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Abstract: The high complexity of the parameter–simulation problem in land surface models over
semiarid areas makes it difficult to reasonably estimate the surface simulation conditions that are
important for both weather and climate in different regions. In this study, using the dense site
datasets of a typical semiarid region over Tibet and the Noah land surface model with the constrained
land parameters of multiple sites, an enhanced Kling–Gupta efficiency criterion comprising multiple
objectives, including variable and layer dimensions, was obtained, which was then applied to
calibration schemes based on two global search algorithms (particle swarm optimization and shuffled
complex evaluation) to investigate the site-scale spatial complexities in soil temperature simulations.
The calibrations were then compared and further validated. The results show that the Noah land
surface model obtained reasonable simulations of soil moisture against the observations with fine
consistency, but the negative fit and huge spatial errors compared with the observations indicated
its weak ability to simulate the soil temperature over regional semiarid land. Both calibration
schemes significantly improved the soil moisture and temperature simulations, but particle swarm
optimization generally converged to a better objective than shuffled complex evaluation, although
with more parameter uncertainties and less heterogeneity. Moreover, simulations initialized with the
optimal parameter tables for the calibrations obtained similarly sustainable improvements for soil
moisture and temperature, as well as good consistency with the existing soil reanalysis. In particular,
the soil temperature simulation errors for particle swarm optimization were unbiased, while those
for the other method were found to be biased around −3 K. Overall, particle swarm optimization
was preferable when conducting soil temperature simulations, and it may help mitigate the efforts in
surface forecast improvement over semiarid regions.

Keywords: multi-objective calibration; Kling–Gupta efficiency; soil temperature; land surface param-
eters; soil moisture

1. Introduction

Soil temperature (ST) can significantly affect weather and climate by controlling land–
atmosphere interactions and land biochemical processes [1–3]. However, while land surface
models (i.e., LSMs) with efficient calibrations can achieve their various desired land surface
objectives (i.e., soil moisture, runoff, fluxes, etc.) over semiarid regions [4–7], due to the
great complexity of land surface physics and limited observations, the soil temperature
forecast directly produced by LSMs has received little attention. Research efforts have been
made recently in demonstrating surface ST improvement over greater time scales through
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semi-manually corrected LSMs with several key sensitive land surface parameters (i.e., leaf
area index, known as LAI, and the coefficient of the roughness length of heat, known
as CZIL) [8,9], but many other LSM land parameters that could affect medium-range ST
simulations are still unaddressed, e.g., the varied flux physics related to thermal and/or
hydraulic diffusion and conductivity over arid and semiarid lands can determine STs’
tendencies. Therefore, identifying the most robust corrected LSM by comparing different
calibration schemes could be of great significance for mitigating efforts in ST forecast
improvement over semiarid regions.

LSM performance over semiarid regions could be improved by reducing land surface
parameter uncertainties through calibration at a soil moisture (SM)-controlled scale (which
is usually climatological); therefore, the available SM datasets and the high LSM complexity
dimension related to the land surface parameters have played decisive roles in improving
most land simulations at greater time scales [10,11]. Nevertheless, the significant tempo-
ral scale differences between different soil layers (i.e., the diurnally varied surface but
the seasonally varied subsurface) [12], the demand for finer spatiotemporal-scale surface
conditions (as indicated by their high sensitivity to weather forecasts) [13–16], and the
complexities of interaction scales between SM and ST [17], etc., demand the establishment
of comprehensive objectives (i.e., SM and ST joint evaluation) for robust calibration. Mean-
while, frequently updated LSM systems are often subject to multiple factors that cannot
be quantified (i.e., the heterogeneity of spatial errors) [18–20], which could be critical for
medium-range forecast improvement against the high-spatiotemporal-resolution soil obser-
vation development [21]. Moreover, the spatial differences in surface simulations caused by
the surface heterogeneity of land surface parameters could be great [22,23], and multi-site
applications with multiple land parameter tables (or multi-corrected LSMs) could be more
suitable for regional high-resolution simulation. Generally, the comprehensive calibration
objectives, high LSM parameter update frequency, and high spatial heterogeneity among
sites demand more efficient and effective calibration.

Automatic calibration with a global search algorithm (GSA) is preferred to address
the inefficient convergence caused by high-dimensional parameters in LSMs, e.g., the well-
known shuffled complex evaluation (SCE) and particle swarm optimization (PSO) have
been significantly developed for LSM calibration over the decades [24,25]. SCE considering
a conservative evolutionary strategy (i.e., the population advantage retention mechanism
as complex shuffling) [26,27] was first introduced in hydrological model calibration with
flexible multi-objectives [28] and further developed for calibrating complex LSM simula-
tions by reducing the LSM parameter-related model complexities and noncommensurable
information [29,30]. Meanwhile, PSO considering a radical evolutionary strategy (i.e.,
the population disadvantage elimination mechanism as swarm flying) [31–33] was first
expanded with additional internal parameters (i.e., weight and constraint factors for a
desired general searching space) [33,34], and has been further recommended for broader
applications [35–38]. Furthermore, PSO and SCE have been widely compared for vari-
ous calibrations during hydrological applications, and both have advantages over each
other for different goals (i.e., the efficiency of PSO is preferable for relatively deterministic
objectives but the convenience of SCE is preferable for relatively flexible objectives, and
the effectiveness of PSO is preferable for the constrained LSM parameter space but the
determinacy of SCE is preferable for determining relatively more general LSMs) [39–43].

For calibration schemes based on GSAs (i.e., PSO and/or SCE), the parameter–simulation
problem in LSM was addressed by searching for the optimal LSM parameters and/or
simulations that minimized or maximized an objective function, which was used to measure
the distances between simulations (SIM) and observations (OBS), while the search strategy
and comprehensive criteria used in GSAs can be sensitive to the global optima, including
the LSM parameters, objectives, and simulations [24,25,29,30,39–43]. The comprehensive
multi-objective criteria in GSAs considering multiple variables and/or multiple criteria
require various transformations of different dimensions [28,35–38]. In particular, the
Kling–Gupta efficiency (KGE) criterion can consider the correlations and error information
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related to a single variable [44], which are suitable for solving various medium-scale LSM
problems [37,41]. Generally, the comprehensive objective of expanding KGE into multiple
objectives could be pursued to hopefully meet the various demands during medium-range
ST forecast calibration over semiarid regions [12–23], while a comparison of the GSA
embedded with this comprehensive objective could determine whether they are preferable
or not [39–43].

Note that Tibet boasts a diverse climate, featuring a distinct southeast–northwest
gradient from humid to arid lands, while the land use change transitions induced by
climate variations [45–48] in arid and semiarid lands (ASALs) have led to varied soil
characteristics (i.e., texture and thickness) through pedotransfer, and this has given rise
to complexities in observational soil water and heat flow interactions [49,50], e.g., the
missing mechanism of vapor transfer (such as the modulation uncertainties of SM—ST
on soil fluxes) [17] has caused unaccountable instances of globally applicable LSM pa-
rameterization physics [51–53]. Consequently, this has increased the distinguished soil
thermal and hydraulic parameter configurations (such as the diffusion and conductivity
functions) that are used to estimate various fluxes (which can determine the SM and ST
tendencies) in LSMs over regional ASALs [54–56], which usually need these experien-
tial LSM parameter uncertainties (configured into an LSM parameter lookup table) to be
addressed or reduced through various observation-based specific simulation-objective
calibrations [4–7,10,11,26–30]. Notably, though the dense soil observation network over
northwest Nagqu had been established for finer dynamic SM and ST objectives with
predominant land cover (grassland) and soil type (silt) [21,56–59], the generally varied
LSM parameter uncertainties’ complexities within regional surface forecasting are highly
challenged [18–20,49,50].

Overall, due to the high complexities of LSM parameter–simulation problems over
semiarid land, medium-range calibration lacks the investigation of the comprehensive
SM—ST objectives for solving spatial complexities in regional surface forecasting. To
fill this gap, this study introduced an enhanced KGE objective that was applied for joint
SM—ST calibration, which aimed to improve the medium-scale high-resolution ST fore-
cast over Tibet’s typical semiarid region (such as northwest Naqu). Based on the GSAs
that comprise high-density soil observations, the Noah LSM, two global optimizers (i.e.,
PSO and SCE), and the constrained space of the full land parameter table, two calibration
schemes were introduced and further compared with the LSM parameters’ spatial com-
plexes within heterogeneity and uncertainties, as well as calibration efficiency, effectiveness,
and robustness, with the intention to explore the calibration’s ability to solve the parameter
complexities in regional surface forecasts, and further highlight their general performance
for potential applications.

2. Data and Model
2.1. Datasets
2.1.1. Soil Observation

The multi-scale observation network constructed by the Institute of Tibetan Plateau
Research, Chinese Academy of Sciences (ITPCAS), comprises 57 stations in the central
Tibetan Plateau region adjacent to Nagqu City for measuring the SM and ST at four soil
depths, 0–5, 10, 20, and 40 cm. As the highest soil moisture network above sea level in the
world (the elevations of these stations vary in the range of 4470~4950 m) (Figure 1a), the
experimental area is characterized by a high soil moisture dynamic range and semiarid
climate, and the available datasets cover the period from 2008 to 2016 [21,57]. All the
sensors of each station were calibrated by taking into account the impact of soil texture and
soil organic carbon content on the measurements.
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Figure 1. (a) Topography (shaded) and site locations (filled dots) in Tibet (inset), with three types of
observation networks (rectangular boxes), roads (white lines), and sites (red dots). (b) Topography
(shaded) and soil sampling sites (filled dots) in the study area (bold black dots are our study sites).

