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Abstract: Stormwater harvesting (SWH) is emerging as a vital adaptive strategy for urban climate
resilience. In South Korea, different types of storage facilities have been constructed under different
regulations and laws. Each type of storage facility has its own original purpose of construction.
Although these facilities have better outcomes, we aim to investigate the potential use of these
facilities as additional water resources. In this study, we assess the stormwater harvesting (SWH)
potential of different types of already-constructed storage facilities. Five different types of storage
facilities and three different cases are considered in the present study. Case 1 excludes SWH volume
during the flood and winter seasons, while in Case 2, only winter season SWH volume is excluded.
In Case 3, the winter season and combined sewer overflows (CSOs) facilities are excluded. The
Rainwater Utilization Facility is considered as a baseline for comparison in the present study. The
results show that, in Case 2, the Sewage Storage Facility, Stormwater Runoff Reduction Facility,
Nonpoint Pollution Reduction Facility, and Buffer Storage Facility has 53.5, 4, 2.4, and 1.2 times more
stormwater average annual usage potential, respectively. The findings suggest that these facilities can
be utilized as additional water resources. It should be mentioned that the primary objective for which
each facility was constructed will remain unaffected. Nevertheless, forthcoming research should
focus on a detailed exploration of the quality of the collected stormwater and the energy required to
supply the stormwater for the end usage.

Keywords: rainwater harvesting; stormwater harvesting; storage tank; daily water inflow model;
average annual usage potential; South Korea

1. Introduction

Rapid urbanization has resulted in a rise in non-permeable surface areas, causing
detrimental hydrological consequences, including risks of flooding and the degradation
of water quality [1,2]. As the population increases, particularly in developing nations, the
varied water needs for domestic, industrial, and agricultural uses exert increasing pressure
on water resources [3]. Water stress and scarcity have emerged as urgent challenges for
numerous countries globally, compounded by the risks posed by extreme climate events,
intensified human activities, population growth, and rapid urbanization [4,5]. In response
to the evolving challenges and in anticipation of impending water stress, numerous relevant
authorities are embracing diverse sustainable technologies and methodologies [2].

The approach that has the potential for addressing increasing water demands is the
proper implementation of a decentralized water supply system. Stormwater harvesting
(SWH) is regarded as a highly effective solution, applicable during periods of peak dis-
charge as well as peak demand [6,7]. The technique of stormwater harvesting, which
entails capturing runoff from metropolitan regions to provide a non-potable water supply,

Sustainability 2024, 16, 3812. https://doi.org/10.3390/su16093812 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16093812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16093812
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16093812?type=check_update&version=2


Sustainability 2024, 16, 3812 2 of 15

is currently recognized as a valuable resource for urban development requiring a resilient
array of water supply sources [8–10]. The primary elements of SWH is the process of collec-
tion, storage, treatment, and distribution [11–13]. Stormwater runoff, channeled directly
into streams using drainage systems, constitutes a significant origin of various pollutants,
thereby being recognized as a primary agent contributing to the degradation of receiving
water bodies [14–16]. Therefore, of essential importance in urban water management is to
mitigate stormwater pollution, aiming to transform cities and towns into the most resilient
and livable environments globally [17].

Several research studies have investigated pollutants in urban stormwater, along with
their origins and the processes associated with these pollutants [18–20]. The appropriate
handling of stormwater is essential to enable its proper usage. The extent of treatment is
predominantly influenced by the unique attributes of the catchment area and its eventual
utilization [21,22]. Achieving the intended function of stormwater best management
practices necessitates the suitable care of stormwater harvesting facilities [23]. The suitable
site selection for the stormwater harvesting system is also important. Researchers have
dedicated substantial effort to developing a robust methodology for effectively identifying
suitable hotspots and ultimately determining the optimal location. This involved using
various multi-criteria decision-making approaches, including fuzzy theory, the analytic
hierarchy process (AHP), simple additive weighting, and the interval analytical hierarchy
process, among others [24–30].

The regional variability in rainfall and its uneven distribution have profound impli-
cations for agriculture, ecosystems, climate, economies, water resources, and society as a
whole. Comprehending these patterns is essential for promoting sustainable development,
implementing effective resource management, and fostering resilience to the challenges
posed by evolving climatic conditions [31–33]. The precipitation patterns in South Korea
are significantly influenced by the region’s topography, leading to recurrent instances
of flooding attributed to extreme weather conditions. Seoul, the capital of South Korea,
faces persistent urban flooding challenges due to heightened summer precipitation and a
densely concentrated population, posing a threat to the city’s long-term sustainability [34].
Numerous studies have investigated the efficiency, reliability, and investment feasibility of
rainwater tanks in diverse geographical regions around the globe [35–40].

