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Abstract: Considering the increasing need for sustainable and economical energy storage solutions,
the integration of layered materials such as MoS2 into these systems represents an important step
toward enhancing energy sustainability and efficiency. Exploring environmentally responsible fabri-
cation techniques, this study assesses wrinkled MoS2 thin films synthesized from distinct Mo and
MoS2 targets, followed by sulfurization conducted in a graphite box. We utilized magnetron sput-
tering to deposit precursor Mo and MoS2 films on Si substrates, achieving thicknesses below 20 nm.
This novel approach decreases sulfur by up to tenfold during sulfurization due to the confined space
technique, contributing also to avoiding the formation of toxic gases such as SO2 or the necessity of
using H2S, aligning with sustainable materials development. Thinner MoS2 layers were obtained
post-sulfurization from the MoS2 precursors, as shown by X-ray reflectometry. Raman spectroscopy
and grazing X-ray diffraction analyses confirmed the amorphous nature of the as-deposited films.
Post-sulfurization, both types of films exhibited crystalline hexagonal MoS2 phases, with the sulfur-
ized Mo showing a polycrystalline nature with a (100) orientation and sulfurized MoS2 displaying a
(00L) preferred orientation. The X-ray photoelectron spectroscopy results supported a Mo:S ratio of
1:2 on the surface of the films obtained using the MoS2 precursor films, confirming the stoichiometry
obtained by means of energy dispersive X-ray spectroscopy. Scanning electron microscopy and
atomic force microscopy images revealed micrometer-sized clusters potentially formed during rapid
cooling post-sulfurization, with an increased average roughness. These results open the way for the
further exploration of wrinkled MoS2 thin films in advanced energy storage technologies.

Keywords: wrinkled MoS2; TMDs; thin films; magnetron sputtering; sulfurization

1. Introduction

The rapid expansion of the electric vehicle and portable electronic device markets
has escalated the demand for energy storage systems with a high energy density and a
substantial power output [1,2]. In response, significant research efforts have been directed
towards developing efficient energy storage devices, such as batteries and supercapaci-
tors [3,4]. Among various materials, MoS2, a two-dimensional layered inorganic material,
has emerged as a good candidate for energy conversion and storage applications due to
its adjustable bandgap and unique electronic and physicochemical properties [5–9]. In
particular, the layered structure of MoS2 promotes efficient electron and ion transport,
desirable for high-performance energy storage devices, and its bandgap manipulation
enhances electrical conductivity and electrochemical properties. These characteristics are
highly beneficial in increasing energy density, improving charge–discharge rates, enhancing
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cycle stability in battery technology, and boosting capacitance and energy efficiency in su-
percapacitors [10–14]. Molybdenum disulfide has also been widely as a solid lubricant [15].
Its combination with other tribological materials such as DLC [16] and high-wear-resistance
Ti3C2Tx was recently discussed [17–19].

Given the growing demand for environmentally friendly and cost-effective energy
storage systems, MoS2 integration into these systems is a significant advance towards
achieving energy sustainability and efficiency. The unique structure of layered materials,
including MoS2, offers advantages in energy storage applications due to their high surface
area-to-volume ratio and observable characteristics within a few atomic layers [20,21].
However, challenges such as poor cycle stability due to structural deterioration during
charge/discharge cycles have prompted research into nanostructuring MoS2 to enhance
ion kinetics, thus improving overall battery performance [13,22]. The development of
such nanostructured MoS2 anodes is crucial for overcoming the limitations of bulk MoS2,
particularly in terms of cycling stability and rate capability, thereby making it more viable
for practical applications in advanced batteries and supercapacitors [23].

Regarding material synthesis, magnetron sputtering is a superior technique for deposit-
ing thin films, offering uniformity, smoothness, and precise control over layer thickness,
essential for creating high-quality MoS2 thin films [24,25]. However, the reliance of CVD on
chemical precursors can pose more sustainability challenges in terms of chemical handling,
safety, and disposal. Moreover, magnetron sputtering is more material-efficient, which
is beneficial for sustainability. Additionally, it can easily be used for doping to improve
the properties of MoS2 coatings [26]. Wu et al. [27] demonstrated the potential of this
method to obtain thin MoS2 films through the sequential deposition of Mo layers and
controlled sulfurization [28,29]. During the sulfurization, there is competition between Mo
oxide segregation leading to the formation of small clusters and the sulfurization reaction
leading to planar MoS2. The most common sulfurization methods involve conducting
annealing in H2S- or S2-containing atmospheres. However, H2S is a toxic gas, while the
contamination of the medium becomes an important issue when the annealing is conducted
in a S2 environment due to the formation of SO2 [30,31].