To avoid the high complexities caused by local freeze–thaw processes, this study chose
mesoscale soil network (which has a dense spatiotemporal resolution of around 0.1◦ and
0.5 h intervals) datasets from the local warm season period that covered from 1 April to
31 July 2014 (when local ice and snow were absent) to assemble the targeted dense soil
observations over the typically semiarid region. Moreover, due to temporal discontinuity
in the raw soil datasets, simple quality control using inverse time–distance-weighted linear
interpolation was conducted to fill missing observations with 0.5 h intervals as follows.

i f t1 − t2 ≤ 3, ot =
t2−t

t2−t1 ∗ ot1 +
t−t1
t2−t1 ∗ ot2, t ∈ (t1, t2)

i f t1 − t2 > 3, ot = null
(1)

In Equation (1), t1 and t2 represent the starting and ending time values (in hours
measured since 1 April, i.e., 03:30 on 1 April equals 3.5) of the missing period range,
respectively, where t represents one time value during the missing period, and o represents
the soil value.

This simple linearly weighted interpolation was conducted when the soil observations
had missing periods of less than 3 h (which equals the meteorological forcing interval; see
Section 2.1.2), and several stations with missing periods of more than 3 h were rejected.
After this simple quality control, there were 12 stations with full temporal continuity and
a spatial resolution of around 0.1◦ left for this study (Figure 1b). The elevations of these
selected sites varied around 4700 m, and their main vegetation types were grassland. Note
that the main soil texture (the highest percentage of the top-soil texture) was chosen as the
soil type required by the Noah LSM, and the main soil type of our study region was silt,
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except for the C4 and and M3 sites (Table 1), whose sand percentages were larger than the
sum of the remaining percentages.

Table 1. Description of the available soil stations.

Index Site Longitude Latitude Altitude (m) Soil Type (Soil Texture, Percentage) Description

1 C1 91.77 31.68 4647 Silt (clay, 9.4%; silt, 54.8%; sand, 33.1%)

Vegetation Type:
grassland.
Slope Type: 1.
Soil layer depth: 5, 10, 20,
and 40 (cm).

2 C2 91.81 31.69 4672 Silt (clay, 4.4%; silt, 54.1%; sand, 41.5%)
3 F2 91.79 31.70 4697 Silt (clay, 3.9%; silt, 53.2%; sand, 42.9%)
4 F3 91.80 31.72 4699 Silt (clay, 3.8%; silt, 49.5%; sand, 46.7%)
5 F4 91.77 31.70 4737 Silt (clay, 9.3%; silt, 62.7%; sand, 28%)
6 C4 91.84 31.62 4608 Sand (clay, 3.4%; silt, 29.4%; sand, 67.2%)
7 M1 91.75 31.82 4818 Silt (clay, 5.5%; silt, 56.2%; sand, 38.3%)
8 M2 91.78 31.75 4723 Silt (clay, 7.3%; silt, 54.9%; sand, 37.7%)
9 M3 91.79 31.66 4574 Sand (clay, 4.7%; silt, 40.2%; sand, 55.1%)

10 M4 91.75 31.64 4570 Silt (clay, 5.9%; silt, 46.7%; sand, 47.4%)
11 M5 91.79 31.59 4539 Silt (clay, 8%; silt, 60.9%; sand, 31.1%)
12 P5 91.91 31.61 4780 Silt (clay, 9.6%; silt, 56%; sand, 34.4%)

In addition, to compare the site simulation performance against the existing high-
resolution soil product during our study period, GLDAS [58] and ERA5 [59] grid soil
reanalysis data with resolutions of 3 h/0.25◦and 1 h/0.1◦, respectively, were collected for
intercomparison with the surface simulations during this study.

2.1.2. Meteorological Forcing

The surface forcing datasets developed by ITPCAS, with a 3 h interval (3 h) and a
resolution of 0.1◦ × 0.1◦, were produced by merging a variety of data sources [60,61],
including the China Meteorological Administration (CMA) weather station observation
data (i.e., wind, air temperature, relative humidity, sunshine duration, precipitation, and
surface pressure), TRMM 3B42 satellite precipitation analysis data, GEWEX-SRB down-
ward shortwave radiation data, the Modern Era-Retrospective Analysis for Research and
Applications (MERRA) pressure data, and global land data assimilation system (GLDAS)
data (i.e., wind, air temperature, and relative humidity). Moreover, this dataset covers the
period 1979–2018, and the surface air temperature and wind were reassembled at screen
levels of 2 and 10 m, respectively.

To match the selected stations that passed through simple quality control (QC), grid
forcing was simply interpolated for the available station points and data periods (from
1 April to 31 July 2014) by using the inverse distance-weighted quadratic spline interpola-
tion method. As the difference in the spherical distance between different stations over a
small region was too small for calculation, the ongoing mentioned distance was measured
with the differences in longitude and latitude. Then, the multi-site forcing datasets were
assembled to drive the Noah LSM.

2.2. Model

The Unified Noah LSM was designed to understand the complex biophysical, hydro-
logical, and bio-geochemical interactions between the land surface and the atmosphere
at micro- and mesoscales, and has been widely used in numerical mesoscale weather
prediction and regional climate models to improve the prediction of the impacts of land
surface processes on regional weather, climate, and hydrology [12].

The Noah LSM uses a simple time driver for site simulations, and it can link to
predefined external data such as a land surface parameter table, forcing, initial conditions,
various physical–dynamic-specific controllers (i.e., the forcing interval time step size,
the model integral step size, and soil texture characteristics), etc., through universally
embedded interfaces. In addition, to fulfill the multi-point applications with running
efficiency in this work, the read and write in- and/or output interfaces for Noah LSM,
such as forcing, land surface parameter tables, soil textures, and simulations, were simply
extended in a distributed manner.
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To reduce the complexities caused by the land surface characteristic and dataset
uncertainties in the regional site-scale-specific soil temperature simulations, except where
soil textures were slightly varied for different sites in this study (i.e., the silt or sand soil
type), the model for all sites was initialized with the same soil/surface textures, including
the vegetation and slope types, the same soil depths of 5, 10, 20, and 40 cm, respectively, a
30-min runtime step (equal to the soil observation network), and the same screen levels at a
3 h interval step for forcing (equal to the forcing data interval).

3. Methods
3.1. Calibration Scheme

The general process of calibration can be described as considering that Noah LSM,
based on physical concepts, has an n-dimensional parameter space (Ω = {ω1, ..., ωn},
n = 46) that needs to be calibrated by using observations and corresponding model sim-
ulations to respond to the parameters, or the objective function f (Ω), which was used to
measure the distance between the simulation and observations. Then, calibration can be
described as solving the following problem: Minimize or maximize f (Ω) = f (ω1, ..., ωn),
ω ∈ Ω. The ideal solution to this problem was to find the parameter ω∗ (or the optimal
parameters) in the parameter space Ω that minimizes or maximizes the objective function
f (Ω) (or the optimal objective), and the potentially least biased simulation (or the optimal
simulation) can be achieved alongside this.

Due to the high nonlinearity (i.e., the high-dimensional parameter space and the multi-
objective simulations), intelligent evolution considering a stochastic searching strategy
based on both population (or global) and individual (or local) evolution was desired
to find the global optimal solution, which is also known a the GSA. The GSA of this
study, described in Figure 2, used a general framework considering broader flexibility to
encourage various global optimizers and/or LSMs updates. It had three sequential modules
as follows: Firstly, the optimizer parameter and population were initialized sequentially.
Then, global searching that compared the LSM and observations was conducted to find
the ongoing mentioned solution with potentially global optima. Finally, the optima were
output when the GSA stop criteria were met.

To insert the LSMs (i.e., the Noah LSM) into the GSA framework, the optimizer–LSM
interface (the Optimizer-LSM IO in Figure 2) was designed with flexibly corresponding
modules including a land parameter space, an LSM time integration controller, multi-
objective metrics, and the observations. Moreover, the global and local searching during
both PSO (i.e., group and particle moving) and SCE (i.e., complex shuffling and individ-
ual mutation) were designed based on the group–individual interaction proceeding the
modules and the quasi-Monte Carlo perturbations [31–33].

It should be noted that the stop criterion (maximum search time) of the GSA was
set to 105 to improve the efficiency of the GSA runs. In addition to the optimizer input
parameters, the local searching strategy that controls the stochastic update (i.e., the indi-
vidual flying speed of PSO or the individual mutation of SCE) was based on those given
by [26,27,33,34,41] to keep the generality of PSO and SCE. Moreover, to ensure a relatively
fair optimizer difference comparison, the population size (i.e., the particle number in PSO
and/or the individual number in SCE) of both PSO and SCE should be equally considered.
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3.1.1. Particle Swarm Optimization

The basic PSO algorithm process adopts the concept of group social behavior. It uses a
comparison between individuals and their previous positions to obtain local solutions, and
a comparison between individuals and groups to obtain the global optimal solution, using
few parameters [31,32].

