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Abstract: The surge in demand for eco-friendly transportation and electric vehicle (EV) charging
infrastructure necessitates innovative solutions. This study proposed a novel approach to charging
slow-moving vehicles, prioritizing efficiency and minimizing output pulsation. Central to the
research is the development of a receiver-side power-regulated constant charging system, focusing on
power regulation and maintaining consistent charging parameters. This system integrates a receiver-
side pulse density-modulated active bridge rectifier, dynamically adjusting driving pulse density
to regulate delivered power. Additionally, a receiver-side reconfigurable compensation network
ensures constant current and voltage delivery to the charging device, eliminating the need for an
additional D.C.-D.C. converter. A 3.3 kW charging structure employing a multi-leg inverter topology
and energizing four ground-side transmitter pads exemplifies the proposed approach. The vertical
air gap of charging pads is 150 mm, and the system achieves a maximal efficiency of 93.4%. This
innovative strategy holds significant promise for advancing sustainable transportation infrastructure
and meeting the evolving demands of the EV market.

Keywords: wireless charging; active bridge rectifier; dynamic wireless charging; pulse density
modulation; multi-legged inverter

1. Introduction

The market of electric vehicles (EVs) has experienced a remarkable surge in recent
years [1]. EVs play a pivotal role in mitigating climate change, reducing air pollution, and
promoting energy independence. As technical improvements continue and related costs
fall, EVs are expected to become the primary mode of transportation in the decades to
come. Their potential to contribute to environmental sustainability and energy security
makes them a judicious investment for both private and commercial use [2,3]. As such,
businesses and policymakers must accord paramount importance to the adoption of EVs to
achieve long-term sustainability goals and reduce the emission of pollutant gases. Figure 1a
shows the expansion of the EV sector in various countries. EV usage is encouraged by the
effectiveness of a widely dispersed network of charging facilities in alleviating concerns
regarding power depletion during extended drives. Easy access to charging points makes
owning an EV a seamless experience, further driving adoption [4,5]. It is imperative to
prioritize the requisite infrastructure to support EVs and ensure that charging stations are
conveniently located and easily accessible [6,7].

Significant EV charging methods include swapping batteries, and inductive, and con-
ductive charging [8,9]. Level 1 (1-ϕ A.C., 120 V input), Level 2 (1-ϕ A.C., 240 V input), and
D.C. Fast charging (3-ϕ A.C. input) is a different type of wired charging that is classified
based on battery charging rate [10,11]. Wired charging faces challenges with charging
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infrastructure compatibility and reliability due to differing standards, human dependence
on the charging process, and the wear and tear of bulk cables, necessitating costly mainte-
nance. By replacing a depleted battery with a completely charged one in an instant, battery
swapping [12,13] helps users minimize downtime. Standardization, logistics, infrastructure
investment, compatibility, technology obsolescence, weight and space restrictions, and
restricted applicability to specific types of EVs are some of the problems associated with its
adoption. It also minimizes concerns about battery deterioration and tackles infrastructure-
related charging difficulties. Standardization is challenging, though, because different EV
manufacturers utilize varying battery types, sizes, and mounting techniques. It can also be
difficult to maintain a fleet of batteries, monitor their status, and make sure that swapping
stations have enough supply of fully charged batteries [14].
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The removal of physical connectors improves the efficiency of wireless charging by
minimizing the risk of electrical shock and deterioration for both the infrastructure for
charging facilities and the EVs [15,16]. Automatic charging begins the moment a compatible
EV parks over the wireless charging pad, rendering it convenient to use and efficient. The
several existing technologies for wireless charging include radio frequency, capacitive,
inductive, and resonant inductive. Resonant inductive wireless charging utilizes resonant
induction to transfer electrical energy between ground assembly and vehicle assembly
wirelessly. It allows for charging over longer distances than typical inductive charging.
The system comprises a ground assembly with a transmitter pad and a vehicle assembly
with a receiver pad [17,18]. These pads resonate at the resonance frequency, producing an
electromagnetic field in the pads and causing an A.C. to be induced in the pad. In addition,
the wireless charging techniques may be categorized as stationary or dynamic depending
on the velocity of the vehicle [19]. Stationary wireless charging is suitable for vehicles
that have been parked for an extended length of time, is simple to integrate into existing
infrastructure, and is appropriate for personal and fleet vehicles with predictable usage
patterns. Dynamic wireless charging (DWC) provides continuous charging, extends EV
driving range, and is beneficial for high-usage scenarios such as electric buses and taxis [20].
Moreover, it can diminish the capacity of the EV’s internal battery, resulting in a reduction
in both the weight and price of the vehicle. Figure 1b depicts the battery demand of the
various countries over the period. The concept of the DWC system is the integration of
charging tracks into the road surface at predetermined intervals. These charging elements
utilize resonant inductive coupling to ensure power transfer efficiency [21].