In this study, MoS2 thin films were synthesized in a two-step process consisting of
magnetron sputtering deposition of two types of precursors, namely Mo and MoS2 layers,
followed by sulfurization in a graphite box. This novel approach significantly reduces the
S quantity up to ten times during sulfurization due to the confined space and represents
an important advancement in the controlled synthesis of nanostructured MoS2 thin films
on Si/SiO2 substrates. It also contributes to avoiding the formation of toxic gases such as
SO2 or the necessity of using H2S for sulfurization, aligning with the need for efficient and
sustainable energy storage solutions.

2. Materials and Methods

The MoS2 films were obtained using a two-step process involving the deposition of a
precursor thin film of either Mo or MoS2, followed by sulfurization in a confined space. The
method is depicted in Figure 1. In the first step, molybdenum and molybdenum disulfide
precursor thin films were deposited using a custom-built magnetron sputtering system [32].
Commercial Mo and MoS2 targets (Mateck, Jülich, Germany, 99.9% purity, 5 cm in diameter
and 3 mm thickness) were used. The process was initiated in a vacuum of 6.5 × 10−6 Torr.
Argon was introduced at a constant flow of 30 sccm and the chamber pressure increased to
6 × 10−3 Torr, which was kept constant during the deposition. The Mo target received a
power of 26 W from a T&C Power Conversion AG 0313 RF source (Rochester, NY, USA)
for 1886 s, while the MoS2 target received 18 W for 1785 s from the same RF source. The
used Si substrates with a 90 nm SiO2 layer were continuously rotated during deposition for
thickness uniformity.
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The samples were subjected to detailed morphological and elemental analysis using 
a Zeiss Gemini 500 Field Emission Scanning Electron Microscope (SEM) equipped with a 
Bruker energy dispersive X-ray (EDX) spectrometer (Bruker, Billerica, MA, USA). The 
crystalline structures of the samples were investigated using X-ray diffraction (XRD) and 
grazing incidence X-ray diffraction (GIXRD). This analysis was performed using a Rigaku 
SmartLab diffractometer (Rigaku Corporation, Tokyo, Japan), set in a parallel beam ar-
rangement, provided with copper Kα radiation (λ = 1.54187 Å) and a HyPix-3000 2D Hy-
brid Pixel Array Detector (Rigaku Corporation, Tokyo, Japan) used in 0D and 1D modes. 
The diffractograms were recorded from 5° to 65° (2θ) with a step size of 0.04° and the 
measuring time per step was 2 s for GIXRD and 40 s for XRD (θ-2θ Bragg–Brentano ge-
ometry). The incident angle was precisely adjusted to enhance diffraction conditions for 
GIXRD. The background of the diffractograms was subtracted. X-ray reflectometry (XRR) 
patterns were captured using the same equipment. The thickness and mass density of the 
samples were accurately determined using Leptos software (version 4.01 from Bruker), 
which allows for the alignment of simulated XRR curves with the experimentally obtained 
data. Additional micro-Raman (m-Raman) structural examination was carried out with a 
LabRam HR Evolution spectrometer (Horiba Jobin Yvon, Palaiseau, France) equipped 
with a Syncerity OE detector. The measurements were performed by focusing a He-Ne 
laser (λ = 633 nm) on the surface of the samples in backscattering geometry with an Olym-
pus MPlanN 100×/0.90 numerical aperture using a diffraction grating of 1800 lines/mm. 
The spectra were recorded in the range 50–600 cm–1 for an acquisition time of 10 s and 25 
accumulations with a neutral density filter of 50% and 5% of the maximum laser power 
for a confocal hole of 100 µm for the target and thin films, respectively. This corresponds 
to a laser power of 750 and 75 µW, respectively. The maximum visible spot that excites 
the laser corresponded to the Airy spot was ~0.85 µm. Atomic force microscopy (AFM) 
imaging was performed using an NT-MDT Aura Ntegra Prima atomic force microscope 
(Amsterdam, Netherlands) in a non-contact mode. The surface of the films was character-
ized by means of X-ray photoelectron spectroscopy (XPS) using a monochromatized Al 
Kα source at 1486.6 eV and a power of 144 W (12 kV × 12 mA), employing a Kratos Axis 
Ultra spectrometer (Kratos Analytical Ltd., Manchester, UK). The analyzer was operated 
in the fixed analyzer transmission (FAT) mode, and the high-resolution spectra were ac-
quired at 40 eV pass energy and 0.05 eV energy step. The analysis of the S 2p and Mo 3d 
doublets was performed after spectral deconvolution with Voigt profiles including two 