The algorithm first randomly selected an initial population consisting of np particles,
(here, np = 2(2n + 1)) which represent the candidate optimal solution and contain em-
pirical information or the position. The position includes both particle and population
parts. The former includes the individual’s objective function value and velocity (i.e., the
rate of change in position); the latter includes the optimal objective function value and
optimal speed of the group. Then, the following three steps are carried out: (1) optimizing
individuals by comparing their current and previous objective function values to obtain
the current optimal position; (2) population optimization to find the optimal position of the
population by sorting all particles; (3) each particle obtains its own evolutionary selection
based on the weight information of individual and group experiences. When all particles
were updated to a new position based on their evolutionary selection, the group update
was completed. The above three steps were repeated until the stop condition was met
(Figure 2). PSO also required additional parameter settings in the group update step, where
each particle in the group was updated using the following equation:

Vin = Lim1 × Lim2 ×
[
w × Vin + c1 × rand2 × (Pin − Ωin) + c2× rand3 ×

(
Pgn − Ωin

)]
+ c3 × vrand,

Ωin= Ωin+Vin,

Lim1 = [(1−vrand) + rand1 × vrand] = vrand × (rand1 − 1)+1,

Lim2 = vmax ×
√

n

(2)
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In Equation (2), Ωin is the current position of the ith particle, and Ωin= (ωi1, ωi2, . . . , ωin).
Pin is the optimal position before the ith particle, and Pin= (pi1, pi2, . . . , pin). Vin is the velocity
of the ith particle, and Vin= (vi1, vi2, . . . , vin). Pgn represents the optimal particle of the
population. rand1, rand2, and rand3 are three stochastic equations with a range of variation
of [0, 1]. vmax and vrnad are two parameters that limit the degree of the velocity vector
and the random search speed (i.e., 0.5 and 0.15) [34], respectively, and Lim1 and Lim2 are
the two corresponding numbers. w represents the variation in internal weight between 0
and 1 (i.e., 0.9) [33,41]. c1, c2, and c3 are positive constants (i.e., 2.0, 2.0, and 10−7) [31,32].
Except np, all the parameters that can affect the generality of PSO are vaguely related to
the dimension of the parameter space.

3.1.2. Shuffled Complex Evaluation

The process of the SCE algorithm includes a gradient search to obtain local solutions,
and complex dragging to obtain the global optimal solution. During the search process,
complex shuffling allows for information sharing among each complex, thus avoiding
local solutions. The gradient algorithm ensures that SCE can quickly find every local
solution [26].

The algorithm randomly selects the initial population, which includes nc communities
(nc was affected by the number of approximate conditions in the search, and nc ≥ 1), and
each community contains nm individuals (nm ≥ n + 1). Then, the following three steps
are carried out: (1) calculating the objective equation value for each point, and based on
these values, the original population is reorganized into nc communities; (2) based on the
simple gradient search algorithm, after a period of independent evolution (i.e., complex
competitive evaluation, CCE [24,26]), new individuals from each community are mixed to
form a new population; (3) reordering the individuals to form nc new communities. The
first to third steps are repeated until the stop iteration condition is met (Figure 2). In the
competitive evolution step, the nm individuals in each community were determined by the
following triangular probability distribution (Pi) to determine the previous generation or
select elimination:

Pi =
2 × (nm + 1 − i)
nm × (nm + 1)

, i = 1, ..., nm (3)

SCE requires necessary settings to complete the steps of competitive evolution (CCE),
where nm was 2n + 1 and nc was 2 [26]. The number of training sessions required for the
CCE algorithm (ne) and the number of internal and external iterations (α and β) were n + 1,
nc, and nm, respectively. Except α and β, all five parameters that can affect the generality of
SCE were only related to the dimension of the parameter space. Thus, the total individual
number of SCEs was nc ∗ nm = 2(2n + 1), which equals the total particle number (np)
of PSO.

3.1.3. The Multi-Objective Metrics

For calibration schemes based on global stochastic search algorithms (i.e., PSO and/or
SCE), the parameter–simulation problem in LSMs was addressed by searching for the
optimal parameters and/or simulations that minimized an objective function, which was
used to measure the distances between simulations (s) and observations (o). In the present
study, the KGE value (KGE09; [44]) was used as an objective criterion to evaluate the Noah
LSM. KGE09 was defined as follows:

KGE09 = 1 −
√
(CC(s, o)− 1)2 + ( STD(s, o)− 1)2 + (M(s, o)− 1)2

CC(s, o) = ∑nt
i=1[(si−snt)(oi−ont) ]

∑nt
i=1(si−snt)

2∑nt
i=1(oi−ont)

2

M(s, o) = snt
ont

, STD(s, o) =

√
∑nt

i=1(si−snt)
2

nt√
∑nt

i=1(oi−ont)
2

nt

(4)
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In Equation (4), KGE09 is a function of three factors (CC, STD, and M), i is the time
index, nt represents the total time numbers, and snt and ont represent the mean values.
CC(s, o) is the correlation coefficient, where STD(s, o) is the relative ratio between the
standard deviation of s and standard deviation of o, and M(s, o) is the relative ratio of the
mean values.

KGE09 was derived through decomposition of the mean square errors, so it considers
both the error and correlation information between s and o, but only in the temporal
dimension. However, evaluating the LSM by considering the temporal, variable, and soil
layer dimensions requires s and o values in a temporal sequence for multi-dimensional
applications. The three factors (CC, STD, and M) can be calculated from the variable and
layer dimensions simply by using the average, which was similar to the Pareto set [28,30],
but the multi-objective transform of the criteria KGE09 can be derived with a linear factor
weighted by the overall objective dimension. The calculation uses the following functions:

∼
CC(s, o) ≡ 1

ne

ne
∑
e

1
nl

nl
∑
l

∑nt
i=1

[(
se,l

i −se,l
nt

)(
oe,l

i −oe,l
nt

) ]
∑nt

i=1

(
se,l

i −se,l
nt

)2
∑nt

i=1

(
oe,l

i −oe,l
nt

)2 ,

∼
M(s, o) ≡ 1

ne ∑ne
e

1
nl ∑nl

l
se,l

nt

oe,l
nt

,
∼

STD(s, o) ≡
1
ne ∑ne

e
1
nl ∑nl

l

√
∑nt

i=1

(
se,l
i −se,l

nt

)2

nt

1
ne ∑ne

e
1
nl ∑nl

l

√
∑nt

i=1

(
oe,l
i −oe,l

nt

)2

nt

(5)

KGE = 1 −

√( ∼
CC(s, o)− 1

)2
+

( ∼
STD(s, o)− 1

)2
+

( ∼
M(s, o)− 1

)2
(6)

In Equations (5) and (6), e and l are the variable and layer indexes, respectively,
and ne and nl are the total numbers of variables and layers. Therefore, the factors CC

and STD indicate overall statistics related to the vector objectives
∼

CC(s, o) and
∼

STD(s, o),
respectively. KGE09 was then calculated as an enhanced KGE with Equation (6), which
considers multi-variable and multi-layer objectives. The second term on the right-hand
side of Equation (6) is always greater than 0, KGE then varies between −∞ and 1. Note
that due to the unsolved vertical and/or thickness heterogeneity (i.e., one parameter but
multiple layers) in LSM’s soil layer configuration as a former study suggested [62], here,
the two surface soil layers (nl = 2) were chosen to fulfill the KGE objective for solving
the land parameters’ horizontal complexities that account for the reduction in the regional
surface forecast’s spatial errors and neglect the land parameters’ vertical complexities.

3.2. Land Parameters
3.2.1. Parameter Space

As shown in Table 2, the land surface parameter ranges were the same as those
given by [4,5,37,41]. Moreover, the default unobserved parameter values, including the
vegetation, soil, and general and partial initial types, were initialized as the default Noah
LSM parameter lookup table (https://ral.ucar.edu/solutions/products/unified-wrf-noah-
lsm, accessed on 25 March 2024), while the rest of the initial types were initialized with
the soil observations (i.e., SM and ST) for the LSM’s preparation at the very beginning
(see Section 4). Therefore, it should be noted that all the sites, simulations were initialized
with the same physical parameter values but different initial parameter values. And this
could determine the observed and/or unobserved parameter uncertainty during the soil
temperature calibrated simulation.

https://ral.ucar.edu/solutions/products/unified-wrf-noah-lsm
https://ral.ucar.edu/solutions/products/unified-wrf-noah-lsm
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Table 2. Ranges of Noah LSM parameters.