A continuous charging process occurs when the EV is in momentum on the electri-
cally powered track, which extends its range and reduces its dependence on cumbersome
onboard batteries [22]. Communication protocols and control systems oversee the charging
process, encompassing the monitoring of the battery status, power regulation, and guaran-
teeing safety [23]. Figure 2 represents the DWC system’s basic representation. Vehicle-side
and ground-side are the two assemblies in DWC infrastructure.
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Figure 2. Representation of quasi-dynamic wireless charging system.

The DWC system consists of two primary components: the ground side, which in-
cludes a transmitter pad, compensation network, high-power high-frequency inverter, and
sensors; and the vehicle side, which includes a receiver pad, resonant network, high-power
high-frequency converter, sensors, and storage system. A proficient controller oversees
the charging procedure and ensures optimal power transfer [24]. Charging couplers play
a crucial role in the DWC system. Several types of couplers are often used [25]. These
structures may be classified based on the direction of flux they produce [26]. Non-polarized
pad structures are typically circular, rectangular, hexagonal, or square in shape and are
capable of generating either horizontal or vertical flux. In contrast, polarized pads such as
DD (Double-D shape), DDQ (DD with Quadrature), BP (Bipolar), TP (Tripolar), and QP
(Quadrapule) can produce magnetic flux in both horizontal and vertical orientations [27].
The utilization of multiple polarized coils within a single charging pad enhances power
transfer efficiency while charging (Figure 3).
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The DD is the optimal transmitter pad, whereas DDQ and BP pads are effective
receiver pads in dynamic charging [28]. Due to its single-sided flux channels, susceptibility
to aluminum shielding, mean flux path height proportional to half the pad length, and
negligible leakage flux from the bottom of the pad, the DD architecture is well-suited for
wide-air-gap inductive couplers [29]. These characteristics motivate a preference for a DD
pad for a DWC system. Charging pads consist of a high-frequency Litz coil, a ferrite core,
and an aluminum shield.
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The compensation networks in a wireless charging system enhance performance and
optimize the power transfer efficiency [30]. Mono-compensation and multi-compensation
are the types of compensation networks based on the resonance characteristics [31]. With a
single capacitor, C, the mono compensation circuits consist of series (S) or parallel (P) units
connected to C such as S–S, S–P, P–S, and P–P. Based on the quantity and configuration
of the capacitor (c) and the inductor (L), the multi-compensation networks are LCC–LCC,
LCC–SP, LCL–LCL, S–SP, and LC–LC. A mono-resonant compensation network can be
used to operate at a single resonant frequency [32]. The resonance in wireless charging
is established by matching the resonant frequency of the transmitter or charging pad
with that of the receiver, i.e., the EV being charged [33]. Mono-resonant systems are
often preferred for their simplicity in design and ease of implementation. The usage of
a fixed resonant frequency facilitates the accurate prediction and control of the system’s
behavior. However, mono-resonant systems can be susceptible to changes in alignment
or environmental conditions, which can result in efficiency losses if the resonance is not
maintained [34]. The development of multi-resonant compensation circuits aims to enhance
efficiency and adaptability to fluctuating operating conditions. The ability of these circuits
to function at various resonant frequencies enhances power transfer efficiency, even in
dynamic conditions. Although multi-resonant systems are typically more intricate, they
exhibit greater resilience when confronted with alignment variations or environmental
circumstances [35].

Modified compensation network topologies were suggested by researchers to attain
constant current and voltage (CC and CV) [36,37]. These hybrid topologies ensure the
CCCV charging modes with changes in the state of the battery parameters. Constant
charging methodologies increase the life span of the batteries [38,39]. The cascaded struc-
ture of the LC-network, T-network and π-network ensures constant voltage and current
delivery from any type of source [40]. An Additional auxiliary switch (A.SW.) connects
and disconnects the resonant elements to modify the network topology and to deliver the
load-independent CCCV output. The researchers in [41] proposed the transmitter-side
model predictive control method to deliver the CCCV in the DWC system. In the DWC
system, LCC–LCC compensation with the phase angle control of the receiver-side active
rectifier enhances CC charging [42]. The LCC–LCC network ensures the CC mode, whereas
LCC–S ensures the CV mode [43]. The ASW controls mode shifting with respect to the
battery parameters [37]. The optimal tuning of the compensation network ensures the
soft-switching of the high-frequency high-power (HF-HP) inverter.

