Cl−

Min 0.4 0.1 1.2 0.2 0.6 0.7 0.8 0.2 3.2 0.1 0.6 1.6
Max 25 52 265.4 1.2 3.9 254.2 26 8 38.6 0.7 6.5 31.2

Mean 2.3 2.1 17.7 0.4 1.5 13.6 4.8 1.8 14.6 0.4 1.4 10.2
Median 1.4 0.5 6.1 0.3 1.5 4.1 2.8 0.9 12.9 0.3 1.2 7.4
C.V% 186.3 413.3 250.5 51.1 36.2 307.9 115.2 110.1 55 50.6 69.8 72.1

SD 4.3 8.6 44.3 0.2 0.5 41.9 5.5 2 8.1 0.2 1 7.3
Skewness 4.7 5.9 5.3 1.9 2.4 5.7 2.4 1.8 1 0.7 4.3 1.4
Kurtosis 23.5 35 30 4.2 10 33.5 6.3 2.9 1.3 −0.6 22.7 1.5
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The surface elevation in the area varied from 5 to 72 masl (Figure 1). Topography in
the area was undulating with slope gradient range from 0 to 1% and 1 to 3%. The soil
slope length was less than 150m with good drainage conditions. Generally, the surface soil
structure was sandy with a loose structure and a small percentage of fine lime with a very
low ratio of fine roots and no stones in the surface. Meanwhile, the subsurface layers of the
soil profile consisted of sandy loam soil, with a disintegrated structure of brown iron oxide,
a low concentration of lime, and few patches of limonite. Soil pH ranged from 7.1 to 8.9 in
the surface layer while it ranged from 7.7 to 8.8 in the subsurface layers, which revealed
the neutrality conditions of the soil. The electrical conductivity of surface soils ranged
from 0.23 to 32.7 ds m−1, while in the subsurface layers it fluctuated from 0.41 to 6 ds m−1.
Lime was slightly occurring in the soils where it ranged from 2 to 11.4 in the surface layer,
and from 0.50 to 8.5 in the subsurface layers. CEC was mostly low ranging from 18 to 22
except for the profiles that were rich in clay where it reached 54. SAR ranged between 3.4
and 5.2% while ESP ranged between 2.7 and 4.9. The study area had low OC content, in
most cases less than 0.5. significant correlations between elevation-based variables and soil
physical properties were previously reported [40].
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The descriptive statistics of soil properties is summarized in Tables 2 and 3 and
Figure 3. The results suggest that all variables were normally distributed. For all the
observed variables, the coefficient of variation was very different in both depths. It was
observed that pH had the lowest coefficient of variation. This result could be attributed to
the uniform soil conditions in the area. This resulted from the subtle changes in slope and
its direction. This could be the main factor affecting pH. Slope positions showed significant
effects on most of the soil physico-chemical properties in [41].

Different geostatistical methods of co-kriging and the Inverse Distance Method (IDW)
(powers are 1, 2, 3, 4 and 5) were used to estimate different soil parameters. The used
interpolation methods were assessed and compared based on the calculations of coefficient
of determination, root mean squared error, and mean absolute error. The best performance
among the studied interpolation techniques was achieved by IDW power 2. These results
recommended that the use of this method is efficient in the specific study area, however the
best estimation was not always achieved through this method. Consequently, it is recom-
mended to take into account all the parameters involved, such as stratification, topography,
and climate, for the accurate prediction of soil properties in terrestrial ecosystems.

The spatial predictions of CaCO3 content, SP, pH, and EC in the study area are shown
in Figures 3–7. For all soil variables, the maximum standard errors of the predictions were
less than 7% of the maximum data values in logarithmic scale, indicating that the resulting
spatial predictions obtained by inverse distance weight overcome co-kriging techniques in
this case and both can be considered reliable.

The semivariograms were calculated to identify the spatial structure of soil properties
and the best among the fit models was identified for the description of these spatial
structures. For the surface soil parameters, the best one was the Gaussian model while the
exponential model was for SAR. For the subsurface parameters, Gaussian, exponential,
and spherical models were fitted to all. Based on the range of influence, the sill (Co + C),
and the nugget effect (Co) for each of the parameters, the degree of autocorrelation was
related to the spatial dependencies (Nugget/Sill ratio) between the sampling points. The
semivariogram of surface soil and subsurface soil presented in Figure 8.
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Referring to the previous studies [42–47] the classification of spatial dependent vari-
ables used, was referred as strongly spatially dependent if the ratio was <25, moderately if
between 25 and 75%, and weak if it was >75%.

For the surface and subsurface depths, a strong spatial dependence was found for
the nitrogen and OC while the rest soil parameters were found to be moderately spatially
dependent. A significant variation in the SOC contents between different types of karst
landforms, especially in the topsoil layers was also reported in [48]. Soil pH and clay
were found to be essential factors influencing the SOC spatial distributions in the two soil
profiles [49].

