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Abstract: We present a Monte Carlo model of Einstein–Podolsky–Rosen experiments that may be
implemented on two independent computers and resembles the measurements of the Clauser–Aspect–
Zeilinger-type which are performed in two distant stations SA and SB. Our computer model is local
deterministic because we show that a theorist in station SB is able to conceive the products of the
measurement outcomes of both stations, conditional to any possible equipment configuration in
station SA. We show that the Monte Carlo model violates Bell-type inequalities and approaches the
results of quantum theory for certain relationships between the number of measurements performed
and the number of possible different physical properties of the entangled photon pairs. These
relationships are clearly linked to Vorob’ev cyclicities, which always enforce Bell-type inequalities.
The realization of this cyclicity depends, however, on combinatorial symmetry considerations that, in
turn, depend on the mathematical properties of Einstein’s elements of physical reality. Because these
mathematical properties have never been investigated and, therefore, may be free to be chosen in
the models for all published experiments, Einstein’s physics does not contradict the experimental
findings, instantaneous influences at a distance are put into question and the paradox of Einstein–
Podolsky–Rosen and Bell is, thus, resolved.

Keywords: Einstein–Podolsky–Rosen experiments; Monte Carlo simulation; cyclicity; combinatorial
symmetry; Bell inequalities; CHSH inequalities; quantum entanglement

1. Introduction

We assume that the reader is familiar with the Einstein–Bohr debate about the existence
of elements of physical reality that Einstein–Podolsky–Rosen (EPRB) [1] held responsible for
correlations between distant quantum experiments as opposed to influences at a distance,
which are currently [2] thought to be the basis for the quantum correlation (entanglement)
by a majority of physicists.

Kocher and Commins [3] have presented the first experiments that used preparations
of photon pairs and involved measurements of their correlated polarizations. Their results,
taken at face value [4], have demonstrated significant correlations and, thus, according to
EPR, pointed to the involvement of elements of physical reality.

The groups of Aspect, Zeilinger and others subsequently presented more elaborate
measurements of correlated photon pairs that involved the fast switching between two
polarizer angles in each measurement station (see [2]). This switching ensured that the
stations could not exchange information with each other in the moment of measurement
because of their spatial distance. The identification of the correlated pairs of single pho-
tons was achieved with synchronized clocks, one in each station. These measurements
reproduced approximately the quantum results and violated the inequalities of Bell [5] and
Clauser–Horne–Shimony–Holt (CHSH) [6], whose claim was that they were consistent with
Einstein’s ideas about elements of physical reality. Thus, there arose the paradox that any
theory that claimed to exclusively use Einstein’s separation principle as the physical reason
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for its inequalities violated the actual experiments. The majority of physicists deduced from
this fact that the nature of reality must be different to Einstein’s framework of thought and
influences faster than the speed of light (at least multiple times faster) must be involved in
quantum correlation measurements.

The purpose of our Monte Carlo simulation is to show that factors other than instan-
taneous influences lead to violations of the Bell–CHSH inequalities. While some of these
factors have been recognized in past publications (see [7] and references therein, as well
as [8]), the Monte Carlo approach provides a detailed account of the magnitude and impor-
tance of these effects and their relations to novel combinatorial symmetry considerations.
This detailed account appears to shift the weight back to Einstein’s original suggestion
involving elements of physical reality and to their experimental discovery by Kocher and
Commins [3].

2. The Monte Carlo (MC) Model
2.1. Bell’s Model Functions

We use Bell’s functions A and B to simulate the measurement outcomes at the time ts
in the two respective stations SA and SB. The subscript s denotes a measurement number.

The domain of these functions consists of two variables: j = a, a′ describes the
polarizer angles in station SA and j′ = b, b′ in station SB. The second variable describes
the photon-pair properties that we denote by λs, which we simulate by a random number
generator giving numbers −1 ≤ λs ≤ +1 (this is in analogy to the Fundamental Model of
Probability theory [9]). The outcomes of the measurements are determined by two detectors
on each side. It is customary to simulate the outcome of one detector in SA by A = +1
and call this outcome “horizontal” and that of the other by A = −1 and call the outcome
“vertical”. As usual, we assume complete anti-correlation, meaning that for equal polarizer
angles we always have opposite detector clicks and corresponding function values of B.
In general, we deal with function outcomes such as A(a′, λ9) = +1 and B(b, λ9) = −1 for
the simulation of photon pair number 9.