Figure 1. The two-step process for the deposition of MoS2 thin films. Step 1 consists of magnetron
sputtering deposition of Mo and MoS2 precursor films, while in step 2, the obtained films are
sulfurized in a graphite box.

Post-deposition, in the second step, the Mo and MoS2 films underwent a sulfurization
process. Enclosed in a graphite box with 0.025 g of sulfur, the samples were placed in
an MTI GSL 1600X (MTI Corporation, Richmond, CA, USA) quartz tube furnace. The
system was vacuumed and pressurized with argon to 0.03 MPa. The thermal treatment
was performed at 800 ◦C for 45 min, with a ramp and cooling rate of 10 ◦C/min.

The samples were subjected to detailed morphological and elemental analysis us-
ing a Zeiss Gemini 500 Field Emission Scanning Electron Microscope (SEM) equipped
with a Bruker energy dispersive X-ray (EDX) spectrometer (Bruker, Billerica, MA, USA).
The crystalline structures of the samples were investigated using X-ray diffraction (XRD)
and grazing incidence X-ray diffraction (GIXRD). This analysis was performed using a
Rigaku SmartLab diffractometer (Rigaku Corporation, Tokyo, Japan), set in a parallel
beam arrangement, provided with copper Kα radiation (λ = 1.54187 Å) and a HyPix-3000
2D Hybrid Pixel Array Detector (Rigaku Corporation, Tokyo, Japan) used in 0D and 1D
modes. The diffractograms were recorded from 5◦ to 65◦ (2θ) with a step size of 0.04◦ and
the measuring time per step was 2 s for GIXRD and 40 s for XRD (θ-2θ Bragg–Brentano
geometry). The incident angle was precisely adjusted to enhance diffraction conditions for
GIXRD. The background of the diffractograms was subtracted. X-ray reflectometry (XRR)
patterns were captured using the same equipment. The thickness and mass density of the
samples were accurately determined using Leptos software (version 4.01 from Bruker),
which allows for the alignment of simulated XRR curves with the experimentally obtained
data. Additional micro-Raman (m-Raman) structural examination was carried out with
a LabRam HR Evolution spectrometer (Horiba Jobin Yvon, Palaiseau, France) equipped
with a Syncerity OE detector. The measurements were performed by focusing a He-Ne
laser (λ = 633 nm) on the surface of the samples in backscattering geometry with an Olym-
pus MPlanN 100×/0.90 numerical aperture using a diffraction grating of 1800 lines/mm.
The spectra were recorded in the range 50–600 cm–1 for an acquisition time of 10 s and
25 accumulations with a neutral density filter of 50% and 5% of the maximum laser power
for a confocal hole of 100 µm for the target and thin films, respectively. This corresponds
to a laser power of 750 and 75 µW, respectively. The maximum visible spot that excites
the laser corresponded to the Airy spot was ~0.85 µm. Atomic force microscopy (AFM)
imaging was performed using an NT-MDT Aura Ntegra Prima atomic force microscope
(Amsterdam, Netherlands) in a non-contact mode. The surface of the films was character-
ized by means of X-ray photoelectron spectroscopy (XPS) using a monochromatized Al Kα

source at 1486.6 eV and a power of 144 W (12 kV × 12 mA), employing a Kratos Axis Ultra
spectrometer (Kratos Analytical Ltd., Manchester, UK). The analyzer was operated in the
fixed analyzer transmission (FAT) mode, and the high-resolution spectra were acquired at
40 eV pass energy and 0.05 eV energy step. The analysis of the S 2p and Mo 3d doublets
was performed after spectral deconvolution with Voigt profiles including two Lorentzian
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components. Both the spectral deconvolution extraction of the Shirley background and the
data analysis were performed using IGOR Pro 9 software.