The ground-side charging couplers, also known as transmitter pads, are powered by
HF-HP inverters. The receiver side rectifier converts the received HF alternating current
into constant direct current. The inverter can utilize a variety of switch configurations, such
as 4N switches [44], 4 switches [45], or 2N + 2 switches [46], to energize the N transmitter
pads. In the high-power transmission, a single pad is excited by a modular inverter [47].
The common-type H-bridge inverter necessitates simple control circuitry only to energize
the N-transmitter pads. However, its effectiveness in DWC systems is limited due to its
restricted power range (depending on power semiconductor switches) and the potential
for losses resulting from circulating current in uncoupled transmitter pads [48]. The
researchers proposed a modular inverter (N–H bridge inverter) to excite the N-transmitter
pads. Though it has extended power ranges, it is limited due to the requirement of more
switches and greater control complexity [49]. The multi-legged inverter [50] is proposed to
overcome these limitations, and the inverter excites the multi-transmitter pads. The four
transmitter pads were powered by the five-legged inverter used in [51,52]. The receiver-
side converter converts HF A.C. into constant D.C. to charge the batteries. Researchers
proposed receiver-side control techniques to regulate the power and to perform CCCV
charging. The different converters such as active bridge [53], semi-active bridge [54], and
D.C.-D.C. converter [55] ensure the achievement of control requirements, thereby making
the charging process efficient.
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Motivation and Contribution

The DWC’s main issues are fluctuations in load, coupling, and output power fluctua-
tion. Through the use of the CCCV charging topology, the system gains load independence.
This cutting-edge technology permits real-time adjustments to the charging parameters,
adapting the CCCV seamlessly to the vehicles’ particular specifications. CCCV charging
maximizes energy transfer efficiency by adapting to the battery’s condition to facilitate
DWC scenarios, irrespective of variations in the vehicles’ speed or power demand. By
optimizing the charging process to prolong the lifespan of batteries and ensuring secure
charging conditions, CCCV charging is renowned for its enhanced battery-friendly charg-
ing strategy. It substantially reduces the risk of overcharging or overheating by optimizing
the current and voltage throughout the various phases of charging, thereby minimizing
cell stress.

Many researchers have proposed a receiver-side control for the minimization of power
fluctuations and maintenance of a constant charging profile. The D.C.-D.C. converter is pro-
posed for effective receiver-side power flow control. An additional converter increases the
complexity and power conversion stage. The direct current regulator can be eliminated by
a receiver-side active bridge rectifier (RS-ABR). The features of an ABR are the elimination
of electromagnetic interference, a reduction in voltage losses, the minimization of power
factor enhancement, and superior control over the rectification process under changing
operating conditions. The merits of the proposed system are mentioned below.

1. Eliminates the need for an additional D.C. regulator on the receiver side to regulate
the output power, which reduces the system volume.

2. RS-ABR with a pulse density modulation (PDM) technique regulates the output power
and reduces the output ripples compared to a conventional uncontrolled rectifier.

3. A receiver-side hybrid compensation network performs the load-independent CCCV
charging process, which increases the reliability of the system.

4. A receiver-side control eliminates the need for battery parameter communication
between ground and vehicle assembly to regulate the power flow and shifts the
operating mode between CC and CV.

5. A vehicle-side ABR may also be utilized for bi-directional charging with proper control
methodology.

This paper suggests using a CCCV charging technique to increase the DWC system’s ef-
ficiency. To implement the CCCV process, the receiver-side control consists of an ABR with
PDM control to manage the power flow to the charging device and a hybrid compensation
network. In Sections 2–4, the theoretical analysis, simulation analysis, and experimental
analysis of the suggested effective enhanced DWC system are detailed, respectively. Sus-
tainable transportation centered around electric vehicles (EVs) faces several sustainability
challenges, including the need for bulky batteries, the inadequate development of charging
infrastructure, and the reliance on drivers for the charging process. A proposed solution
involves implementing a receiver-side-controlled quasi-dynamic wireless charging system.
This system ensures a consistent power supply to the battery, thereby increasing its lifespan
and reducing the need for frequent replacements, contributing to sustainability efforts.
Additionally, integrating a receiver-side PDM-based active bridge rectifier helps regulate
output power, eliminating the need for an additional DC regulator, thereby reducing sys-
tem volume and resource consumption. Overall, this quasi-dynamic wireless charging
system addresses sustainability concerns by reducing battery size, extending EV driving
range, and enhancing adaptability through its drive-and-charge approach and optimized
ferrite core structure. These improvements result in reduced power requirements, lower
carbon emissions, and a more sustainable transportation ecosystem. Furthermore, on-road
charging infrastructure eliminates the need for extensive land use for station deployment,
conserving natural resources, reducing environmental impact, and simultaneously reduc-
ing waiting times for EV charging, thereby encouraging the wider adoption of sustainable
transportation practices.
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2. Proposed System Components: A Theoretical Analysis