The correlation between photon pairs is modelled by using the same λs as input for
the function A in SA and B in SB. Remember that the photon pairs are linked in the actual
Aspect-type experiments by synchronized clocks that indicate the measurement time ts,
which may also represent two different times t′s in station SA and t′′s in SB, respectively.
It is important to note that at any such measurement time (times), there exists only one
corresponding pair of polarizer angles and our model reflects this fact.

2.2. Deviations from Bell’s Model

We have already deviated from the path that Bell and CHSH took in their respective
theories by using the technique of the Fundamental Model of Probability theory which
permits every λs to be simulated by a different number of the real interval [0, 1]. We have
only replaced this interval by the interval [−1, +1] and have chosen λs using an excellent
random number generator. We also deviate from Bell–CHSH through one more important
procedure. We do not simulate the single outcomes of measurements A and B separately
but are only interested in simulating the product A · B and to make sure that the marginal
averages vanish such that < A >≈< B >≈ 0. For this purpose, we imagine a theoretician
Charly helping the experimenter Bob in station SB. Using the present value of λs at time
ts, Charly calculates the value of B and all possible values of A for any polarizer angle
that Alice may choose in station SA. Both Alice and Bob only measure the outcomes and
the theorist Charly is only interested in the products A · B, not the outcomes themselves.
When all is done, Charly performs a Monte Carlo simulation and looks at all the function
outcomes with the four possible polarizer angles for all λs and ts and checks his simulation
against the actual averages. Charly finds that his simulation may violate the Bell–CHSH
inequalities and approach the measurements of Alice and Bob (as well as all results of
quantum mechanics for this experiment) if he chooses
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A(j, λs) = sign(λs) (1a)

Furthermore,
A(j, λs) · B

(
j′, λs

)
= +1 (1b)

if and only if
|λs| > 0.5

[
cos

(
2
(

j − j′
))

+ 1
]
. (2)

We assume the necessity and appropriateness of a space–time (or space and time)
system commensurate with Einstein’s relativity that is based on the proposition that
physical events may only be judged or explained relative to each other and that this
judgement is limited by a given speed of information transfer, which is, for our purposes,
the speed of light in vacuo. As a consequence, it is only the relative outcomes that may be
theorized upon by Charly (in our case the product A · B) and his theory must be based on
elements of physical reality whose nature and properties Charly must pretend to know at
least to some extent. Furthermore, all his theoretical guesses about correlations to other
events separated in space–time (or space and time), must be conditional to the actual
totality of equipment configurations that are used for each event in question. Assuming
the validity of the use of a space–time system, these configurations may be marked by
clock times (as they are in Aspect-type experiments) and retrieved after all measurements
are done, while Charly can only perform the calculations assuming any possible given
configurations and that he can retrieve the actual time-correlated equipment configurations
later, in order to justify his theory. Obviously, all of these assumptions are made by us in
complete analogy to those in the theory of relativity.

Bohr and his school were doubtful of the validity of Einstein’s space–time system in
the realm of quantum mechanics. They did acknowledge the fact that correlated experi-
ments did need some additional explanations that would avoid the notion of instantaneous
influences at a distance, which was repulsive to them. Bohr’s work on “complementarity”
and “contextuality” is well known. Many researchers have used contextuality commen-
surate with Bohr’s notion, including some extensions, in order to exorcise instantaneous
influences. Kupczynski has presented several extensive reviews that describe these efforts
(see, for example, reference 15 in reference [7] of this present manuscript).

Bell and his followers based their work on different ideas about what a proper “lo-
cal” theory must look like and derived, using a variety of assumptions, their celebrated
inequalities.