Type * Parameter Description (Unit) Minimum Maximum

Vegetation
(11)

TOPT Optimum transpiration temperature (K) 293 303
CMCMAX Maximum canopy water content (mm) 0.1 2
CFACTR Canopy water parameter (−) 0.1 2
RSMAX Maximum stomatal resistance (m) 2000 10,000
RSMIN Minimum stomatal resistance (m) 40 1000

RGL Parameter used in solar radiation term of canopy
resistance (−) 30 150

HS Parameter used in vapor pressure deficit term of
canopy resistance (−) 36.35 55

SNUP Snow depth threshold (m) 0.02 0.08
LAIMAX Maximum leaf area index (−) 0.05 6
LAIMIN Minimum leaf area index (−) 0.05 5

Z0 Roughness length(m) 0.01 0.99

Soil(10)

BB “b” parameter (−) 3 9

DRYSMC Dry soil moisture threshold where direct
evaporation from top layer ends (−) 0.02 0.2

F11 Soil thermal diffusivity coefficient (−) −3.209 0.162
MAXSMC Porosity (−) 0.3 0.55

REFSMC Reference soil moisture where transpiration stress
begins (−) 0.15 0.5

SATPSI Saturated matric potential (−) 0.01 0.7
SATDK Saturated hydraulic conductivity (mm/s) 5.00 × 10−4 3.00 × 10−2

SATDW Saturated soil diffusivity (−) 5.71 × 10−6 2.33 × 10−5

WLTSMC Wilting point (−) 0.01 0.138
QTZ Soil quartz content (−) 0.1 0.9

G
eneral(8)

SBETA Parameter used in the computation of vegetation
effect on soil heat flux (−) −4 −1

FXEXP Bare soil evaporation exponent (−) 0.2 4
CSOIL Soil heat capacity for mineral soil component (−) 1.26 × 106 3.50 × 106

REFDK Reference value for saturated hydraulic
conductivity (m/s) 5.00 × 10−7 3.00 × 10−5

REFKDT Reference value for surface infiltration (−) 0.1 10
FRZK Ice threshold (−) 0.1 0.25
ZBOT Depth of root soil layer (m) −20 −3

CZIL Parameter used in the calculation of roughness
length of heat (−) 0.05 0.8

Initial(16)
SMC1 The first-layer soil moisture (m3.m−3) 0.05 0.5
SMC2 The second-layer soil moisture (m3.m−3) 0.05 0.5
SMC3 The third-layer soil moisture (m3.m−3) 0.05 0.5
SMC4 The fourth-layer soil moisture (m3.m−3) 0.05 0.5
SH2O1 The first-layer soil water content (m3.m−3) 0.05 0.5
SH2O2 The second-layer soil water content (m3.m−3) 0.05 0.5
SH2O3 The third-layer soil water content (m3.m−3) 0.05 0.5
SH2O4 The fourth-layer soil water content (m3.m−3) 0.05 0.5
STC1 The first-layer soil temperature (K) 260 300
STC2 The second-layer soil temperature (K) 260 300
STC3 The third-layer soil temperature (K) 260 300
STC4 The fourth-layer soil temperature (K) 260 300

T1 Skin temperature (K) 260 300
CMC Canopy water vapor content (kg/m3) 0 0.001

EMISSI Surface emissivity (−) 0 1
ALBEDO Surface albedo (−) 0.08 0.7

* Parentheses indicate the total number of parameters of a specific type.
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Note that the land surface model parameter ranges were quite irregular. To en-
sure rapid convergence of the GSA, threshold normalization was conducted in the GSA
as follows:

∼
ω =

ω − ωmin
ωmax − ωmin

(7)

where ω, ωmin, ωmax, and
∼
ω represent the default, minimum, maximum, and normal-

ized parameter values, respectively. Moreover, all the default parameter values of this
study were obtained from a 90-day warm-up run. The default parameters (whose dimen-
sion was n) were normalized to generate the first-generation population of GSA in the
parameter space.

3.2.2. Physical Constraints

Due to the physical relationships between different parameters of the same soil type
(see Table 1), i.e., whose texture differences could influence the soil evaporation rate,
hydraulic conductivity, etc., necessary constraints can help avoid ineffective searches by
the optimizer. However, excessive constraints can lead to inefficient optimizers. Therefore,
here, we consider that the soil moisture of the first two surface soil layers (SMC1 and
SMC2) only varies between the wilting point (WLTSMC) and the soil moisture where
transpiration stress begins (REFSMC) [28], which can be written as follows:

WLTSMC < SMC1 < REFSMC, WLTSMC < SMC2 < REFSMC (8)

Note that the two constraints and the multi-objective metrics comprise the multi-
objective evaluator. And the multi-objective metric of the LSM only corresponds to the
optimizer if this specific LSM parameter space has passed through the constraints; other-
wise, the optimizer will retain fewer features of the previous generation’s population and
expand the search domain of the next generation.

3.3. Performance Evaluation
3.3.1. Heterogeneity and Uncertainty

The parameter heterogeneity during this work was defined as the land parameter dif-
ferences among sites or the parameter sensitivities against the sites. Since the parameter and
site numbers (i.e., 46 and 12, respectively) were large, the dimensionality of the parameter–
site sensitivities could be huge (i.e., far greater than 46 × 12). To fulfill this objective, the
relative sensitivities among parameters were compared by using the predefined reference
in the parameter space [11,29]. Two thresholds of the parameter space, 0.67 and 0.33, were
taken as the upper and lower limits. For one land parameter compared to the others, more
(or fewer) sites can reach (or not) its one limit; thus, sites were relatively sensitive to this
parameter at the confidence of this limit. Moreover, the parameter uncertainty during this
work was defined as the land parameter range and outlier against the sites. For all sites,
smaller parameter ranges of the upper- and lower-limit intervals (such as the parameter’s
interquartile range) indicated fewer uncertainties, while fewer parameter outliers indicated
fewer unaccountable factors during parameter uncertainties.

3.3.2. Regional Overall Evaluation

To qualify the regional performance of surface conditions, the spatiotemporal differ-
ences among the control simulations, the calibrated simulations, the validated simulations
of the calibrated models, the site observations, and the available surface reanalysis were
compared using the following equations.

RMSET =

√
∑nt

i=1(si − oi)
2

nt
, CCT =

∑nt
i=1[(si − snt)(oi − ont)

]
∑nt

i=1(si − snt)
2∑nt

i=1(oi − ont)
2 (9)
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RMSES =

√
∑ns

j=1
(
sj − oj

)2

ns
, CCS =

∑ns
j=1

[(
sj − sns

)(
oj − ons

) ]
∑ns

j=1
(
sj − sns

)2
∑ns

j=1
(
oj − ons

)2 (10)

In Equations (9) and (10), i and j represent the ith time and the jth site, respectively.
RMSET and CCT represent for the root-mean-square errors and the correlation coeffi-
cient, respectively, in temporal sequence, while RMSES and CCS represent those in the
spatial sequence.

To determine the overall spatial performance of one datapoint, the quantitative re-
gional horizontal and vertical errors (i.e., the averaged value on a certain dimension of the
overall root-mean-square errors) were defined as

∑T RMSES =
∑nt

i=1 RMSES

nt
, ∑L RMSES =

∑nl
j=1 RMSES

nl
(11)

where the superscripts T and L represent the temporal and the soil layer dimension,
respectively.

Moreover, besides the spatial average, linear fitting between the observations and
simulations for all sites was conducted in this work to simplify the complexity (i.e., linear
relation, coefficient of determination, etc.) among regional datasets. In addition, to deter-
mine the main spatial characteristics of the errors among two different datasets (i.e., OBS
and SIM), the errors were resampled into 100 bins and then fitted by a 2-peak Gaussian
function (describing the distributions with centroid, peak width, peak, etc.) to generate at
most two main signals on the errors.

3.3.3. Efficiency and Effectiveness

The calibration efficiency of this work was defined as the fitness values (or the best
population location, Pb) against the number of LSM runs (or the convergence speed). Better
fitness values (i.e., larger KGE values) with fewer LSM runs indicated more efficiency.
However, because it was often not possible to have both because of the physical constraints
of the LSM parameters, the success rate (i.e., the ratio between the constrained individual
numbers and the population size during one generation) was usually assessed at the same
time to explain this during the calibration comparison. A larger success rate indicated
eliminating more individuals, or a larger searching domain, with stronger evolution ability.

The calibration effectiveness could be simply defined as the optimal objectives (i.e.,
the final KGE values). Larger optimal KGE values indicated more effective calibration.
Nevertheless, since the multi-objective KGE vector was designed in one single metric for
one single site during this work, the layer-dimension averaged value of the overall root-
mean-square errors in a temporal sequence (i.e., ∑L RMSES) was also applied in evaluating
the overall calibration effectiveness for one site. Smaller ∑L RMSES values indicated better
effectiveness. Moreover, a Taylor diagram [63] that could assemble the comprehensive
statistics (i.e., standard deviation, root-mean-square difference, and correlation) in a tempo-
ral sequence between the simulations and observations was also created for comparison
with the method’s relative effectiveness. Usually, a smaller distance away from the observa-
tion location (where there is a zero root-mean-square difference, a correlation coefficient of
1, and the observed standard deviation) indicated better effectiveness.