Stormwater harvesting in urban areas presents a potential solution to mitigate the
floods and water shortages caused by population growth, climate change, and impermeable
surfaces [41]. J Steffen et al. analyzed residential rainwater harvesting systems across 23 U.S.
cities. They found that the efficacy of such systems in terms of water supply and stormwater
reduction depends on the cistern size and climatic region [42]. Urban stormwater harvesting
offers a promising solution to augment water supplies for water-scarce cities by capturing,
treating, and recharging urban runoff. Despite successful demonstrations internationally,
barriers such as regulatory frameworks and treatment uncertainties hinder widespread
adoption, emphasizing the need for further research and technological advancements [8].
Although research on the SWH systems has been increasing globally, there remains a
frontier to be fully explored in adapting these insights to the unique climatic, geographical,
and urban context of South Korea [43,44].

The focus of the current study is to assess the stormwater harvesting potential for
different types of storage facilities. A daily water inflow model was developed using
MATLAB (R2015a) software. The foundational principle of the simulation model is the
collection of daily rainfall from the capture area near to the storage facility, excluding initial
rainfall of 5 mm. The volume of the collected daily rainfall is limited by the capacity of
the storage tank since the water demand near each facility is unknown. Thus, different
percentages (20%, 40%, 60%, 80%, and 100%) of daily inflow water volume usage potential
were considered for each facility. The local rainfall data from Seoul rainfall station (station
No. 108) for a period of ten years (from January 2012 to December 2021) were used as
input in the calculations. Three different cases and five various types of storage facilities
were considered in the present study. Case 1 excludes SWH volume during the flood
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and winter seasons, while in Case 2, only winter season SWH volume was excluded. In
Case 3, the winter season and combined sewer overflows (CSOs) facilities were excluded.
The Rainwater Utilization Facility was considered as a baseline for comparison. The stored
storm or rain (SR) water can be delivered to the region near to the storage facility for
non-potable use. It is hoped that the daily water inflow developed in the current study will
provide an academic contribution and help professionals to develop more efficient water
resource management planning in South Korea.

2. Materials and Methods
2.1. Description of the Facilities

In South Korea, several types of water storage facilities have been constructed for
urban flood control, water quality control, and rainwater use. These different types of
storage facilities have been constructed under different regulations and laws. Five types
of water storage facilities were chosen for the present study. The locations of the selected
storage facilities are shown in Figure 1. Furthermore, detailed information such as the
number of facilities in the country, installation purpose, total storage volume, monitoring
ministry, location in watershed, potential use of SR water, treatment facility (existence), and
water supply pumping system (existence) about each type of storage facility is provided
in Table 1.
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Table 1. Installation purpose, number of facilities, total storage volume, monitoring ministry, location
in watershed, potential use for storm or rain water, treatment facility for reuse, pump requirement,
and energy usage of the studied storage facilities table upgraded from reference [44]).

Type of
Facility

Sewage
Storage
Facility

(SS Facility)

Stormwater
Runoff

Reduction
Facility

(SRR Facility)

Nonpoint
Pollution
Reduction

Facility
(NPR Facility)

Buffer
Storage
Facility

(BS Facility)

Rainwater
Utilization

Facility
(RU Facility)

Installation
purpose

• Urban flood
control

• Water quality
control

• Water reuse

Urban flood
control

Water quality
control

Water quality
control Water use

Number of
facilities 536 [a] 110 [b] 73 [c] 24 [d] 697 [a]

Total storage
volume

(1000 m3)
31,861 1828 644 330 1804

Monitoring
ministry

Ministry of
Environment

Ministry of the
Interior and Safety

Ministry of
Environment

Ministry of
Environment

Ministry of
Environment

Location in
watershed

Watershed
middle and end

Watershed
middle and end Dispersion Watershed

end
Roof and

small basin

Potential use for
storm or rain water

Available after
treatment

Available after
treatment

Available after
treatment

• Impossible
• Water

collected
from
industries

• Direct use
• Water

collected
mostly from
rooftop

Treatment
facility for

reuse
Required Required Required Required Pre-installed

Water supply Pump
required

Pump
required

Pump
required

Pump
required Pre-installed

Energy for
reuse High Medium High High Low

[a] 2020 Sewer Statistics report, Ministry of Environment. [b] Ministry of the Interior and Safety. [c] Korea
Environment Corporation. [d] Water Quality and Aquatic Ecosystem Division, Ministry of Environment.