We leave it to the attentive reader to decide which theory deserves the predicate of
being “local” and proceed within our Einstein-type space and time (space–time) model.
However, whatever predicate the reader likes to give our approach, we emphasize that we
certainly involve no instantaneous influence that transfers something related to the single
outcome values between the stations. Conditional to the given polarizer angle in station
SA, all of Charly’s function values are entirely determined by λs and Bob’s local choice
of j′. Note that Alice may independently choose whatever polarizer angle she pleases
and the value of the function A depends only on the sign of λs. This fact is the reason
for our claim that the model may be implemented on two independent computers that
have clocks to measure ts after receiving λs. We note in passing that Charly’s law of nature
(Equations (1) and (2)) are of the Malus law type, only with the stations on different sides
of the source (see also [10]).

These deviations from Bell’s model, in addition to the quantum result, were not
considered possible, because it is generally assumed that any local-deterministic model
must obey the Bell–CHSH inequalities. This latter assumption is, however, incorrect. It
has been shown by Vorob’ev [11] that a topological–combinatorial cyclicity is necessary
and sufficient to guarantee the validity of Bell–CHSH-type inequalities. Vorob’ev’s work
is mathematically involved and was not known to Bell and CHSH. It has also not been
appreciated by most researchers in this area that the Vorob’ev cyclicity is introduced in the
Bell–CHSH type derivations by rather innocuous assumptions. For example, Mermin’s
derivations that use a small number of elements of reality [12] automatically include the
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cyclicity, not because of Mermin’s local determinism, but because of the use of the small
number (as we will see any countable number is sufficient to introduce the cyclicity).

The complications of Vorob’ev’s work have, as mentioned, prevented a broad under-
standing. We found, however, that the most important features may be made clear by
standard computer simulations of the Monte Carlo type. We present these simulations and
their relation to the cyclicity and Bell-type theorems in the next sections, particularly in
Sections 3.1 and 3.2.

2.3. Implementation of the MC-Model

The implementation of MC-model for 4N CHSH-measurements with the four polarizer
settings (a, b), (a, b′), (a′, b) and (a′, b′) using M different values of the λs is then given by
the following procedure:

We first relabel the λs by λin, where i = 1 denotes the polarizer pair (a, b), i = 2 (a, b′),
i = 3 (a′, b) and i = 4 denotes (a′, b′) and n is the measurement number with the given
polarizer pair. Second, because this is the deterministic basis for the derivation of the Bell-
and CHSH-inequalities, we assume that identical λin as well as identical polarizer settings
j or j′ lead to identical measurement outcomes.

The concrete implementation then is as follows:

• Select M values of λin from [−1, 1] using a random number generator and store the
values in an array L(1, . . . , M) ϵ [−1, 1].

• Generate 4 arrays Aa(1, . . . , M), Aa′(1, . . . , M), Bb(1, . . . , M) and Bb′(1, . . . , M)
that store values of A(a, λin), A(a′, λin), B(b, λin) and B(b′, λin), respectively. These
arrays are used to check, whether identical combinations of λin and polarizer settings
occur.

• For each of the 4 · N CHSH-model experiments with polarizer settings (a, b), (a, b′),
(a′, b) and (a′, b′):
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ment outcomes for identical 𝜆𝑖𝑛 as well as polarizer settings 𝑗′ gives 

𝐵(𝑗′, 𝜆𝑖𝑛) = 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐵𝑗′(1, … , 𝑀)  
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store 𝐵(𝑗′, 𝜆𝑖𝑛) in the array 𝐵𝑗′(1, … , 𝑀). 