The proposed charging system enhances the receiver-side power control and imple-
ments CCCV charging to deliver constant voltage and current to the charging system.
An advantageous feature of the DWC system is that the five-legged SiC inverter excites
the four DD-shaped charging transmitters and the LCC resonant circuit by circulating a
constant current. The FPGA controller generates driving pulses to control the five-legged
inverter concerning the receiver pad position. An ABR controls the power delivered to the
storage device, a hybrid resonant network (LCC in CC and SP in CV mode), and an iden-
tical DD-shaped receiving pad make up the receiver-side components. Pulses generated
by PDM regulate the ABR’s low-frequency pulse width, which in response controls the
output power. The A.SW. connects and disconnects the receiver-side series compensation
inductor to shift the mode from CC to CV, respectively. The charging system delivers CC in
LCC–LCC configuration and CV in LCC–SP configuration.

2.1. Charging Couplers

The proposed charging system utilizes symmetrical DD-shaped charging couplers to
transfer the power. The charging coupler has better horizontal misalignment tolerance and
generates vertical flux in half of the pad dimension [56]. The dimensions of the charging
coupler, the vertical distance between charging pads, and the adjacent spacing between
the transmitter pads are illustrated in Figure 4. The 700 mm × 350 mm sized DD pad is
developed with 38 AWG Litz wire. The optimal gap is allowed between the transmitter
pads (575 mm) to reduce the cross-coupling effect. The 360 mm length ferrite structure
enhances the flux distribution and increases the inductance of the charging pad. The
2 mm aluminum shielding reduces the electromagnetic emissions around the transmitter
pads. It is hard to determine the inductance parameters of the DD pad with mathematical
expressions. The Ansys FEA tool assists in achieving the inductance parameters concerning
the power transferring level and vertical gap.
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2.2. Five-Legged Inverter

The charging system utilizes a five-legged inverter to excite the four DD-shaped
transmitter pads. The researchers suggested a multi-legged inverter [57,58] to overcome the
demerits of the common H-bridge. The multi-legged inverter excites the multi-transmitter
pads concerning the receiver position which is favorable in the DWC system. The constant
D.C. voltage, VD.C. is fed to the HFHPI, and the inverter is driven by the FPGA controller.

Vi =
4Vd.c.

π
√

2
cos θ (1)

Ii =
4Id.c.

π
√

2
cos θ (2)

The minimum dead time is allowed by the phase angle, θ, to enhance soft switching.
The power transfer characteristics are affected by the θ with a permissible value parallel
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to its minimum angle. Leg 1 and 2 energize the transmitter pad 1, whereas Leg 2 and 3
energize the transmitter pad 2. The fundamental rms output voltage of an inverter, Vi, and
current, Ii, from the Fourier series are given by (1) and (2). By adjusting θ, Vi and Ii can be
varied from (4VD.C./

√
(2π)) to 0 and (4ID.C./

√
(2π)) to 0 at constant resonant frequency, fr,

and constant input D.C. [59,60]. The VD.C. and ID.C. represent inverter D.C. input voltage
and current. As per SAE J2954, the controller drives the five-legged inverter with 85 kHz
driving pulses (Figure 5).
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2.3. Compensation Network

The compensation network enhances the power transfer efficiency and compensates
the VAr. The transmitter side utilizes an LCC network that circulates the constant current
through the transmitter pad, which is preferable in a DWC system. The receiver side utilizes
hybrid compensation that includes LCC and SP to perform CCCV charging. The LCC–LCC
network ensures CC mode and the LCC–SP network ensures CV mode to perform the
charging operations.

2.3.1. Load-Independent CC Mode Analysis with D–LCC Network

The individual or combinational cascaded structure of LC-network, π-network, and
T-network ensures the constant charging of the charging system. Figure 6 represents the
double-sided LCC resonant networks’ A.C. equivalent. The network is arranged in a
cascaded structure, and the network parameters are designed with respect to the cascaded
structure arrangements to deliver the constant current. The figure addresses the type of
network and its conversion of sources. The second-order LC network converts the constant
voltage source into a current source and the cascaded series LC network, π network, and
series inductor ensure the constant current delivery to the charging device independent of
load variations. The transmitter-side resonant network elements are a series compensation
capacitor and inductor (CsT and LcR) and a parallel capacitor (CpT), and the receiver-side
resonant network elements are a series compensation capacitor and inductor (CsR and LcR)
and a parallel capacitor (CpT). The transmitter and receiver pad inductances are LT and
LR. The mutual inductance between the transmitter and receiver pad, LM, depends on the
coupling coefficient, k. The A.C. equivalent voltage, Vb, and the current, Ib, depend on the
A.C. equivalent resistance, RA.C. When the receiver-side elements are transferred to the
transmitter side, the transformation ratio factor, n (=LR/LT), must be considered. Equations
(3)–(5) provide the relationship to achieve load-independent constant charging.