2.2. Overview of the Studied Cases

In the present study, the SWH potential was calculated considering three different
cases. Figure 2 shows the summarized details regarding each case. Based on the geo-
graphical location and the overall meteorological conditions in South Korea, December to
February was considered winter season and from June 21 to September 20 was considered
flood season in this study. As shown in Figure 2, in the calculation of SWH potential in
Case 1, the flood and winter seasons were excluded, while in Case 2, only the winter
season was excluded. Additionally, for Case 3, the winter season and the combined sewer
overflows (CSOs) facilities were excluded for the calculation of SWH potential.
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Figure 2. Overview of the cases considered in the present study. Case 1 excludes flood and winter
seasons, while in Case 2, only the winter season is excluded. In Case 3, the winter season and
combined sewer overflows (CSOs) facilities are excluded.

A comprehensive reason for this categorization of different cases was that in the winter
season, there is less monthly rainfall and it is usually the dry season. Thus, operating SWH
in the winter season would not be suitable for water demand supply. Similarly, in the
flood season, monthly rainfall is high due to monsoons for this reason, the SWH will
experience more inflow of rainwater than the water demand. Furthermore, in CSOs, many
contaminants are present [45–48], so the water quality is low and the treatment of the water
to the required quality standard requires special treatment systems.

2.3. Methodology of the Current Study

In the current study, we devised a daily water inflow model using MATLAB (R2015a)
software. The model developed in the current study calculates the potential collected SR
water quantity for five different types of existing SWH facilities in South Korea. In addition,
the annual usage potential of the SWH facilities was calculated for three different cases.
Rainfall data from Seoul rainfall station (Station No. 108) for a period of 10 years (January
2012 to December 2021) were gathered from the Korea Meteorological Administration
(KMA) [49] and utilized as input for the computations. It should be mentioned that the
local regional rainfall for each location should be used to assess the annual potential of SR
water quantity. However, this will increase the complexity of the model, and throughout
the country there is not much difference in the annual rainfall, so to keep the model simple,
data from only one rainfall station (Station No. 108) were used as input. Figure 3 shows a
summary of the schematic procedure used in the current study.
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2.4. Rainfall Data Analysis

A thorough examination of rainfall trends over a period of ten years (from January
2012 to December 2021) was conducted as a component of the current investigation. The
collected rainfall data from the Korea Meteorological Administration (KMA) [49] offers
important insights into the patterns of rainfall in South Korea. In the present study, the
data from Seoul rainfall station No. 108 were utilized as input for the computations.

Figure 4a shows the monthly rainfall data from the Seoul rainfall station. There is a
notable seasonal difference, and the rainfall during the summer months in the northern
hemisphere accounts for 70% of the total rainfall. The monsoon season typically starts in
mid-June, lasting for almost seven weeks. In the monsoon season, the water collection
potential increases drastically.
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In contrast, Figure 4b illustrates the average annual precipitation recorded at the Seoul
rainfall station over a span of ten years (January 2012 to December 2021). Upon closer
examination of the graph, it is evident that Seoul experienced its highest annual rainfall
of 2380 mm in the year 2020. Conversely, Seoul had a low annual rainfall of 832 mm in
the year 2014. The average annual rainfall for the ten years was approximately 1412 mm,
despite these variations.

2.5. Daily Water Inflow Simulation Model

In order to evaluate the viability of stormwater runoff (SR) harvesting for the existing
storage facilities, we devised a daily water inflow model in our current investigation using
MATLAB (R2015a) software. This simulation model integrates various input parameters,
including the catchment area, daily rainfall, and runoff coefficient. Moreover, dynamic
input data were incorporated to account for varying water usage percentages across dif-
ferent types of storage facilities over a ten-year period, from January 2012 to December
2021. The foundational principle of the simulation model revolves around the collection of
rainwater from the catchment area: an initial rainfall of 5 mm was deducted from the total
daily rainfall, with the remaining precipitation collected in the storage tank.