• Calculate the data averages by summing up all MC experiments of polarizer setting 

𝑖: 

Select randomly λin from L(1, . . . , M) using a random number generator;
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𝑖: 
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then assuming identical measurement outcomes for identical λin as well as
polarizer settings j:

A(j, λin) = element o f Aj(1, . . . , M)

else:
A(j, λin) = sign(λin) with j = a or a′ (3)

store A(j, λin) in the array Aj(1, . . . , M).
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• Calculate the data averages by summing up all MC experiments of polarizer setting 

𝑖: 

If B(j′, λin) is already stored in Bj′(1, . . . , M), then assuming identical mea-
surement outcomes for identical λin as well as polarizer settings j′ gives

B
(

j′, λin
)
= element o f Bj′(1, . . . , M)

else, apply Malus rule and let j′ = b or b′, for any possible j:

B
(

j′, λin
)
=

{
sign(λin) i f |λin| > 0.5 · [cos(2(j − j′)) + 1]

−sign(λin) otherwise
(4)

store B(j′, λin) in the array Bj′(1, . . . , M).

• Calculate the data averages by summing up all MC experiments of polarizer setting i:

Di(j) = 1
N ∑N

n=1 A(j, λin)

Di(j′) = 1
N

n
∑

n=1
B(j′, λin)

Di(j, j′) = 1
N ∑N

n=1 A(j, λin) · B(j′, λin)

(5)
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• Calculate the value of the CHSH-term:

CHSH =
∣∣D(a, b)− D

(
a, b′

)
+ D

(
a′, b

)
+ D

(
a′, b′

)∣∣ (6)

The vertical lines in Equation (4) denote the absolute value. For a statistical analysis of
the MC results, each set of 4 · N MC-simulations are performed 10 times and the mean and
standard deviations of the data averages and CHSH-term are determined.

3. Results of the Monte Carlo Model
3.1. Role of Cardinality

The most evident and most important yet entirely innocuous looking formation of a
Vorob’ev cyclicity is related to assumptions about cardinalities, in particular, the measure-
ment of the set of different elements of physical reality (different λin ) as compared with
the measurement of the set of actual- or computer model measurements.

Take the example of M = 8 model elements of physical reality that Mermin used (his
eight combinations of green and red flashes [12]) and allow further for N = 106 (model)
measurements. Then, assuming that Einstein’s elements are emitted randomly and in-
dependently of the polarizer angle-pairs, the λin in Equation (5) are all about the same,
independent of the index i that denotes the different polarizer angles. One can easily
see this fact by reordering the MC pair products A(j, λin) · B(j′, λin) with the given in-
dex i in the following way. We know that each such product sequence consists of more
than 105 repeated occurrences of the same eight model elements of physical reality. We
may, therefore, represent the products A(j, λin) · B(j′, λin) by stacks of MC-array products
Aj(1, . . . , M) · Bj′(1, . . . , M) for each index i and just have a few “leftovers” of the order
of M

N that cannot be ordered that way. The identical stacks for all i lead to the combinatorial
cyclicity, which in turn enforces the Bell–CHSH inequalities, independent of any proba-
bilistic law of nature that determines a correlation between the functions A, B. Any given
number M ≪ N also enforces the Bell–CHSH inequalities and Malus-type correlations
cannot change this fact.

The power of the assumption of a given number M of different λin becomes clear if we
consider the performance of four Bell–CHSH experiments, each with one given polarizer
angle-pair, on four different planets. Then, if we know the functions D of Equation (5)
on three planets, the Bell–CHSH inequality limits the averages on the fourth planet. Mer-
min [12] maintains that he has used only local laws of nature, but his results (inequalities
of the Bell–CHSH-type) have a nonlocal consequence. The reason is that his innocuous
assumption of only eight different λin leads to nonlocal connections.

Now, consider the case of having M = 108 different λs and N = 104 measurements.
Does a Malus-type correlation law then have any consequences or do we again have the
Bell–CHSH limitations for the correlation? The answer to this question can be studied most
efficiently through Monte Carlo Computer Experiments (MCCE).

We have carried out two series of MCCEs using the CHSH polarizer orientations that
lead to the largest violation of the CHSH inequality for the polarizer angle differences:
a = 0◦, a′ = 45◦, b = 22.5◦ and b′ = 67.5◦ for all simulations.