In addition, the calibration robustness of this study was simply defined as the per-
formance of the various regional evaluation metrics (as described in Section 3.3.2) for the
simulation of the calibrated models. Smaller spatiotemporal differences and overall spatial
errors, a larger fitting slope and coefficient of determination, and a closer error distribu-
tion to normal indicated more robustness. Note that the spatial resolution of the existing
high-resolution soil reanalysis was 3 h, while that of the soil simulations was 30 min. The
simulation datasets were linearly interpolated into 3 h for a broad comparison during this
study.
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4. Experiments

The experimental design is shown in Figure 3, and four steps were conducted as
follows. (1) Data preparation: Simple quality control was conducted first for the raw
soil observations to ensure that the selected datasets with a four-month-long period were
temporally consistent. When preparing the reformatted forcing and the multi-site land
static parameters, three-month-long controlled LSM runs were conducted to achieve the
multi-site default parameter values. (2) Control run: A one-month-long (the controlled
period) run with the default parameter values was conducted to determine the controlled
parameters and simulations that can describe the problematical or biased relations between
land parameters and soil temperature simulations. (3) LSM calibration: For the first fifteen
days of the controlled period, two calibrations (based on PSO and SCE) with the same
parameters as the control run were conducted to achieve the multiple optima of the GSA. A
comparison of the different optimizers in the multiple optima was conducted to determine
the optimizer’s ability to perform soil temperature calibration, and simulation differences
among the control run, calibrations, and observations were assessed to determine the
overall advantages and weaknesses of the GSA in soil temperature calibration. (4) Calibra-
tion validation: For the following fifteen days of the controlled period, two verification
simulations with the optimal parameters derived from the calibration runs were conducted
to achieve the optimized simulations. The various simulation differences among control
run, calibration, and validation were compared to identify the calibration performance on
the medium-range soil temperature forecast.
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Moreover, due to the covering period of the forcing (covering 1979–2018) and soil
(covering 2008–2016) datasets being different, the recent cross-time period (2014) with
more available dense soil sites (Figure 1b) in both datasets was chosen as the study period.
Considering the well-verified accuracy of both datasets [21,57,60,61] and the few surface
transfers of northwest Naqu, the various unaddressed influences of climatic variation
uncertainties (i.e., forcing and soil texture uncertainties) could be neglected; thus, the
experimental design mainly concentrates on the objective of regional parameter–simulation
issues over semiarid land during potential regional forecast scenarios.

It should be noted that the multi-site static land parameters and initial conditions
during the data preparation step were derived from the original Noah LSM parameter
tables and observations, respectively. As shown in Table 3, all the parameters of the control
run (CTR) were initialized from the 3-month multi-site LSM warm-up run, and this was
the same with the two calibration runs (i.e., PSOC and/or SCEC). Thus, the simulation
differences between CTR and calibration can be attributed to the GSA’s performances.
Meanwhile, all the parameters of the validation run (i.e., PSOO and/or SCEO) were initial-
ized from the calibration runs. Thus, the differences between the validation simulations
and observations should directly account for the GSA’s optimal parameter differences,
while the simulation differences between the validation and CTR should account for the
GSA’s performance robustness.

Table 3. Experiments conducted in this study.

EXPT Objective * Initialization Period
(mmdd-mmdd Year) Description

CTR - 90-day warm up 0701–0731 2014 Control run
PSOC KGE(SM, ST) 90-day warm up 0701–0715 2014 Soil calibration with PSO
SCEC KGE(SM, ST) 90-day warm up 0701–0715 2014 Soil calibration with SCE
PSOO - PSOC 0715–0731 2014 Soil forecast with PSO optimizer
SCEO - SCEC 0715–0731 2014 Soil forecast with SCE optimizer

* SM = soil moisture, ST = soil temperature.

All the experiments were run at the 30 min step of the soil layers and the 3 h step of
meteorological forcing. Nevertheless, due to the observation limits, the objectives of the
calibration during this study only consider the soil moisture and temperature variables.
Moreover, the same individual case duration for both the calibration and validation runs
and the sum of their duration was equal to the CTR run, which should lay a foundation
for GSA’s potential application during the high-frequency updating of soil simulations of
medium-range forecasts.

5. Results
5.1. Case Description

The site-averaged 3 h meteorological forcing values against time during the study
period are shown in Figure 4. During July 2014, the diurnal temperature variation mostly
ranged between 5 and 15 ◦C, with an extremely dry atmosphere and relative humidity
values mostly below 1%. The relatively low wind speed generally varied between 0 and
6 m.s−1, and the wind direction was mostly dominated by southern flow (between 180◦

and 270◦) from 1 July to 10 July and from 16 July to 21 July, respectively, but the opposite
was true in other periods. The incoming shortwave radiation exhibited strong diurnal
variation between 0 and 600 W.m−2, and the incoming longwave radiation varied between
250 and 350 W.m−2. The pressure was generally around 586 hPa and the maximum 1 h
precipitation was about 5 mm (in Figure 4d) around 10 July.



Atmosphere 2024, 15, 591 15 of 32Atmosphere 2024, 15, x FOR PEER REVIEW 16 of 33 
 

 

 

Figure 4. Site−averaged forcing datasets for the study area from 1 July to 31 July 2014: (a) tempera-

ture (blue) and humidity (red), (b) wind speed (blue) and wind direction (red), (c) shortwave (blue) 

and longwave (red) radiation, and (d) pressure (blue) and precipitation (red). 

The CTR simulations and OBS for the surface layer are compared in Figure 5. The 

linear fit for SM exhibited a small increasing slope (about 0.21) with weak consistency, 

and ST had a larger decreasing slope (about −0.46) with strong differences (Figure 5a). The 

spatial root-mean-square error (RMSES) for soil moisture was generally around 0.15 m3 

m−3 and it increased slowly with time. The CCS decreased with time, and the RMSES and 

CCS for soil temperature exhibited diurnal differences. The Gaussian histogram fits for the 

errors of SM and ST had bimodal distributions, where the RMSES and CCS for soil mois-

ture were about 0.17 m3 m−3 and 0.58, respectively, and the RMSES for the soil temperature 

was quite large and the CCS was even negative. 

A previous study suggested using either the ITPCAS forcing datasets or the im-

proved heat-sensitive parameter Z0h (the same as CZIL in Table 2) to improve soil tem-

perature simulations with the Noah LSM over a surface near our study area [8], and the 

non-negligible biased soil temperature in CTR indicated a more effective soil temperature 

calibration scheme in the present study. 

Figure 4. Site−averaged forcing datasets for the study area from 1 July to 31 July 2014: (a) temperature
(blue) and humidity (red), (b) wind speed (blue) and wind direction (red), (c) shortwave (blue) and
longwave (red) radiation, and (d) pressure (blue) and precipitation (red).

The CTR simulations and OBS for the surface layer are compared in Figure 5. The linear
fit for SM exhibited a small increasing slope (about 0.21) with weak consistency, and ST
had a larger decreasing slope (about −0.46) with strong differences (Figure 5a). The spatial
root-mean-square error (RMSES) for soil moisture was generally around 0.15 m3 m−3 and
it increased slowly with time. The CCS decreased with time, and the RMSES and CCS for
soil temperature exhibited diurnal differences. The Gaussian histogram fits for the errors
of SM and ST had bimodal distributions, where the RMSES and CCS for soil moisture were
about 0.17 m3 m−3 and 0.58, respectively, and the RMSES for the soil temperature was quite
large and the CCS was even negative.
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Figure 5. Comparison of CTR simulations and observations of the surface layer for all sites during
July 2014. (a,b) Fit between simulations and observations for surface soil moisture and temperature,
respectively. (c,d) Spatial difference (RMSES, blue line; CCS, red line) versus time for surface soil
moisture and temperature, respectively. Statistics for RMSES and absolute CCS are also shown.
(e,f) Gaussian histogram fits (bar, frequency; red line, best fit; RMSET and CCT among all sites are
shown in the box plot) for errors between simulations and observations of surface soil moisture and
temperature, respectively.

A previous study suggested using either the ITPCAS forcing datasets or the improved
heat-sensitive parameter Z0h (the same as CZIL in Table 2) to improve soil temperature
simulations with the Noah LSM over a surface near our study area [8], and the non-
negligible biased soil temperature in CTR indicated a more effective soil temperature
calibration scheme in the present study.

In general, the surface soil moisture in CTR exhibited better temporal and spatial
consistency with OBS than the soil temperature. The spatial differences in the soil moisture
increased slightly with time, whereas those in the soil temperature exhibited strong diurnal
variation. Thus, the LSM was not effective at simulating the multi-site soil temperature
under forcing over a typical semiarid region.
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5.2. Calibration Performance
5.2.1. Parameter Heterogeneity and Uncertainty

The optimal parameters of different sites for different types and optimizers are shown
in Figure 6. For the “Vegetation” type in the PSO’s optimal parameter space (Figure 6a),
the upper reference limit (i.e., 0.67) for RGL, RSMIN, CFACTR, TOPT, and Z0 was quite
frequently crossed against the sites, while LAIMAX and RSMAX behaved oppositely (i.e.,
could only mostly reach 0.67). For the “Soil” and “General” types, except QTZ and SBETA,
the upper limits for all other parameters could be frequently crossed against the sites.
Nevertheless, for the “Initial” type (Figure 6d), except STC1, STC2, and STC4, the upper
limits for all other parameters could be frequently crossed against the sites, and this was
quite pronounced for ALBEDO, EMISSI, CMC, T1, STC3, SH2O3, and SH2O1. In general,
10 optimal land parameters in the optimal parameter space (including 46 parameters) of
PSO seem to be less sensitive to sites indicated by fewer sites crossing with the upper
reference limit when compared to other land parameters.
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Figure 6. The optimal vegetation (a), soil (b), general (c), and initial (d) land surface parameters of
the twelve sites for the PSO optimizer. (e–h) are the same as (a–d), but for the SCE optimizer. The
two dashed circles represent the reference limits of 0.33 (inner) and 0.67 (outer) in the parameter space.