Figure 5 illustrates the flow chart depicting the daily water inflow simulation model
used to estimate the stormwater runoff (SR) potential for current storage facilities. Addi-
tionally, a runoff coefficient of 0.65 was utilized in this investigation. Within the simulation
model, an initial 5 mm of rainfall was subtracted from the total daily rainfall. The remaining
daily rainfall amount was then multiplied by the runoff coefficient and the runoff capture
area to calculate the volume of captured runoff. This methodology, outlined in Equation (1),
concludes with the calculation of the harvested SR water volume. It should be mentioned
that for the calculation of the harvested SR water, if the daily rainfall depth was less than
5 mm, the amount of harvested SR water was considered to be zero. However, on occasions
where the SR water daily inflow volume is greater than the storage tank capacity, the
excessive amount of inflowing rainfall is lost as overflow. The calculations were made daily
for the existing storage facilities, considering three different cases and utilizing rainfall data
spanning a decade (January 2012 to December 2021). Moreover, different percentages of
SR water usage were considered in the present study to assess the potential of SR water
harvesting for the existing storage facilities.
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The mathematical equation for the collected SR water from the catchment area is:

Vi = (I t − 5)×A × Rc × 0.001, Vi = 0, for (I t − 5) < 0, (1)

Vi = C, for Vi > C, (2)

where Vi is the daily inflow SR water (m3) from the catchment area, It is the rainfall (mm)
on the day t, 5 mm is the initial rainfall, A is the catchment area (m2), C is the capacity of
the storage tank (m3), and Rc is the runoff coefficient (0.65).

The annual SR water volume is calculated using the following equation:

Vt = ∑365
t=1 Vit (3)

where Vt is the annual volume (m3) of SR water. In Equation (1), the number of days were
excluded according to the specification of Case 1, Case 2, and Case 3. More explanation
regarding each case is provided in Figure 2. The annual usage potential of SR water is
obtained, adding the daily inflow SR water volume over the span of ten years (January
2012 to December 2021), considering different cases.

The AAU potential of the SR water volume is calculated using the equation below:

Va =
∑10

n=1 Vtn

10
(4)

where Va is the AAU potential volume (m3) of SR water.

3. Results and Discussion
3.1. Assesment of SWH Potential for Case 1

Figure 6a–e show the calculated SR water AAU potential of five selected storage
facilities for Case 1 considering different percentages (20%, 40%, 60%, 80%, and 100%) of
inflow of SR water. In Case 1, for the calculation of SR water potential, the flood season
and winter season were excluded. The method developed in the current study considers
different percentages of SR water inflow as the water demand near to each storage facility is
unknown. The Rainwater Utilization Facility (RU Facility) was considered as a baseline for
comparison in the present study. We found that in Case 1, the SS Facility, SRR Facility, NPR
Facility, and BS Facility had 22.4, 5.6, 3.4, and 1.7 times more stormwater AAU potential,
respectively. Table 2 shows the details regarding the number of already-constructed storage
facilities for Case 1, Case 2, and Case 3. A deeper look at the table shows that, among the
five selected types of storage facilities, the Rainwater Utilization Facility (RU Facility) type
was the highest in number (697), while the Buffer Storage Facility (BS Facility) type was the
lowest in number (24).

Table 2. Summary of selected studied storage facilities’ SWH AAU potential for Case 1, Case 2, and
Case 3.

S. No. Type of
Facility

Number of Facilities
Case 1

Number of Facilities
Case 2

Number of Facilities
Case 3

1 SS Facility [a] 536 536 66

2 SRR Facility [b] 110 110 29

3 NPR Facility [c] 73 73 17

4 BS Facility [d] 24 24 7

5 RU Facility [a] 697 697 697

[a] 2020 Sewer Statistics report, Ministry of Environment. [b] Ministry of the Interior and Safety. [c] Korea
Environment Corporation. [d] Water Quality and Aquatic Ecosystem Division, Ministry of Environment.
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Figure 6. Studied storage facilities’ SWH AAU potential for Case 1 considering inflow water: (a) 20%;
(b) 40%; (c) 60%; (d) 80%; (e) 100%.

3.2. Assesment of SWH Potential for Case 2

The SR water AAU potential of the five selected storage facilities considering different
percentages (20%, 40%, 60%, 80%, and 100%) of inflow of SR water for Case 2 is shown in
Figure 7a–e. In Case 2, for the calculation of SR water potential, only the winter season was
excluded. The reason for excluding the winter season from Case 2 is that this is usually
the dry season, with less monthly rainfall. Thus, operating an SWH facility in the winter
season would not be suitable for the supply of water. Table 2 shows the details regarding
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the number of existing storage facilities for Case 2. We found that in Case 2, the SS Facility,
SRR Facility, NPR Facility, and BS Facility had 53.5, 4.3, 2.4, and 1.2 times more stormwater
AAU potential, respectively. Furthermore, we found that the stormwater AAU potential in
Case 2 increased sevenfold for the SS Facility compared to Case 1.
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Figure 7. Studied storage facilities’ SWH AAU potential for Case 2 considering inflow water: (a) 20%;
(b) 40%; (c) 60%; (d) 80%; (e) 100%.