In the first series, we used N = 104 and started with M = 10, increasing by factors
of 10 up to N · 103 = 107. In addition, an MCCE with always new λ was carried out,
which approaches the outcome of the Fundamental Model of Probability for M → ∞ .
The upper half of Figure 1 shows the mean values and standard deviations (error bars)
of the CHSH-term. The lower half shows the corresponding mean of the averages D
for given polarizer angle-pairs. We always have the marginal averages < A >≈ 0 and
< B >≈ 0 for any polarizer angle; for example, we have for M = 107 and N = 104 values
of < A >= 0.0014 ± 0.0029 and < B >= 0.0013 ± 0.0033.
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Figure 1. (Upper half) mean value (standard deviation as error bar) of the CHSH-term as given in
Equation (6) for N = 104. (Lower half) averages D(a, b) in purple, D(a, b′) in green, D(a′, b) in
blue and D(a′, b′) in yellow. The standard deviations are also indicated as error bars. The last data
point on the right is for always new λ (approaching the limiting value of the Fundamental Model of
Probability for M → ∞ ).

For the second series of MCCEs, we used M = 104 and varied the number of measure-
ments from N = 10 by factors of 10 up to N = 103·M = 107. The upper half of Figure 2
shows the mean value and standard deviation of the CHSH-term of Equation (6) and in
the lower half the averages D for a given polarizer angle-pair with the standard deviation
given as error bars. The marginal averages are again about zero.

In both Monte Carlo series of computer experiments, two regimes can be distinguished:
if the number M of different λs values is significantly larger than the number of computer
“measurements” N, then the averages follow the QM prediction and the CHSH-term is
close to the quantum result of 2.82 and violates the CHSH inequality. If M is significantly
smaller than N, then the CHSH inequality is fulfilled and the CHSH term of the four
product averages A · B differ from the QM prediction.

Thus, it appears to be entirely clear that what matters for violations of Bell–CHSH is
the relation of the number N of model measurements to the number M of different model
elements of physical reality λin. If M ≫ N, the Malus type law that we have imposed
by using Equations (3) and (4) always wins and the Bell–CHSH inequalities are violated,
while for M ≪ N the Bell–CHSH inequalities always win and the Malus-type law plays no
significant role.

An interesting point has surfaced in the course of these investigations. The computer
model is locally deterministic if the Malus law is implemented exactly the way we have
described it above. Such implementation can certainly be made if we use four different
pairs of computers at four different places, one computer pair for each pair of polarizer
angles and each pair supplied by a different source of random numbers from the interval
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[−1, +1]. The Bell–CHSH inequalities lead to a nonlocal effect in this case. The averages
that are obtained at the four different locations are not independent of each other. Thus,
proofs of Bell–CHSH like those of Mermin unwittingly introduce a nonlocality, because
they use a given number M of elements of physical reality that leads to a combinatorial
symmetry, which we investigate next using our Monte Carlo simulations.
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Figure 2. (Upper half) mean value (standard deviation as error bar) of the CHSH-term of the results
with M = 104. (Lower half) corresponding mean of the data averages (averages D(a, b) in purple,
D(a, b′) in green, D(a′, b) in blue and D(a′, b′) in yellow, standard deviation as error bar).