3. Results
3.1. X-ray Reflectometry (XRR) Measurements

The XRR diagrams and the corresponding fitted curves for the Mo and MoS2 pre-
cursor thin films are depicted in Figure 2(a1,a2). We determined the thickness of the Mo
precursor layer to be 14.4 nm and its average mass density to be 8.0 g/cm3, compared
to 10.28 g/cm3 [33] for a bulk Mo monocrystal. For the MoS2 precursor layer, the values
obtained were 18.0 nm for the thickness and an average mass density of 4.3 g/cm3, against
5.06 g/cm3 [33] for a bulk MoS2 monocrystal. The observed variations in mass density of
the Mo and MoS2 thin films, as compared to their bulk monocrystal counterparts, can be
attributed to structural differences, the presence of defects or voids, surface roughness, and
deviations in film composition.
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Figure 2. XRR diagrams of the (a1,a2) as-deposited (black) and the corresponding fitted XRR curves
(red), and (b1,b2) sulfurized (blue) Mo and MoS2 precursor thin films.

The XRR diagrams for the sulfurized Mo and MoS2 thin films are shown in Figure 2(b1,b2).
The thickness of the Mo film is 28 nm. Theoretically, a thickness of approximately 55 nm was
expected if the as-deposited Mo film would have been entirely sulfurized. In contrast, the
sulfurized MoS2 layer showed a uniform thickness of 13 nm, compared with a theoretical
expectation of around 18 nm. The observed discrepancy in thickness and structure between
the theoretical expectations and the experimental results can be attributed to several factors.
In the case of the Mo layer, the formation of a thick 28 nm layer indicates a significant
reaction during sulfurization, leading to an expanded or altered structure. This might be
due to the diffusion of sulfur into the Mo layer or the formation of an additional MoS2
layer on top of the original Mo. For the sulfurized MoS2 layer, the reduction in thickness
from the expected value might be due to the loss of material and an increase in density
during sulfurization. The uniformity of this layer suggests a more controlled and consistent
reaction compared to the Mo layer.

3.2. X-ray Diffraction

The X-ray diffraction diagrams at grazing incidence for the Mo (Figure 3(a1)) and MoS2
(Figure 3(b1)) precursor thin films were obtained at an incidence angle of 0.3◦. The broad
peaks observed in both diagrams suggest that each of the layers possesses an amorphous,
disordered structure. This is in contrast with the distinct crystalline peaks of the substrate,
which are clearly discernible. The amorphous nature indicated by the GIXRD analysis
complements the findings from the XRR measurements, explaining the lower density as
compared to their crystalline monocrystal forms.
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thin films, and (a3,b3) the XRD diagrams of the sulfurized samples. The broad peaks denoted as
a-Mo and a-MoS2 are from amorphous phases. The diffraction peaks marked with ‘#’ and ‘x’ markers
are from the silicon substrate and from an unidentified crystalline phase, respectively. The data from
the PDF 00-037-1492 of h-MoS2 are also presented.

The GIXRD diagrams, performed with the detector in 0D mode, and XRD diagrams,
obtained using Bragg–Brentano geometry with the detector in 1D mode, for sulfurized Mo
and MoS2 precursors are displayed in Figure 3(a2,b2), and (a3,b3), respectively. In both
cases, the data confirm the successful synthesis of the hexagonal MoS2 (h-MoS2) phase
according to PDF 00-037-1492, highlighting the effectiveness of the sulfurization process.
Sulfurized Mo exhibits a polycrystalline structure with a preferential (100) orientation.
Most of the MoS2 crystallites have layers in the plane (002) that are not parallel to the
substrate but perpendicular.