For the optimal parameter space of SCE, LAIMAX of the “Vegetation” type, REFDK
and SBETA of the “General” type, and STC2 and SMC3 of the “Initial” type could mostly
reach 0.67 but were not crossed for most sites. In general, six optimal land parameters
in the SCE’s optimal parameter space seemed to be less sensitive to sites. And the SCE’s
optimal parameter space was more sensitive to sites when compared to PSO. This indicates
that SCE calibrations have larger LSM parameter heterogeneity over typical semiarid land,
which is consistent with a previous study [64].

Moreover, the optimal parameter ranges and outliers against sites between PSO and
SCE are shown in Figure 7. For the “Vegetation” type, except the CFACTR, SNUP, LAIMIN,
and Z0 parameters, all other PSO optimal parameters have smaller ranges than SCE. For
the “Soil” and “General” types, except WLTSMC and FXEXP, all the other SCE optimal
parameters have smaller ranges than PSO. Meanwhile, for the “Initial” type, except SH2O2
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and SH2O3, all the other SCE optimal parameters also have smaller ranges than PSO. Thus,
except for the “Vegetation” type, most of the optimal parameters for PSO exhibited more
spatial differences than those for SCE. Nevertheless, the optimal parameters of the “Initial”
type for SCE have more outliers than PSO. This indicates that SCE achieved small ranges for
the “Soil” and “General” types, but possibly at the cost of large “Vegetation” uncertainties
and more unaccountable initial parameters.
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against stations (SCEC in light blue and PSOC in dark blue). Red crosses indicate outliers.

PSO achieved larger parameter ranges with less sensitivity against sites compared
to SCE; this can be mostly attributed to more outliers of SCE. Since the land parameter‘s
sensitivity and/or uncertainties against sites over a small region can reflect the surface char-
acteristic heterogeneity to some extent, the opposite parameter sensitivity and uncertainties
between PSO and SCE indicate the unaccountable dimensions in surface heterogeneity to
some extent. For regional calibration considering a multi-point application, fewer outliers
and sensitivities against sites can fulfill more stable operational processes while consid-
ering the acceptable uncertainties. In general, for the typical semiarid region studied
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in this work, PSO converged better to the optimal parameters than SCE, but with more
parameter uncertainties.

Overall, for both PSO and SCE, the Noah LSM parameters obtained in this study
were generally characterized by great uncertainties against sites, but not for the “Initial”
type. These findings indicate the need for robust LSM calibration schemes where the
LSM parameters should be determined for specific applications, as suggested in previous
studies [4,5,64,65]. The effectiveness of these optimal land parameters can be promptly
verified in their corresponding simulations to highlight their potential applications in the
frequently updated numerical systems.

5.2.2. Calibration Efficiency and Effectiveness

Figure 8 shows various efficiency and effectiveness performances against the sites.
The fitness (the best population estimation during global searching; or Pb) curves show
that PSOC and SCEC mostly converged at around 10,000 and 3000 Noah runs, respectively,
for almost all the sites, but PSOC achieved higher final fitness (or objective, KGE) than
the latter (Figure 8a). However, the fitness curves of both PSOC and SCEC for the C4 site
(yellow lines) converged at a high negative value (i.e., around −10) that was far from the
other sites. Slower convergence (i.e., larger Noah runs) and a higher converged Pb value of
PSOC when compared to SCEC indicated PSO’s worse efficiency but better effectiveness
than the latter for multi-objective simulation calibration. Nevertheless, the extremely low
Pb of both SCE and PSO for site C4 when compared to the other sites indicated that the
calibration’s effectiveness was highly dependent on non-self factors (i.e., LSM or forcing
datasets uncertainties) that cannot be neglected.
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Figure 8. Calibration efficiency and effectiveness comparison. (a) Fitness curves the of PSO
(solid) and SCE (dashed) against sites (colored), and (b) success rate for PSO and SCE against
sites (colored). (c,d) Optimal objectives (KGE, units: 1; bubble size) and layer dimensionally aver-
aged root−mean−square errors (RMSET, units: 1; shaded) against sites for PSO and SCE, respec-
tively. (e,f) Taylor diagrams of PSO (circle) and SCE (triangle) against sites (colored) for SMC1
(units: m3.m−3) and STC1 (units: K), respectively. In the Taylor diagram, the tawny dashed, blue
dotted, and gray lines represent the referenced root-mean-square difference (RMSD), correlation
(CCT), and standard deviation (STD), respectively.
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For almost all sites, the success rate of PSO showed a sharp decrease (to 20) at around
3000 Noah runs, and then, it seemed to be varied in a disorderly manner from 80 to 10
during the following runs, while that of SCE showed a relatively sharper decrease (to 20) at
around 3000 Noah runs, and then, it stably varied around 20 during the following period
(Figure 8b). Since the success rates indicate the constraint rate of the searching space of
one generation (i.e., swarms or complexes) during the optimization process, the relatively
higher success rate of PSO indicated a more comprehensive evolutionary selection when
compared to SCE. This can also explain why PSO usually found a better objective at the
cost of lower efficiency with a more competitive evaluation space than SCE to some extent.

The KGE values (or the optimal objective) for PSOC varied between about 0.37 (site
C4) and 0.68 (site F4), while those for SCEC varied from about 0.36 (site C4) to 0.66 (site
M1) (Figure 8c,d). PSOC obtained better optimal objectives (closer to 1) than SCEC for
most sites. Meanwhile, the RMSEO values of both PSOC and SCEC were extremely small
(i.e., at the level of 10−4) for all sites, and their differences can be neglected. Nevertheless,
the ∑L RMSET value ranges (i.e., 0.0002~0.0004) for PSOC were smaller than those (i.e.,
0.0001~0.0005) for SCEC. The larger KGE and smaller RMSEO ranges when compared to
SCE indicate that PSO achieved better objectives with slightly more stability than SCE.

As seen from the Taylor diagrams for SMC1 (Figure 8e), the CCT of most sites (except
C4) was larger than 0.8 for both PSO and SCE, while PSO achieved slightly larger CCT than
the latter for all the sites except M4. RMSD and STD for PSO and SCE were quite varied
with a relatively minor magnitude, i.e., 0~0.06 m3.m−3 for RMSD, and 0.02~0.08 m3.m−3

for STD. For STC1 (Figure 8f), the CCT of most sites was smaller than 0.1 for both PSO and
SCE, while PSO achieved a larger CCT than the latter for most sites (i.e., only four sites
for SCE had a positive CCT). RMSD for both PSO and SCE varied around 6 K, while STD
varied around 5 K. The relatively larger positive CCT of both STC1 and SMC1 for PSO,
when compared to SCE, indicated that the former was more effective than the latter. Note
that though the varied range magnitude of RMSD almost equals the STD for both STC1 and
SMC1, all the CCT, RMSD, and STD values of SMC1 were considerably smaller than those
of STC1. These positive Taylor diagram skills indicated that although the soil temperature
simulation was highly biased, the two calibrations could be effective in calibrating both
simulations, and this was more pronounced for SMC1.

5.2.3. Evaluation of Optimal Simulations

The optimal simulations and CTR were compared in Figure 9. The linear fit for the
surface soil moisture (SM05cm) showed that SCEC had a slope of about 0.6 with a goodness
of fit of about 0.6, which was highly consistent with the observations, while PSOC had a
slope of about 0.4 with a goodness of fit of about 0.4, and CTR had a slope of about 0.2
with a goodness of fit of about 0.2 (Figure 9a). However, for the surface soil temperature
(ST05cm), the best slope was about 0.2 for PSOC, followed by about 0.05 for SCEC, and the
slope was negative for CTR at about −0.5 with a goodness of fit of about 0.2, while PSOC
and SCEC both had zero goodness of fit (Figure 9b). Both PSO and SCE optimizers were
able to calibrate the soil moisture and temperature simulations, and SCE seems to be better
than PSO for soil moisture, while it behaves oppositely for soil temperature.

The RMSES values for SM05cm in CTR were around 0.15 m3.m−3 during most of the
calibration period, but the values were around 0.05 m3.m−3 for both SCEC and PSOC
(Figure 9c), and the values of SCEC were relatively smaller than PSOC. However, the
RMSES values for ST05cm exhibited significant diurnal variation (Figure 9d), where the
values for PSOC (i.e., varied around 4 K) were smaller than the other two (i.e., they varied
around 7 K) during most periods. In particular, the RMSES values for SCE were sometimes
even larger than those in CTR (i.e., around 4 in July). Both PSO and SCE could achieve
smaller RMSES than CTR for SM05cm, and SCE seemed preferable, which was consistent
with the linear fit slopes. However, PSO showed more significant advantages in reducing
the spatial errors of ST05cm than SCE.
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Figure 9. Comparison of two optimal simulations (PSOC and SCEC in blue and red, respectively)
and CTR (in black) with observations for selected soil variables. Goodness of fit for surface (a) soil
moisture (SM05cm) and (b) soil temperature (ST05cm). RMSES values against time for (c) SM05cm

and (d) ST05cm. Histogram fits of simulation errors for (e) SM05cm and (f) ST05cm. Vertical profile of
temporally averaged RMSES values for (g) SM and (h) ST.