3.2. Role of Cyclicity, a Combinatorial Symmetry

The importance of Vorob’ev’s topological–combinatorial cyclicity [11] for the four
CHSH-type experiments may be investigated by suppressing the combinatorial symmetry
artificially in the MC computer experiments. It appears that Bell–CHSH have been dealing
with a very subtle symmetry that may be broken for a variety of innocuous reasons because
it does not necessarily correspond to a law of nature, although it was mistakenly assumed
to follow exclusively from locality and determinism. However, the combinatorial symmetry
occurs in the computer experiments if and only if the results A(a, λ1n) occurring for the
polarizer angle-pair (a, b) corresponding to i = 1 are stored in the same array Aa[1, . . . , M]
as the results A(a, λ2n) for the angle-pair (a, b′) corresponding to i = 2 (similar arguments
apply to the arrays Aa′ , Bb and Bb′ ), which does not follow from the premises of locality
and determinism. We have already seen in the previous section that these combinatorial
symmetry requirements (used in all Bell–CHSH proofs) are true only for N ≫ M (in which
case about all the λin can be suitable reordered) and are false for N ≪ M, because in this
latter case, nearly all the λin are different and cannot be reordered. Bell–CHSH and all their
followers did not notice the cardinality dependence of their inequality. They claimed their
inequalities follow from their use of a local-deterministic model. We discuss their reasoning
in the next section in detail. The combinatorial symmetry is made impossible by creating
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eight arrays, Aa1, Aa2, Bb1, Bb3, Aa′3, Aa′4 and Bb′2, Bb′4 (instead of four arrays Aa, Aa′ , Bb
and Bb′) in which the respective function values A(a, λ1n) and A(a, λ2n) are stored in
separate arrays Aa1 and Aa2 for polarizer setting pairs i = 1 and i = 2 (an analog separation
of arrays is used for the other polarizer pairs by Bb1, Bb3, Aa′3, Aa′4 and Bb′2, Bb′4).

Figure 3 gives the CHSH-term (upper row) and the data averages (lower row) as
function of M (left) and N (right) for the case of removed combinatorial symmetry. The
CHSH-inequality is always violated and the data averages follow the QM predictions
independent of the cardinalities of M versus N. The error bars are the standard deviations
over 10 simulations of N experiments. These results demonstrate that combinatorial
symmetry is mandatory to fulfill the CHSH-inequality.
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Figure 3. (Upper row) mean value (standard deviation as error bar) of the CHSH-term of the results
of first series with N kept constant on the left and the results of the second series with M constant
on the right. (Lower row) corresponding mean of the data averages (standard deviation as error
bar). As always, we have averages D(a, b) in purple, D(a, b′) in green, D(a′, b) in blue and D(a′, b′)
in yellow.

In contrast, enforcing the combinatorial symmetry and always using the same λin (for
i = 1, 2, 3, 4) must fulfill the CHSH inequality. Figure 4 gives the CHSH-term (left) and
the data averages (right) with fixed N = 104 and increasing M from 10 to 107 using the
standard deviations as error bar. As expected, the CHSH inequality is always fulfilled.
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Figure 4. CHSH-term (left) and the data averages (right) with fixed N = 104 and increasing M
from 10 to 107 using the standard deviations as error bar for MCCEs with cyclicity and always using
the same λin (for i = 1, 2, 3, 4) (averages D(a, b) in purple, D(a, b′) in green, D(a′, b) in blue and
D(a′, b′) in yellow).

A further step is to use the same λin but suppress the combinatorial symmetry as
described above by using separated arrays to memorize the settings of previous MC
experiments. Figure 5 shows the CHSH term and the data averages for a simulation with
identical λin and suppressed combinatorial symmetry. Without combinatorial symmetry,
even using the same λin for the set of four CHSH experiments leads to a violation of the
CHSH inequality and results that follow the predictions of quantum mechanics.
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4. The CHSH–Aspect-Type Experiment and Computer Simulations

Having appreciated the above results, the question arises why the CHSH-type and
Aspect-type experiments that are very similar in their nature to our computer model have
received the interpretation with instantaneous influences at a distance and no possibility of
explanation from local-deterministic models. If we assume a physically similar source in
experiments that are performed for given polarizer angle pairs at four different locations,
then the only difference to the Aspect-type experiments is that in the latter, the index i
that denotes the polarizer angle pairs indicates different measurement times ti at the same
locations. The measurements exhibit a time-like distance instead of a space-like distance.
There should not be any difference between those cases, because Aspect has shown that
rapid switching between the polarizer angles in the actual experiments does not influence
the measurement outcomes.