jωccLcT +
1

jωccCpT
= 0 (3)

jωccLT +
1

jωccCsT
= 0 (4)
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jωcc

(
LR

n2

)
+

1
jωcc(CsRn2)

+
1

jωcc
(
CpRn2

) = 0 (5)

Ibcc = −jn2Viω
3
ccLMCpTCpR (6)

GTcc =

∣∣∣∣ Ibcc
Vi

∣∣∣∣ = n2ω3
ccLMCpTCpR (7)(

CpT + CsT

ωccCpTCsT

)
−ωccLT +ω3

ccn2CpRL2
M

(
1−
(
ω2

ccLcRCpR

))
= 0 (8)
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The CC delivered to an RA.C. in a CC mode, Ibcc, can be determined using (6), and
the transconductance of an equivalent network, GTCC, can achieved using (7). At constant
fr, CpT, and CpR, Ibcc is proportional to LM and Vi,rms. ωcc refers to the angular resonant
frequency in the CC mode. The dual-side LCC network ensures CC circulation, which is
a desirable factor of the DWC system [61,62]. The relationship to attain the zero-phase
angle in the CC mode is denoted by (8). Achieving soft switching in an inverter needs
a modest inductive nature of the CC mode network’s total input impedance, ZinCC. The
imaginary part of the Zincc is zero under the resonant condition. With an increase in RA.C.,
Vb increases and the network maintains constant Ib. The LCC network parameters can be
achieved as outlined in [63–65].

2.3.2. Load-Independent CC Mode Analysis with LCC–SP Circuit

The LCC–SP network delivers the load-independent constant voltage to the charging
device and assists in implementing CV mode charging. The cascaded T network assures
load-independent constant voltage delivery with constant input voltage and minimizes the
input apparent power in the charging system. Usually, a third-order T network converts
a constant voltage source into a voltage source. So, the two series connected third-order
network delivers the constant voltage to the charging device independent of load variations.
Equations (9)–(12) denote the relationship to achieve CV mode charging with an LCC–SP
network (Figure 7). CpT stabilizes Vb concerning the variations in RA.C. ωcv refers to the
angular resonant frequency in CV mode.

jωcvLTk_cv +
1

jωcvCsTk_cv
=

1
jωrCsT

+jωr(LT − LM) (9)

1

jωcvC|
sRk_cv

=
1

jωrn2CsR
+jωr

(LR − LM)

n2 (10)

ωcv =

√√√√( 1
LcTCpT

)
+

(
1

LTk_cvCpT

)
(11)
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ωcv =
1√

(LMCsTk_cv) +
(

LMC|
sRk_cv

) (12)

The CV mode voltage gain of the charging system is given by (13).

CV Mode Voltage Gain, GT_cv =

(
LTk_cv

LcT

)CsTk_cv

C|
sRk_cv

 (13)

The voltage gain of the charging system during CV mode is more significant than the
current gain. The higher voltage gain improves the system efficiency. The ASW disconnects
the LcR from the network when the battery voltage, Vbat, reaches the preset value.
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2.4. Receiver-Side Active Bridge Rectifier

Usually, the charging system utilizes separate D.C. regulators to enhance power
delivery. In this article, the receiver-side ABR regulates the output power with a PDM
driving pulse. The PDM driving pulses regulate the output power through pulse density
variations in the controller pulses, d, without adjusting the fr. The A.C. equivalent voltage
is directly proportional to the density of the PDM pulse that is mentioned in (14).

Vb =
2
√

2
π

Vbatdcos θ1 (14)

Ra.c. =
8
π2 d2Rbat (15)

P0−PDM = Prated × d2 (16)

where the battery’s equivalent resistance, voltage, and current are Rbat, Vbat, and Ibat,
respectively, and d is the ratio of the ON period of the PDM pulses, TON, PDM, to the total
period of PDM control pulses, TPDM. Consequently, d and θ decide the charging system
power, Pout. Equation (16) represents the relationship of PDM output power, PPDM, and
rated output power, Prated, with d. See Figure 8.
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3. Proposed Charging System Components: Simulation Analysis
3.1. Charging Couplers

Through the optimal design of charging pads, power transfer efficiency is maximized
and misalignment tolerance is enhanced. The Ansys Electronic Desktop assists in develop-
ing the DD-shaped optimal charging coupler. The charging coupler must be wound tightly
to achieve effective inductive parameters. By minimizing the distance between turns and
increasing the number of turns, the inductance of the coil increases. The optimal flux pipe
(center portion of the charging coil) improves the flux density. The optimal adjacent gap
between the transmitter pads reduces the cross-coupling effect.