On the other hand, the sulfurized MoS2 precursor shows a preferential (00L) orienta-
tion. In this case, the MoS2 layers are parallel to the substrate. The polycrystalline nature of
the sulfurized Mo film and the (100) preferential orientation suggest a distinct structural
rearrangement post-sulfurization. This perpendicular arrangement might generate an
anisotropic electronic transport mechanism that could influence the charge carrier mobility
and mechanical stress distribution within the layer, potentially impacting its application in
electronic devices, but beneficial for applications such as catalysis and energy storage. In
contrast, the preferential (00L) orientation, parallel to the substrate, of the MoS2 crystallites
in sulfurized MoS2, indicative of a layered structure, is beneficial for applications requiring
a high surface area, as in electronic devices, where the directionality of electronic and ionic
transport plays an important role in device performance.

3.3. Micro Raman Spectroscopy

The hexagonal MoS2 exhibits four Raman peaks: E2
2g at 32 cm−1, which requires high

spectral resolution Raman spectrometers for detection and corresponds to the interlayer
vibration within MoS2; E1g at 286 cm−1 (forbidden in backscattering geometry on surfaces
perpendicular to the c-axis); E1

2g at 381 cm−1; and A1g at 408 cm−1 [34]. Other peaks in
the m-Raman spectra arise due to the resonance phenomenon between the excitation laser
radiation (633 nm) and the MoS2 band gap. This resonance, alongside the coupling between
electronic transitions (correlated with excitonic states) and phonon modes, significantly
amplifies the second- or higher-order Raman scattering.

The m-Raman spectra of the as-deposited Mo and MoS2 thin films did not show any
Raman peaks, indicating that they are completely amorphous, as confirmed by the X-ray
diffraction diagrams (Figure 3(a1,b1)).

The m-Raman spectra of the sulfurized Mo sample (Figure 4a, blue curve) and sulfur-
ized MoS2 sample (Figure 4a, red curve) confirm that sulfurization led to the formation
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of the hexagonal crystalline MoS2 phase. The red curve is similar to the spectrum of the
solid MoS2 sputtering target (Figure 4b). The A1g peak shows a shoulder at 402 cm−1;
consequently, the frequency difference (δ) of the two Raman modes, E1

2g and A1g, decreases
from 28 cm−1 to 22 cm−1. This means that on average, there are two categories of crystal-
lites thicknesses in each sample. The majority category is represented by thick crystallites
containing more than four MoS2 layers, while the second category is formed by three MoS2
layers [35].
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Due to the resonance conditions, second-order Raman bands at 123 cm−1, 150 cm−1,
177 cm−1, 188 cm−1, 227 cm−1, 230 cm−1, 417 cm−1, 453 cm−1, 464 cm−1, and 564 cm−1 [36–38]
are also visible. The work of Livneh et al. [37] facilitates the symmetry assignments of
these peaks:

- A1g(Γ)—E1g(Γ) for the peak at 123 cm−1;
- E1

2g(K2)—LA’(K) for the peak at 150 cm−1, where LA’(K) is the longitudinal quasi-
acoustic optical phonon in K point of the hexagonal Brillouin zone. A different process
involves the creation of one phonon while absorbing another;

- A1g(M)—LA(M) for the peak at 177 cm−1, where LA(M) is the longitudinal acoustic
phonon in M point of the hexagonal Brillouin zone. The asymmetric line shape arising
from phonon dispersion of LA mode demonstrates a concave dispersion towards
the M point [39]. Notably, the characteristic MoS2 modes, A1g and E1

2g, show no
dispersion in the Γ-M direction;

- E1
2g(M2)—ZA’(M) for the peak at 188 cm−1, which exhibits an exponential temperature

dependence, detectable even at liquid nitrogen temperatures [36];
- A degenerate van Hove singularity (vHs) is located between the K and M points for

the peak at 227 cm−1, while its intensity is proportional to the disorder degree [34].
The diminished intensity of this peak in the sulfurized MoS2 film, compared to the
sulfurized Mo film, can be attributed to the higher crystalline quality and reduced
disorder and defects in the MoS2 film post-sulfurization;