The lowest values of nugget effect were estimated for pH and K, indicating the low
random variance of variables in the study area. These results are in conjunction with the
findings of [42,50,51].

Figure 8 shows that some variables showed no spatial dependence structure, charac-
terized by the pure nugget effect model (PNE). When the variable under study is spatially
independent, the nugget effect is equal to the sill. In a similar study in vineyards, the
experimental semivariograms were best fitted to theoretical models without nugget effect
only on 2 occasions (Mg and Na) and by a nugget effect plus a structure in the remaining
datasets [52]. The PNE could occur due to measurement and sampling errors or undetected
micro-variations when taking into account sample spacing larger than that necessary to
detect spatial dependence. Variables with moderate spatial dependence may be due to
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soil homogeneity. In this sense, range values are important measures for planning and
experimental evaluations, as range can assist in sampling procedure definition. In this
respect, the range of the scaled semivariogram was used to estimate the minimum number
of samples to characterize soil spatial variability of soil chemical properties. The low land
environments are more heterogeneous in chemical properties, so they require a higher
number of samples to analyze variability with a sampling density of eight points ha-1 and
spacing of 50m. This aspect may be connected to intensive use of the soil surface layers,
which are more heterogeneous. In contrast, the upper land area had lower variability for
soil chemical properties. Consequently, the sampling density required is lower than in the
other environments with 150 m.

4. Conclusions

One of the first important aspects for ensuring soil sustainably in agriculture is im-
proving the knowledge about soil properties by selecting the fit production operation of soil
mapping. The soil properties were described using classical statistics after the normaliza-
tion of data, while their spatial variability was illustrated by using interpolation techniques
in a GIS environment. The results showed that the soil properties with high variability in
terms of coefficient of variation were available phosphorus and potassium (C.V ≥ 35%);
nitrogen, OC, CEC, ESP, and SAR were all moderately variable (C.V = 34–15%), while
pH, Sp, nitrogen, CEC, OC, had low variability (C.V ≤ 15%). These variations in the soil
chemical properties are mostly related to the parent material on which the soil is formed.
Soil properties (CaCO3 content, SP, pH, and EC), especially soil salinity can change abruptly
due to local management. In the present case study, the second order IDW was shown to
be adequate in predicting the spatial distribution of the selected soil characteristics. The
low land environments are more heterogeneous in chemical properties and so they require
a higher number of samples to analyze variability with a sampling density of eight points
ha−1 and spacing of 50m. This aspect may be connected to the intensive use of the soil
surface layers, which are more heterogeneous. In contrast, the upper land area had lower
variability for soil chemical properties; Consequently, the sampling density required is
lower than in the other environments with 150 m. A prediction accuracy of 94%, 89%, and
96% for pH, SOM and clay content, respectively, through the deployment of remote sensing
data was reported [53], in conjunction with the present study, imply that efficient methods
are available for precise soil mapping in the service of farmers, stakeholders, and scientists.

Author Contributions: Conceptualization, M.A.E.A. and Y.M.Z.; methodology, M.A.E.A.; software,
M.A.E.A.; validation, M.A.E.A., Y.M.Z. and M.M.M.; formal analysis, Y.M.Z.; investigation, M.A.E.A.;
resources, Y.M.Z.; data curation, M.A.E.A.; writing—original draft preparation, M.A.E.A.; writing—
review and editing, G.K.; visualization, G.K.; supervision, G.K.; project administration, Y.M.Z.;
funding acquisition, Y.M.Z. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data used in this study is included in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aboelsoud, H.M.; Abdelrahman, M.A.E. Rapid Field Technique for Soil Salinity Appraisal in North Nile Delta Using EM 38

through Some Empirical Relations. Int. J. Plant Soil Sci. 2017, 14, 1–9. [CrossRef]
2. AbdelRahman, M.A.E.; Shalaby, A.; Aboelsoud, M.H.; Moghanm, F.S. GIS spatial model based for determining actual land

degradation status in Kafr El-Sheikh Governorate, North Nile Delta. Model. Earth Syst. Environ. 2018, 4, 359–372. [CrossRef]
3. Goovaerts, P. Geostatistics in soil science: State-of-the-art and perspectives. Geoderma 1999, 89, 1–45. [CrossRef]
4. Zhang, S.-W.; Shen, C.-Y.; Chen, X.-Y.; Ye, H.-C.; Huang, Y.-F.; Lai, S. Spatial Interpolation of Soil Texture Using Compositional

Kriging andRegression Kriging with Consideration of the Characteristics of CompositionalData and Environment Variables. J.
Integr. Agric. 2013, 12, 1673–1683. [CrossRef]