The addition of a ferrite core to the charging coupler increases the inductance and
improves the flux density distribution. Without increasing the number of ferrites and
optimal placement of ferrite bars, the core structure has to be added. The addition of
aluminum shielding also increases the inductances. Increasing the shielding thickness
and placing the shielding close to the ferrite bars increases the pad’s inductance. So, the
optimal charging pad can be developed by considering the above-mentioned parameters.
The charging coupler is simulated in the Ansys Eddy current solver with a 38 AWG,
1050 strand conductor, and a 10 A current is allowed to excite the transmitter pad. The
vertical distance between the charging pads is 150 mm. Figure 4 illustrates the charging
coupler dimensions, and Figure 9 represents the magnetic flux density spectrum concerning
the various misalignment conditions.
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3.2. Five-Legged Inverter

The transmitter-side inverter excites the transmitter pads with respect to the receiver
pad position. The ideal period is allowed during the leg transition to achieve a smooth
transition. The phase shift modulation PWM pulses drive the switches of the Five-legged
inverter (Figure 10). Leg 1 and 2 excite the transmitter pad 1, whereas Leg 2 and 3 excite
the transmitter pad 2. The excitation sequence continues, and the leg transition occurs
with respect to the receiver pad position. Driving pulses are produced by the controller at
85 kHz following SAE J2954. The transmitter-side FPGA controller is programmed with
pre-defined switching sequence variations. These variations ensure that legs 1 and 2 of the
five-legged inverter operate for a particular period and then leg 1 automatically disconnects
and legs 2 and 3 operate. The receiver pad has to move over the transmitter pad with this
pre-defined sequence variation in our proposed charging system to maximize the power
transfer efficiency. The inverter’s quasi-square wave A.C. output is fed to the equivalent
circuit, and it resonates at an 85 kHz frequency. By adjusting the θ, it is feasible to regulate
the inverter’s output current and voltage. Equations (1) and (2) provide the relationship
between inverter output and phase shift angle. The increases in θ reduce the output of
the inverter concerning the cosine factor. A minimum θ between the driving pulses of
T1 and T4 improves the soft-switching ability of an inverter. Figure 11b represents the
inverter’s parameters concerning the variations in θ. The inverter must be operated slightly
higher than the resonant frequency to achieve soft switching. While increasing the resonant
frequency by a factor of 0.01, the magnitude of the output current, voltage, and power are
increased. When increasing θ, the output current and voltage of an inverter decrease from
the rated value. The output current and voltage of an inverter are directly proportional to
the cosine of the phase shift angle. So, while increasing θ, the voltage and current of an
inverter decrease, and the corresponding output power also decreases. The characteristic
curves are obtained by adjusting the θ, and the corresponding variations are noted in the
Simulink setup of the charging system. The curves are achieved by varying the shift angles
from 0◦ to 75◦, and the corresponding values are recorded.
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3.3. Hybrid Compensation Network

The LCC–LCC network delivers the constant current, whereas the LCC–SP network
delivers the constant voltage to the charging system. In a resonant network, LcR stabilizes
the Ib, and CpR stabilizes the Vb. Figure 12 illustrates the simulation curves of the LCC–LCC
and LCC–SP network at rated Lm. When Lm decreases, the output voltage and current
magnitude decrease. A minimum phase shift angle is introduced between the conduction
pair switches to perform the soft switching. The 3.3 kW wireless charging system is devel-
oped with the receiver-side switchable compensated system (LCC–LCC/SP) in MATLAB
Simulink, and the figures show the compensated structures characteristics curves.
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Figure 13 illustrates the load-independent frequency sweep characteristics curve of
the proposed charging system. Figure 13a represents the voltage gain characteristics
and Figure 13b represents the current gain characteristics of the LCC–SP and LCC–LCC
networks, respectively. The LCC–SP network delivers the constant voltage independent
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of the load variations. The voltage gain curves of the LCC-SP network concerning the
frequency sweep are achieved for 100%, 120%, 140%, and 160% of load variations. The gain
value reaches the maximum at three different frequencies due to bifurcation. The charging
system has unique voltage gain when the LCC–SP network operates at the CV mode
resonant frequency, ωcv. The LCC–LCC network delivers a constant current independent
of the load variations. The current gain curves of the LCC–LCC network concerning
the frequency sweep are achieved for 100%, 80%, 60%, and 40% load variations. The
current gain reaches two maximum levels due to bifurcation. The network has a unique
current gain when operating at the CC mode resonant frequency, ωcc. Here, the 100% load
conditions refer to the rated equivalent resistance of the batter, and the magnitude at the
rated operating condition is 37.2 Ω. The charging system has a unique resonant frequency,
and it operates at 85 kHz in both modes.
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3.4. Receiver-Side Active Bridge Rectifier