- LA’(M) for the peak at 230 cm−1;
- A1g(M) for the peak at 417 cm−1 [36];
- The most pronounced band among the second-order Raman peaks, at 453 cm−1, is

attributed to the overlap of the vHs from two phonon branches located between
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the K and M points, each resonating near the frequency of 227 cm−1. The peak at
453 cm−1 exhibits significantly greater intensity in the sulfurized MoS2 film. This
could be due to increased resonance effects between the laser excitation and the
MoS2 band gap. Additionally, the intensity variations of this band inversely correlate
with defect concentrations [38,40] (for the first-order peak, at 227 cm−1, the intensity
is proportional with defect concentrations). Accordingly, the sulfurized MoS2 film
has a relatively low defect density within the MoS2 layers, enhancing the resonance
Raman effect;

- LA’(M) + LA(M) for the peak at 464 cm−1;
- A1g(M) + TA’(M) for the peak at 564 cm−1, where TA’(M) is a transversal quasi-acoustic

optical phonon in M point of the hexagonal Brillouin zone.

3.4. Scanning Electron Microscopy

The scanning electron microscopy images obtained on sulfurized Mo films (Figure 5a)
indicate elongated formations ranging from 1 to 7 microns in length on the surface of the
samples, as compared with the as-deposited samples, which display a dense, compact
surface with minimal roughness for both Mo and MoS2 thin films. The sulfurized MoS2
sample (Figure 5b) exhibits a less uniform surface, composed of small nanometric clusters
from 1 to 10 microns in length. These formations are attributed to a phenomenon known as
‘surface wrinkling’, occurring when rapid cooling from 800 ◦C to room temperature takes
place. The ‘surface wrinkling’ [41] phenomenon observed in both samples is a significant
aspect of the cooling process following high-temperature treatments. This feature indi-
cates the presence of mechanical stresses and structural rearrangements occurring during
rapid cooling.
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Using EDX, we measured the composition of the sulfurized Mo and MoS2 thin films,
and the results are shown in Table 1. For the sulfurized Mo sample, the composition
is Mo40S60, while for the sulfurized MoS2 sample, it is Mo34S66. The results show a
substantial incorporation of sulfur in the Mo film, indicating a successful sulfurization
process. However, the Mo-rich nature of this composition compared to the ideal Mo:S ratio
of 1:2 (or Mo33.33S66.67 in atomic percentages) suggests the incomplete incorporation of
sulfur. This could be due to various factors such as the initial thickness of the Mo layer,
the sulfurization temperature, or the duration of the sulfurization process. The sulfurized
MoS2 (Mo34S66) is very close to the ideal stoichiometry, indicating that the sulfurization
process was highly effective.

Table 1. Composition of sulfurized Mo and MoS2 thin films after sulfurization.

Precursor Composition

Mo Mo40S60
MoS2 Mo34S66
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3.5. Atomic Force Microscopy

Figure 6 shows the AFM image obtained for the sulfurized MoS2 sample, where
elongated formations are visible on the surface, corroborating the observations made in
the SEM analysis. Utilizing a cantilever equipped with a sharp tip to probe the surface,
we determined the surface roughness to be significantly high, measured at 20 nm. This
measurement reveals an intriguing aspect of the material morphology, namely that the
surface roughness surpasses the film thickness, which was previously estimated to be
13 nm post-sulfurization. Typically, a roughness greater than the film thickness suggests a
highly textured surface with pronounced topographical features that extend beyond the
general plane of the film. Such a condition could impact the film’s physical properties and
its interaction with the environment, potentially affecting applications where surface area
and texture play important roles, such as in catalysis, sensing, or energy storage devices.
The pronounced roughness indicates a complex surface morphology that may influence
the electronic, mechanical, and chemical behavior of the MoS2 thin film.
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3.6. X-ray Photoelectron Spectroscopy

Since the thin film obtained from the MoS2 target and subsequently thermally treated
in a sulfur atmosphere proved to be of high quality and homogeneous when characterized
by “bulk techniques”, the quality of the surface and its stability were also checked by
means of photoemission spectroscopy. The results are presented in Figure 7. The Mo 3d
spectrum was deconvoluted into four components for Mo and a singlet corresponding to S
2s at a binding energy of 226.7 eV. The component at higher binding energies of 232.7 eV is
attributed to MoO3. The other three components at binding energies of 229.2 eV, 229.5 eV,
and 230 eV are associated with S-deficient MoS2, bulk MoS2, and surface MoS2, respectively.
The S 2p spectrum was deconvoluted into a single component attributed to S2− at a binding
energy of 162.3 eV, showing that all sulfur participates in Mo-S bonds and that there is no
unreacted S-S.