The followers of Bell have, however, added another demand to the simulations that ap-
pears at first, again, very innocuous. They demand that the model experiments performed
with computer pairs need to be able to come up with a result for any choice of polarizer
angle-pairs and given λin. They make this demand because they believe that they are able
to freely choose the polarizer angles in any moment of the actual experiments. There exists,
however, a subtle difference between the actual experiments and any model experiments:
in the actual experiments, nothing is known about the properties of the entangled photon
pairs for any given measurement. We may have equal or not-equal outcomes of the actual
experiments in the two stations, without knowing any probabilities for these outcomes.
In the model experiments, the outcomes are determined by Equations (3) and (4) as soon
as we have chosen the random λin out of the interval [−1 ≤ λin ≤ +1]. The demand is
made by Bell’s followers that we must be able to simulate the possible outcomes for four
polarizer angle-pairs and any given λin. This situation, however, corresponds to the en-
forced combinatorial symmetry, which always leads to the Bell–CHSH inequalities. One
just cannot obtain four consistent statistical results of the Malus type in the presence of a
combinatorial symmetry as shown clearly by our MC simulations.

Note that the experimenters in the actual experiments with photon pairs can certainly
not guarantee that they measure exactly the same properties of any given photon pair
with four different polarizer angle-pairs. They can perform only one measurement for
any given entangled photon-pair. The cardinality of the set of all photon-pair properties
is not known. It appears possible to restrict this cardinality by putting polarizers or other
instrumentations right after the source. While the degree of restrictions of the cardinality
by such methods is unclear, the literature does suggest that some such restrictions lead to
Bell–CHSH, although no such actual measurements have been performed to the knowledge
of the authors.

5. Conclusions

We have performed Monte Carlo simulations of CHSH-type experiments. Our com-
puter model deviates from the Bell–CHSH models mainly through our use of the Funda-
mental Model of Probability theory combined with a Malus-type law for the correlations
between the polarizations of the photon-pair measurements.
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The use of the Fundamental Model permits different photon-pair properties for every
single event of photon-pair emission. This factor is shown to be critical for the possibility of
breaking the combinatorial symmetry of the Vorob’ev cyclicity and consequential violations
of the Bell–CHSH inequalities. As soon as the Fundamental Model is used, the cardinality
of the number of different photon-pair properties M as related to the cardinality of the
number of measurements N becomes of critical importance and violations of Bell–CHSH
are obtained in all cases of M ≫ N. We have shown in great detail that the reason for the
validity of Bell–CHSH inequalities is a combinatorial symmetry that was originally discov-
ered by Vorob’ev [11]. We have introduced and removed such combinatorial symmetry in
our Monte Carlo simulations and have shown that, for all cases that we could consider, the
presence of such a combinatorial symmetry leads to the Bell–CHSH inequalities, while the
absence of the combinatorial symmetry (that depends on the relative cardinalities of N, M)
leads to violations and the quantum results, even if the model is local deterministic.

As we have shown, the presence of a combinatorial symmetry may be induced by
very innocuous assumptions in addition to the assumption of local determinism. These
additional assumptions have been made unwittingly by Bell and his followers, with a
particular example presented by Mermin’s elegant proofs using M = 8. Other authors
have introduced combinatorial symmetry in other ways. Leggett [13], for example, has
used counterfactual reasoning, assuming that, for a given photon pair property, he could
have chosen all four CHSH polarizer-angle pairs. Our Monte Carlo model does not permit
such a choice and we cannot see how one could demand from nature what is obviously
not necessarily allowed in computer experiments. Our computer experiments certainly
refute that Bell–CHSH might be seen as a proof of “impossibility”. Violations are possible
in computer experiments.

These findings contradict the claim of the 2022 physics Nobel laureates that Einstein’s
physics (particularly his elements of physical reality) must lead to Bell–CHSH-type inequali-
ties, which, in turn, are in contradiction with prize-winning experiments and measurements.
In contrast, we have found that models following the classical physics of Einstein and using
his elements (often also characterized by “hidden variables”) may and even must (under
certain conditions regarding the cardinalities of M and N) lead to results that are close to the
results of quantum mechanics and to the prize-winning measurements. Any interpretation
that denies Einstein’s elements and supports instead instantaneous influences at a distance
is, therefore, put into question. Thus, the first measurements of photon entanglement by
Kocher and Commins [3] also appear in a new light.
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