The simulation errors of SCEC for SM05cm showed a narrow distribution centered
around 0.02 m3.m−3 with a frequency of around 420, and those of PSOC showed a dis-
tribution of bimodal adjacency, whose centers were located around 0.02 m3.m−3 with a
frequency of around 400, and around 0.05 m.m−3 with a frequency of around 500, respec-
tively (Figure 9c). Meanwhile, the errors of CTR had a broadly biased distribution centered
around 0.15 m3.m−3 with a frequency of around 400. For the ST05cm simulation errors,
CTR showed a broadly bimodal distribution centered around −5 K with a frequency of
around 100, and around 9 K with a frequency of around 200, while PSOC and SCEC showed
relatively narrow distributions that centered around 0 K with a frequency of around 250,
and around 2 K with a frequency of around 300, respectively (Figure 9d). The Gaussian
histogram fit comparison showed that the biased simulation error distribution in CTR could
be significantly adjusted by both SCEC and PSOC for both the soil moisture and soil tem-
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perature, where SCEC performed better than PSOC for soil moisture, whereas the opposite
was the case for the soil temperature, and this was consistent with the RMSES performance.

The temporally averaged RMSES (∑T RMSES) values against the vertical soil layers
were further compared. For soil moisture (SM, Figure 9g), the values for the top three layers
in CTR at around 0.15 m3.m−3 were reduced to 0.05 m3.m−3 after calibration. For soil
temperature (ST), the values of the calibrations were decreased by 1 K in the surface layer
when compared to CTR (Figure 9h). In particular, the calibrated ST of the middle two layers
for both PSO and SCE were even worse than those for CTR (i.e., 2 K for CTR, but 2.5 K for
the others). Nevertheless, both SM and ST of the bottom layer for PSO (whose RMSES was
around 1.3 K) and SCE (whose RMSES was around 1.9 K) were slightly more improved
when compared to the surface layer. This could be attributed to the different scales between
surface and bottom soil layers. Generally, both PSO and SCE could effectively calibrate SM
simulations of all soil layers; however, they can likely improve surface- and bottom-layer
ST simulations when PSO behaves more preferably than SCE.

In general, the multi-objective GSA including SCE and PSO greatly improved the
consistency of the soil moisture and soil temperature simulations both temporally and
spatially. In particular, PSO was more effective than SCE for calibrating the soil temperature.
Thus, the GSA conducted by PSO with the enhanced KGE was more suitable for regional
multi-site and multi-variable applications.

5.3. Robustness Performance
5.3.1. Continuity in Improving Soil Forecasts

By using the optimal parameters derived from the calibration comprising PSOC and
SCEC (or the calibrated LSM model), the experimental verification results with PSOO
and SCEO were compared with CTR, as shown in Figure 10. For SM05cm (Figure 10a),
the linear fitness for PSOO, SCEO, and CTR were about 0.14, 0.54, and 0.01, respectively,
and the goodness of fit values for them were 0.04, 0.59, and 0, respectively. The optimal
parameters of both SCEC and PSOC greatly improved the SM05cm simulations, and the
former performed better than the latter. For ST05cm (Figure 10b), the linear fitness values
for PSOO, SCEO, and CTR were about 0.17, 0.06, and −0.45, respectively, and the goodness
of fit values for them were 0.04, 0, and 0.15, respectively. The optimal parameters of PSO
significantly improved the ST05cm simulations when compared to the others. These were
similar to the simulation performance of the calibration period (Figure 9a,b). The optimal
parameters for both PSOC and SCEC significantly improved the consistency of the soil
moisture and soil temperature simulations relative to CTR. SCEO performed better at
simulating soil moisture, whereas PSOO performed better at simulating soil temperature.

The RMSES values of SM05cm for both PSOO and SCEO (i.e., varied around 0.05 m3.m−3)
improved greatly when compared to CTR (i.e., varied around 0.15 m3.m−3) (Figure 10c).
This was quite similar to the calibration performance (Figure 9c). Meanwhile, the RMSES
values of ST05cm for PSOO, SCEO, and CTR over the validation period varied around 3,
6, and 7 K, respectively (Figure 10d). The reduction range of RMSES for validation was
even larger than that for calibration (Figure 9d). The parameters of PSOC were also more
effective at reducing the RMSES values for the soil temperature than those of SCEC.

The simulation errors of SM05cm for CTR showed a broad distribution centered around
0.17 m3.m−3 with a frequency of around 300, while those for both SCE and PSO showed a
narrow distribution centered around 0 m3.m−3 with a frequency of around 375 (Figure 10e).
Meanwhile, the simulation ST05cm for CTR showed a broadly bimodal distribution with
two distinguished centers located around −5 K at a frequency of around 180 and around
8 K at a frequency of around 200, respectively (Figure 10f); nevertheless, those for PSOO
and SCEO showed relatively narrow distributions with two adjacent centers located around
0 K at a frequency of around 200 and around 3 K at a frequency of around 250, respectively.
The simulation errors with both SCEO and PSOO followed a consistent quasi-zero-centered
Gaussian distribution (or a normal distribution), thereby demonstrating great improvement
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compared with those in CTR, and PSO seemed to be more robust for both SM and ST
than SCE.
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Figure 10. Similar to the results shown in Figure 9, but with comparisons of the simulation of the
calibrated models (PSOO in blue and SCEO in red).

For the SM of the first three layers, the ∑T RMSES values for both PSOO and SCEO
were mostly varied around 0.07 m3.m−3, and were much smaller than those of CTR (i.e.,
around 0.15 m3.m−3) (Figure 10g). For ST, the ∑T RMSES differences between PSO and
CTR increased from 0.8 K to 1.8 K against the soil layer depth reduction (Figure 10h), and
this was similar to the differences between SCE and CTR. In particular, PSOO obtained the
smallest ∑T RMSES values for ST in all layers during the validation period. In general, the
two types of calibrated parameters significantly improved both the SM and ST simulations
of the validation period, where the optimal parameters with PSOC performed better than
those with SCEC for the ST simulations.

Generally, the above-mentioned soil layer simulation advantages using the optimized
parameters could demonstrate the robustness of both PSO and SCE schemes. In particular,
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the ∑T RMSES values of both SM and ST for the two schemes during validation were
smaller than those during the calibration period (Figure 9g), this could demonstrate the
advantages of calibration under month-long scaled systems (or medium-range parameter
updates) to some extent.

5.3.2. Intercomparison with Surface Simulations

To identify the overall performance of the surface simulations with the calibrated
model, domain-averaged surface soil moisture and temperature comparisons among CTR,
PSOO, SCEO, ERA5, GLDAS, and OBS during the validation period were conducted and
the results are shown in Figure 11.
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and (c) ST05cm; (b,d) Gaussian fits of the errors of the datasets when compare to the observations.

The observed SM05cm was shown to be mostly varied around 0.35 m3.m−3 against time
(Figure 11a). In CTR, SM05cm was severely underestimated (i.e., varied around 0.2 m3.m−3),
with an abnormal increase around July 24 (which reached 0.33 m3.m−3). ERA5 clearly
overestimated SM05cm (i.e., varied around 0.4 m3.m−3) with a smooth variation against time,
whereas the opposite behavior (i.e., varied around 0.27 m3.m−3) was obtained with GLDAS.
Obviously, the two simulations with calibrated land parameters were more consistent with
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the observed SM05cm than the other datasets; nevertheless, except for ERA5, consistent
rhythmic temporal variations were observed in all other datasets.

The SM05cm error distribution of SCEO showed a narrow distribution, with the center
located around 0 m3.m−3 at a frequency of around 80 (Figure 11b). For PSOO, the error
distribution had a center located around 0 m3.m−3, similar to SCEO, but at a frequency
of around 30. However, for ERA and GLDAS, the error distribution centers were located
around 0.06 m3.m−3 with frequencies of around 40 and –0.07 m3.m−3, respectively, with a
frequency of around 30. Nevertheless, for CTR, the errors were broadly distributed, with
the center located around –0.15 m3.m−3 at a frequency of around 40. Obviously, almost
unbiased errors of SM05cm could be found for the two runs with calibrated parameters,
while CTR and GLDAS both had negative deviations, and ERA5 was positively biased.
Moreover, the error with SCEO at a frequency of almost 80 around the mean (around
zero) was twice that with the others, which possibly indicated overfitting of the surface
soil moisture.

The observed ST05cm showed significant diurnal variation, which mostly ranged from
281 to 295 K (Figure 11c). In CTR, ST05cm had both the lowest upper and lower limits among
all datasets (i.e., around 293 K and 275 K); thus, it was negatively biased. For ERA5, ST05cm
was shown to vary from 279 to 293 K, while it was shown to vary from 280 to 289 K for
GLDAS. Nevertheless, PSOO varied from 285 to 294 K, and SCEO varied from 283 to 295 K.
Moreover, except PSOO and SCEO, all of the other ST05cm candidates exhibited more-or-less
opposite variations compared with OBS. And CTR, ERA5, and GLDAS underestimated the
minimum daily soil temperature.

The error fits for ST05cm for CTR showed a broad distribution centered around −7 K
with a frequency of around 15. For PSOO and SCEO, the relatively narrow error distributions
had centers located around 0 K with a frequency of around 18, and around −3 K with a
frequency of around 20, respectively. However, for both ERA5 and GLDAS, broad bimodal
distributions were observed, i.e., the centers were located around −6 K and 5 K, respectively,
for ERA5, and the centers were located around −3 K and 4 K, respectively, for GLDAS.
The ST05cm of ERA5 and GLDAS datasets during this study had multiple bias factors.
Meanwhile, the error distributions showed negatively biased ST05cm for CTR and SCEO,
and notably, almost unbiased ST05cm for PSOO.