The receiver-side ABR assists in regulating the power delivered to the charging device
whenever the charging system requires power lesser than the rated value. An auxiliary
switch connected across the LcR configures the receiver-side resonant network. When the
switch is closed, an LCC–SP configuration delivers the constant voltage. When the switch
is opened, an LCC–LCC configuration delivers the constant current. An ABR regulates
the power delivered to the charging device by adjusting d. Figures 14 and 15 illustrate
the D–LCC compensated system’s response curve, whereas Figures 16 and 17 illustrate
the LCC–SP compensated system’s response curve. In these figures, the density of the
PDM pulses varied by 80% and 60%. Figure 18 depicts the characteristic waveforms of
the charging system while the receiver-side compensated network mode shifts from SP
to LCC. The output of the charging system depends on the density of the pulses, and the
relationship between the pulse density and the output voltage and power is represented
in Equations (14) and (16). The density of the pulses is directly proportional to the A.C.
equivalent voltage. The power and voltage delivered to the charging system can be varied
with respect to the variations in d, which is represented in (14) and (16). The 80% and 60%
of PDM terms mean that the frequency of the PDM signal (low-frequency signal compared
with 85 kHz signal to achieve PDM) was reduced by factors of 0.8 and 0.6, respectively, and
the ideal period (non-active period) of the output waveform is increased. The output power
can be regulated by adjusting the d factor, and the square of the d is directly proportional
to the output power.
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4. Experimental Analysis

A 3.3 kW five-legged inverter-fed hybrid network compensated receiver-side power-
regulated charging system is developed to demonstrate the proposed charging topology.
An LCC–LCC network delivers the constant current, whereas an LCC–SP network delivers
the constant voltage. The auxiliary switch connects and disconnects the LcR to modify the
receiver-side resonant network.

PDM pulses drive the receiver-side ABR, which regulates output power. Pout can be
adjusted following (16) by varying d. The five-legged inverter excites the transmitters
based on the position of the receiver. The receiver pad moves down the track as the
control pulses of the inverter shift the legs. Legs 1 and 2 energize TP1, while Legs 2 and
3 energize TP2. To minimize the impact of transients, the least dead time is permitted
while shifting the inverter legs. Experimental analysis curves of the proposed charging
system are represented in Figures 19–23. Figures 19 and 20 represent the PDM-regulated
ABR-controlled LCC–LCC and LCC–SP compensated charging system. The density of the
pulses is adjusted to 80%, and the corresponding characteristics curves across the various
elements of the system are observed. The average power, Pavg, delivered to the system is
varied with respect to the relationship between Pavg, Prated, and d, which is described in (16).
The receiver-side hybrid resonant network ensures the delivery of constant voltage and
current concerning the status of the charging device. If the charging device voltage, Vbat, is
lower than the reference voltage, Vref, the auxiliary switch opens, and the LCC network
delivers the constant current independent of load variations. Once Vbat exceeds Vref, the



Sustainability 2024, 16, 3810 16 of 24

switch closes, and LcR short circuits. The SP network delivers the constant voltage to the
charging device. Figure 23 represents the charging systems’ constant current and voltage
delivery independent of the load variations. Figures 21 and 22 represent the experimental
waveforms of the charging system during operating mode transition. The maximum
charging system efficiency is 93.4%.
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Figure 23. Experimental output curves of a proposed charging system. (a) LCC–LCC (load-
independent constant current). (b) LCC–SP (load-independent constant voltage).