5. Lark, R.M. Towards soil geostatistics. Spat. Stat. 2012, 1, 92–99. [CrossRef]

http://dx.doi.org/10.9734/IJPSS/2017/30858
http://dx.doi.org/10.1007/s40808-017-0403-z
http://dx.doi.org/10.1016/S0016-7061(98)00078-0
http://dx.doi.org/10.1016/S2095-3119(13)60395-0
http://dx.doi.org/10.1016/j.spasta.2012.02.001


Sustainability 2021, 13, 194 12 of 13

6. Zhang, Z.; Yu, D.; Shi, X.; Weindorf, D.C.; Sun, Y.; Wang, H.; Zhao, Y. Effects of prediction methods for detecting the temporal
evolution of soil organic carbon in the Hilly Red Soil Region, China. Environ. Earth Sci. 2011, 64, 319–328. [CrossRef]

7. Robinson, T.P.; Metternicht, G. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput.
Electron. Agric. 2006, 50, 97–108. [CrossRef]

8. Sayed, R.M.; Feraidon, S.; Somayeh, D.; Mahmood, R.S.; Abass, T. Evaluating inverse distance weighting and kriging methods in
estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian J. Soil Sci. 2017, 6, 327–336.

9. Dripps, W.R.; Bradbury, K.R. A simple daily soil–water balance model for estimating the spatial and temporal distribution of
groundwater recharge in temperate humid areas. Hydrogeol. J. 2007, 15, 433–444. [CrossRef]

10. Kravchenko, A.; Bullock, D.G. A comparative study of interpolation methods for mapping soil properties. Agron. J. 1999, 91,
393–400. [CrossRef]

11. Govaerts, A.; Vervoort, A. Geostatistical interpolation of soil properties in boom clay in Flanders. In GeoENV VII–Geostatistics for
Environmental Applications; Springer: Berlin, Germany, 2010; pp. 219–230.

12. Baskan, O.; Erpul, G.; Dengiz, O. Comparing the efficiency of ordinary kriging and cokriging to estimate the Atterberg limits
spatially using some soil physical properties. Clay Miner. 2009, 44, 181–193. [CrossRef]

13. Fritsch, C.; Cœurdassier, M.; Giraudoux, P.; Raoul, F.; Douay, F.; Rieffel, D.; De Vaufleury, A.; Scheifler, R. Spatially explicit
analysis of metal transfer to biota: Influence of soil contamination and landscape. PLoS ONE 2011, 6, e20682. [CrossRef] [PubMed]

14. Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Spatiotemporal prediction of soil moisture content using multiple-linear regression in a small
catchment of the Loess Plateau, China. Catena 2003, 54, 173–195. [CrossRef]

15. Lesch, S.M.; Corwin, D.L. Prediction of spatial soil property information from ancillary sensor data using ordinary linear
regression: Model derivations, residual assumptions and model validation tests. Geoderma 2008, 148, 130–140. [CrossRef]

16. Tabari, H.; Sabziparvar, A.-A.; Ahmadi, M. Comparison of artificial neural network and multivariate linear regression methods
for estimation of daily soil temperature in an arid region. Meteorol. Atmos. Phys. 2011, 110, 135–142. [CrossRef]

17. Lin, G.-F.; Chen, L.-H. A spatial interpolation method based on radial basis function networks incorporating a semivariogram
model. J. Hydrol. 2004, 288, 288–298. [CrossRef]

18. Minasny, B.; McBratney, A.B. Spatial prediction of soil properties using EBLUP with the Matérn covariance function. Geoderma
2007, 140, 324–336. [CrossRef]

19. Zhu, Q.; Lin, H.S. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere
2010, 20, 594–606. [CrossRef]

20. Sun, W.; Whelan, B.M.; Minasny, B.; McBratney, A.B. Evaluation of a local regression kriging approach for mapping apparent
electrical conductivity of soil (ECa) at high resolution. J. Plant Nutr. Soil Sci. 2012, 175, 212–220. [CrossRef]

21. Hengl, T.; Heuvelink, G.B.M.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33,
1301–1315. [CrossRef]

22. Sigua, G.C.; Hudnall, W.H. Kriging analysis of soil properties. J. Soils Sediments 2008, 8, 193. [CrossRef]
23. Pandey, V.; Pandey, P.K. Spatial and temporal variability of soil moisture. Int. J. Geosci. 2010, 1, 87. [CrossRef]
24. Gouri, S.B.; Pravat, K.S.; Ramkrishna, M. Comparison of GIS-based interpolation methods for spatial distribution of soil organic

carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126.
25. Lark, R.M.; Minasny, B. Classical Soil Geostatistics. In Pedometrics. Progress in Soil Science; McBratney, A., Minasny, B., Stockmann,

U., Eds.; Springer: Cham, Switzeland, 2018.
26. Glécio, M.S.; Jorge, D.D.; Montserrat, V.A.; Ênio, F.F.S. Using Multivariate Geostatistics to Assess Patterns of Spatial Dependence

of Apparent Soil Electrical Conductivity and Selected Soil Properties. Sci. World J. 2014, 2014, 712403.
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