Considering that the three main contributions of Mo 3d are related to S, the Mo:S
ratio on the analyzed surface is approximately 1:2, as indicated by the ratio of the integral
amplitudes corrected for photoionization cross-section, a result also confirmed by the
identification of the thin film composition through EDX.
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4. Discussion

The two-step process employed herein, utilizing magnetron sputtering and a confined
space for sulfurization [42], exemplifies a significant advancement towards sustainability.
This method, characterized by a small energy footprint and a high material efficiency
demonstrates an energy- and resource-conserving approach to material synthesis. By
optimizing the annealing conditions, including the innovative use of a graphite box for
sulfurization, this study not only ensures the precise control of the chemical environment
but also minimizes the potential waste and environmental impact. Moreover, this approach
eliminates the necessity of using toxic H2S gas. Such a methodology is important in
advancing the MoS2 material synthesis towards more sustainable practices.

Supercapacitors and batteries, characterized by their compact size, low thickness, and
mechanical robustness, are essential for integration into flexible electronics. Utilizing mate-
rials with wrinkled structures as electrodes can fulfill these requirements. The increased
specific surface area and minimized height of wrinkled films enhance their synergy with
electrochemically active materials, boosting performance. Moreover, such supercapacitors
demonstrate stable operation under mechanical stress due to the added flexibility provided
by the wrinkles. Additionally, lithium and lithium–sulfur batteries significantly benefit
from the unique properties of wrinkled electrode materials, including high stretchability
and specific surface area, thus enhancing their performance.

Compared to traditional capacitors, electrodes prepared from thin films with wrinkled
structures demonstrate superior qualities in supercapacitors [43–49]. Wrinkles notably re-
duce electrode resistance, a fundamental requirement for high-performing supercapacitors.
Moreover, integrating supercapacitors into wearable electronics demands resilience under
mechanical strains [50], making the development of wrinkled structures essential. Addi-
tionally, wrinkled structures serve to anchor transition metal oxides or metal nanoparticles
onto thin films, enhancing specific capacitance. Thus, these thin, flexible, and eco-friendly
supercapacitors hold great potential for energy storage and supply applications, leveraging
the unique advantages of wrinkled electrode architectures.

High-energy lithium-ion and lithium–sulfur (Li-S) batteries are at the forefront of next-
generation energy storage technologies, despite facing certain challenges. The quest for a
high specific capacity has led to increased interest in Li-alloy-based batteries [51,52]. In Li-S
batteries, the generation of lithium polysulfides during cycling reduces sulfur utilization
and diminishes the amount of active material, limiting battery performance [53]. The use of
wrinkled sheets to encapsulate sulfur leverages their ample nanopores to increase specific
surface area and polysulfide absorption. The wrinkles act as physical barriers, mitigating
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polysulfide shuttle effects and significantly boosting cyclability. Batteries incorporating
wrinkled thin films, serving both as active holders and flexible supporters, emerge as viable
candidates for future energy storage solutions, capitalizing on the unique mechanical and
chemical properties of wrinkled structures to overcome longstanding challenges.

5. Conclusions

This study successfully produced wrinkled MoS2 thin films using a novel sustainable
two-step approach, namely the sputtering of a precursor Mo or MoS2 film followed by
sulfurization in a graphite box. Better results were obtained when MoS2 precursor thin
films are used, suggesting that the existence of S in the film increases the efficiency of the
sulfurization process. These thin films were characterized as being textured using X-ray
diffraction, and the MoS2 crystallites grew with their (00L) planes preferentially oriented
parallel to the substrate surface. Micro-Raman spectroscopy confirmed the hexagonal
structure and revealed a relatively low defect density within the layer. Additionally, surface
morphology assessments via SEM and AFM also illustrated varied textures, with notable
surface wrinkling resulting from thermal processing dynamics. Chemical composition
examinations through XPS confirmed a Mo:S ratio near 1:2, suggestive of MoS2 synthesis.
The wrinkles obtained on the film surfaces post-sulfurization pave the way for tailored
application in energy storage, further highlighting the role of advanced materials in the
development of sustainable technological solutions.
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