An experimental setup of the developed charging system is represented in Figure 24.
The power is transferred by a 700 mm × 350 mm DD pad, and the charging pad has
a 38 SWG Litz wire, a 9 mm thick ferrite core, and 2 mm of aluminum shielding. The
charging coupler is excited by a 3.3 kW, 350 V, SiC-integrated five-legged inverter. The
transmitter-side LCC network circulates the constant current in a transmitter pad, which
is beneficial to the dynamic wireless charging system. The ferrite-cored inductor ensures
the constant current in the charging coupler. The receiver-side hybrid compensation LCC–
SP topology ensures constant charging. The SiC-integrated receiver-side bridge rectifier
regulates the power delivered to the charging device by varying the density of the pulses.
The FPGA controller delivers the controlling pulses to the transmitter- and receiver-side
converter, and the system can perform constant charging and output power regulation.
Table 1 illustrates the existing receiver-side controlled charging topology and parameters of
the proposed topology.
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Table 1. Different charging parameter regulating topologies.

Ref. Control Side Control Method Regulating
Parameters kW Airgap

(mm) f (kHz) Efficiency
(% η)

WPT
Method

[66] Dual-side active
converter

Triple-phase shift
control

Efficiency and output
voltage 1.5 - 85 83.4–93.6 Stationary

[67] Dual-side active
converter

Fuzzy-based
PDM

Power transfer
efficiency 3.7 150 85 93 Stationary

[68] Receiver-side
three-level buck

Composite
control

Switching stress
reduction and output

power regulation
2.6 - 20 87.2 Dynamic

[69] Receiver-side buck
converter

Model predictive
control Output power 2 200 85/20 ~92 Dynamic

[60] Receiver-side buck
converter

Passivity-based
PI control

Output power and
efficiency 2.63 200 85/20 91.06 Dynamic

This
work

Receiver-side
active bridge

Pulse density
control

Output power,
voltage, and current 3.3 150 85 93.4 Dynamic

5. Economic Aspects of Multi-Transmitter Quasi-Dynamic Charging Lane

The quasi-dynamic wireless charging system reduces the cost of EVs effectively by
reducing the volume of the battery and modifying the vehicle dynamics. Figure 25 il-
lustrates the cost distribution of the proposed quasi-dynamic wireless charging system.
The significant cost contributors of the charging lanes are power converters, resonant
networks, power converters, and charging couplers. The proposed charging system uti-
lizes the segmented multi-transmitter charging lane, which is energized by multi-legged
inverter topology. The geometry of the DD-shaped charging coupler is 70 × 35 (in cm),
and it is embedded in the ground to transmit the energy. The optimal distance between
the consecutive transmitters and its effective energization by the multi-legged inverter
reduces the initial charging system’s infrastructure cost-efficiently. The charging lane cost
analysis is investigated for different km values with the cost of a five-legged inverter-driven
LCC-driven four-transmitter pad charging system. The total cost of the charging system
is the summation of the cost of power converters, resonant networks, charging pads, and
controllers. The laboratory prototype was developed, and the component purchase price
list is in Indian rupees (INR). The cost of the charging lane is mentioned in USD for the
purpose of clarity. Though the initial infrastructure cost of the quasi-dynamic charging
lane is high, it effectively reduces the vehicle’s battery cost. Furthermore, this on-road
charging system has a roadside charging track, and it does not require separate land in
acres to develop the EV charging infrastructure.
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6. Conclusions

The dynamic wireless charging system for EVs motivates the development of the
sustainable transportation sector. The charging system reduces the heavy-volume battery
requirements of EVs and extends the driving range of the EVs with an on-road charging
system. The reduction in charging device ratings also reduces the demand for base materials
of the battery system. The on-road wireless charging system eliminates the requirement of
heavy gauge conductors to charge the batteries. The above-mentioned merits improve the
reliability of the EV charging infrastructure. The article presented a quasi-dynamic wireless
charging system for a slow-moving electric vehicle that regulates output parameters such
as power, voltage, and current. The proposed system addresses the significant concerns of
the quasi-dynamic wireless charging system such as load-independent constant charging,
output power regulation, and output ripple reduction. A receiver-side active bridge rectifier
regulates the output power using a pulse density-modulated technique. By modulating
the pulse density of the controlling pulses, the output power of the battery system can
be modified. The reconfigurable hybrid resonant network on the receiver side controls
and regulates the output current and voltage, ensuring a constant magnitude regardless of
the load variations. The LCC–SP configuration delivers a constant voltage, whereas the
LCC–LCC configuration delivers a constant current. The combination of PDM-driven active
bridge rectifiers and reconfigurable resonant networks ensures constant charging and power
flow regulation. The SiC-based five-legged inverter is employed on the transmitter side
to excite the four consecutive transmitters. The controller drives the inverter with respect
to the predefined range of velocity. The inverter excites the corresponding transmitter
pad when the receiver pad moves over it at a particular predefined velocity. The various
ranges of power regulation are also ensured by the receiver-side active bridge rectifier
with adjustable pulse density. The proposed topology enhances the charging system’s
overall performance.
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