Due to the observed non-site fluxes and null ERA5 fluxes in our study area, com-
parisons of diurnally varied surface sensible heat and latent flux during the validation
period among CTR, PSOO, SCEO, and GLDAS were further conducted (Figure 12). For
surface sensible heat flux, CTR varied from −200 to 430 W.m2, GLDAS varied from −50 to
280 W.m2, SCEO varied from −50 to 350 W.m2, and PSOO varied from −50 to 400 W.m2

(Figure 12a). However, for surface latent heat flux, CTR varied from 0 to 550 W.m2, GLDAS
varied from 0 to 450 W.m2, SCEO varied from 0 to 300 W.m2, and PSOO varied from 0 to
200 W.m2 (Figure 12b). CTR likely produced the sharpest diurnal variations in surface
fluxes, and it was more consistent with GLDAS when compared to the simulations of the
calibrated models. Moreover, the two calibrated models led to more sensible heat fluxes
but fewer latent heat fluxes in the temporal mean statistics when compared to the other
two, and the diurnal flux variations of the two calibrated models were smoother.

The consistent diurnal variations in fluxes between CTR and GLDAS are likely due to
the forcing datasets, whose values (i.e., air temperature, winds, and humidity) were the
same as GLDAS [21]. The difference between CTR and the calibrated models can mostly
be attributed to the advantages of the calibration schemes. Moreover, recall the fact that
the significantly negatively biased SM05cm and ST05cm in CTR and GLDAS (Figure 11)
when compared to OBS, and their more significant latent fluxes but weaker sensible fluxes
compared to the simulations of the calibrated models, could be biased because of the
limitations of the evapotranspiration of grassland (i.e., weaker latent fluxes but stronger
sensible fluxes were usually observed over drier soils).
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In general, the biased ST in model simulations and reanalysis in regional studies
need to be addressed, and the improvements in the consistency of soil temperature errors
obtained in the simulations in the present study indicate the advantages of multi-objective
optimization for calibration. In particular, PSO was preferable because it could obtain
unbiased SM and ST simulation errors, while the ST simulation errors for SCE were biased
around −3 K. These continuous improvements and effectiveness differences during valida-
tion indicated the robust calibration of both PSO and SCE and the preferable significance of
PSO in promoting ST forecasting in frequent land parameter update systems.

6. Discussion

Though the multi-objective PSO and SCE optimizers greatly improved the signifi-
cantly biased Noah LSM forecast over the semiarid region when considering that the land
parameters were both unobserved and physically biased over a highly heterogeneous
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surface, there were still limitations to this study because of the imperfect observations
(i.e., the simultaneous soil and meteorological observation data of high-density stations
were unavailable) [21,57,61] and the unsolved highly dimensional non-linearity (i.e., the
occasional outliers of both the optimal parameter space (i.e., the “Initial” parameter type)
and the optimal objective (i.e., the final negative KGE values of site C4) against sites, which
could be likely attributed to surrounding human activities (such as nearby road harden-
ing) and/or the possibly unfixed soil classification parameter (i.e., soil type) in the LSM’s
configuration (such as one soil type against different percentages and soil textures; see
Table 1).

For land parameter complexity recognition in medium-range SM—ST calibration over
ASALs through default LSM configuring, compared to the default or globally applicable
parameters that are induced from limited benchmark optimizations [4,5,65], the optimized
parameters of each site in this study gained considerable improvements in the objective-
informed forecasts (see Section 5.3), and indicated that the sowed calibration objective
always reaps better (or more favorable) parameters for multi-site or distributed LSMs,
highlighting the benefits of necessary LSM configuration updates (i.e., dynamically updated
LSMs lookup table). And this could be in line with the suggestion that PSO could be a better
solver, as many previous medium-range scale studies have suggested [39–43]. Nevertheless,
the greatly desired regional soil temperature improvement, which could account for the
land parameter uncertainties during this work, could be affected by bimodal scales, which
can be attributed to the scale-distinguished physics that dictate that water has a larger heat
capacity than soil [12].

The great heterogeneity and uncertainty of the optimal parameters against the sites
for both PSO and SCE, (see Section 5.2.1) showed large spatial complexities for globally
applicable LSMs parameters over ASALs and highlight the necessity for future extensive
work efforts in model physics and observations. In particular, the optimal CZIL in “Gen-
eral” was more sensitive to the site compared to LAIMAX and LAIMIN in “Vegetation”
(Figure 6), and the high spatial heterogeneity of CZIL could support possible larger-scale
ST improvement by promoting the thermal physics related to CZIL, as previous studies
have suggested [8,54,56,66,67]. Meanwhile, the combination of the land’s physical configu-
ration with a few parameters could reduce the complexity dimensions of the global LSM’s
parameter–simulation problem itself [7,68], and SCE that achieves fewer spatial parameter
uncertainties could be more favorable to meet the global land parameter solution demand.

For real-world applications, the enhanced KGE evaluator showed robust generality
in maintaining the optimizers’ efficiency and effectiveness for most sites, and the use of
this multi-dimensional combined evaluator could be suggested for further regional LSM
multi-objective calibration studies for solving high dimensional non-linearity problems;
the robust performance of PSO with the mostly unbiased soil simulation errors indicated
its advantageous ability to solve medium-scale ranged multi-objective LSM forecasts,
especially when considering that the LSM parameter uncertainties were both spatially
and temporally distinguished, accompanied by the great spatial accuracy demand in local
forecasts [18,49,50].

Note that the validation results were highly consistent with the soil moisture reanalysis
at 3 h and 0.25◦ scales for GLDAS and 1 h and 0.1◦ scales for ERA5, but opposite variations
in the soil temperature were observed between the reanalysis results and observations
(Figure 11); also, the sensible heat fluxes were highly consistent but the latent heat fluxes
were underestimated using the calibration methods compared with GLDAS (Figure 12).
As the differences in the latent heat fluxes over dry surfaces should be measured by using
more reliable flux observations [4], these datasets’ inconsistencies can be mostly attributed
to the ST modeling deficits [21,57–61].

Overall, due to the LSM’s high complexity, continuous efforts in both ST modeling
physics and configuration should be equally emphasized to meet the demand for surface
accuracy, and the calibration schemes introduced in this study could provide a clue to
addressing the unsolved complexity between parameters and ST forecasts. Nevertheless,
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due to the quite different searching strategies (i.e., the survival and searching space) for
quite different applications, SCE and PSO were preferable for the LSM’s optimal parameter
and simulation determinations, respectively. In particular, with the gradual improvement
in high-spatiotemporal-density-land remote sensing observation network [69,70], compre-
hensive comparisons of different multi-objective evaluators in improving regional semiarid
surface forecasts, as well as calibrations with relatively low resource consumption based on
machine learning [71–74], should be carried out in the future to enhance the knowledge of
the LSM’s unaccountable biases caused by highly dimensional surface heterogeneity.

7. Conclusions

Surface conditions are important for regional weather and hydrology. In the present
study, by using ITPCAS point-scale datasets from 1 April to 31 July 2014, an enhanced
multi-objective KGE and Noah LSM multi-parameter tables were introduced into a GSA as
the optimal criteria for PSO and SCE, and the improvements in regional surface simulations
were compared and further validated. The results showed the following:

Under the typical semiarid climate background, the Noah LSM simulations had a
positive fit (0.21), with small spatial differences, and a positively biased error distribution
compared with the soil moisture observations. In addition, significantly biased soil tem-
perature simulations were obtained, with a negative fit (−0.46), high spatial differences,
and both positive and negative bimodal differences in errors. The results demonstrated the
poor performance of the LSM at simulating multiple sites in our study area, possibly due
to imperfect land physics and/or many land parameters.

Two calibrations obtained significant improvements in the soil simulations for differ-
ent layers and variables, and they indicated the advantage of the GSA with multi-objective
KGE and multi-site parameter tables. In general, PSO converged better to the objective
compared with SCE, but with relatively larger parameter uncertainties and less parameter
heterogeneity. In particular, PSO performed better than SCE at calibration for soil tempera-
ture simulations. In addition, the significant heterogeneity and uncertainties against the
sites in the optimal parameter space for both PSO and SCE (Figures 6 and 7) indicated that
frequent calibration of the LSM is required for regional applications.

The simulations initialized with the optimal parameters in the validation period
behaved similarly to those in the calibration period, i.e., a linear fit increase and a spatial
error reduction (Figures 10 and 11), thereby demonstrating that the calibration methods
could obtain sustainable improvements in the simulation, which could be helpful for
regional forecasting. Moreover, PSO could obtain unbiased SM and ST simulation errors,
while the ST simulation errors for SCE were biased around −3 K.

Overall, the GSA with the multi-objective KGE and multi-site parameter tables sig-
nificantly improved the soil moisture and temperature simulations, but PSO was prefer-
able when considering soil temperature. This robust calibration scheme could be help-
ful for research related to the land surface on the Tibet Plateau, as well as allowing
producers of datasets and researchers to recognize the spatial complexities in regional
surface applications.
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