3.3. Assesment of SWH Potential for Case 3

Figure 8a–e illustrate the SR water AAU potential of five selected storage facilities
considering different percent (20%, 40%, 60%, 80%, and 100%) inflow of SR water for
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Case 3. In Case 3, for calculation of SR water potential winter season and the combined
sewer overflows (CSOs) facilities were excluded. The exclusion of combined sewer over-
flows (CSOs) in Case 3 is due to the high concentration of contaminants within these
overflows [45,46,48]. The presence of numerous contaminants in the CSOs make stormwa-
ter unsuitable for direct usage, a specialized treatment system to achieve the required water
quality standards is required. We found that in Case 3, SS Facility has 7.5 times more
stormwater AAU potential. While, SRR Facility, NPR Facility, and BS Facility has 1.1, 3.3,
and 2.05 times less stormwater AAU potential, respectively.
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Figure 8. Selected studied storage facilities’ SWH AAU potential for Case 3 considering inflow water
(a) 20%; (b) 40%; (c) 60%; (d) 80%; (e) 100%.
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Table 2 provides the summary about the number of existing storage facilities for Case 3.
A deeper look at Table 2 reveals that the number of storage facilities has been decreased
significantly, as the storage facilities having CSOs has been excluded in Case 3. However,
better quality water as compared to Case 1 and Case 2 can be collected. Furthermore, it was
found that for Rainwater Utilization Facility (RU Facility), AAU potential is same in Case 3
and Case 2. In South Korea, for RU Facilities rainwater is mostly collected from rooftop. So,
the number of facilities remain same (697) in Case 3 and Case 2.

3.4. Comparision of SWH Potential for Case 1, Case 2, and Case 3

The comparison of the SR water harvesting potential for the five different types of
storage facilities considering three different cases is summarized in Figure 9. Furthermore,
the primary installation purpose for each facility is shown in Figure 9. Among the studied
facilities, the SS Facility has the highest stormwater AAU potential and is multifunctional
(urban flood control, water quality control, water reuse). The RU Facility was considered
as a baseline for comparison in the current study.
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4. Conclusions

Stormwater harvesting in urban areas presents a potential solution to mitigate urban
floods and water shortages. This study assessed the stormwater harvesting potential for
different types of existing storage facilities in South Korea. A daily water inflow model was
developed using MATLAB (R2015a) software, considering three different cases. The study
considered decade-long data (January 2011 to December 2020) of daily rainfall collected
from the KMA. Five different types of storage facilities were considered. Among these five
storage facilities, the RU Facility was used as a baseline for comparison in the present study.
Based on an in-depth observation of the results, we can conclude the following:

• In Case 1, the SS Facility, SRR Facility, NPR Facility, and BS Facility had 22.4, 5.6, 3.4,
and 1.7 times more stormwater AAU potential, respectively.

• In Case 2, the SS Facility, SRR Facility, NPR Facility, and BS Facility had 53.5, 4.3, 2.4,
and 1.2 times more stormwater AAU potential, respectively.



Sustainability 2024, 16, 3812 13 of 15

• In Case 3, the SS Facility had 7.5 times more stormwater AAU potential, while the SRR
Facility, NPR Facility, and BS Facility had 1.1, 3.3, and 2.05 times less stormwater AAU
potential, respectively.

• As the CSOs were excluded from Case 3, the SR water collected in Case 3 will have
better water quality than Case 1 and Case 2.

The approach we developed for calculating the stormwater harvesting potential for
the existing storage facilities is noteworthy for policymakers involved in urban rainwater
management. The findings support the utilization of these facilities as additional water
resources. It should be mentioned that the primary purpose for which each facility was
constructed, as summarized, will remain unaffected. Moreover, as the storage facilities have
already been constructed in South Korea, the cost of the initial construction is eliminated.

Nevertheless, forthcoming research should concentrate on a detailed analysis of the
quality of the collected stormwater. Furthermore, the development of treatment systems to
treat the stormwater according to the end usage standards needs further attention.
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