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Abstract: In the present paper, we address the following general question in the framework of
classical first-order logic. Assume that a certain mathematical principle can be formalized in a first-
order language by a set E of conditional formulas of the form α(v) → β(v). Given a base theory T,
we can use the set of conditional formulas E to extend the base theory in two natural ways. Either
we add to T each formula in E as a new axiom (thus obtaining a theory denoted by T + E) or we
extend T by using the formulas in E as instances of an inference rule (thus obtaining a theory denoted
by T + E–Rule). The theory T + E will be stronger than T + E–Rule, but how much stronger can
T + E be? More specifically, is T + E conservative over T + E–Rule for theorems of some fixed
syntactical complexity Γ? Under very general assumptions on the set of conditional formulas E, we
obtain two main conservation results in this regard. Firstly, if the formulas in E have low syntactical
complexity with respect to some prescribed class of formulas Π and in the applications of E–Rule
side formulas from the class Π and can be eliminated (in a certain precise sense), then T + E is ∀B(Π)-
conservative over T + E–Rule. Secondly, if, in addition, E is a finite set with m conditional sentences,
then nested applications of E–Rule of a depth at most of m suffice to obtain ∀B(Π) conservativity.
These conservation results between axioms and inference rules extend well-known conservation
theorems for fragments of first-order arithmetics to a general, purely logical framework.

Keywords: first-order inference rules; conservative extensions; existentially closed models

MSC: 03B10; 03F03; 03C07

1. Introduction

In the field of logic, encompassing both mathematical and computational aspects, the
question of whether to prioritize axioms or rules greatly influences the study of various
problems. This dilemma affects areas like logic programming design, different axiomatiza-
tions in arithmetics, and automated reasoning, among others.

Designing rules that enhance demonstration by substituting axioms is a viable ap-
proach to addressing provability in a theory (e.g., see [1]), provided that the impact of
such substitution on the theorems of the latter is analyzed. For example, it is essential to
manage induction in equational reasoning [2] or noetherian induction by rewriting [3],
among others. Specific representation formalisms, such as geometric logic, can also benefit
from the introduction of rules to simplify the axiom set [4,5].

In some applied fields, rule-based reasoning plays a pivotal role in various realms
of mathematical or computational logic, the Semantic Web, and expert systems, among
others, where rules provide a flexible and potent framework for representing and applying
knowledge in a computer system.

Studying the (proof–theoretic) strength of a deductive system when we replace axioms
for rules is not only interesting theoretically but also useful for tasks like designing and
implementing computational proof systems.

Axioms 2024, 13, 306. https://doi.org/10.3390/axioms13050306 https://www.mdpi.com/journal/axioms

https://doi.org/10.3390/axioms13050306
https://doi.org/10.3390/axioms13050306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/axioms
https://www.mdpi.com
https://orcid.org/0000-0003-0528-9459
https://doi.org/10.3390/axioms13050306
https://www.mdpi.com/journal/axioms
https://www.mdpi.com/article/10.3390/axioms13050306?type=check_update&version=2


Axioms 2024, 13, 306 2 of 24

This paper presents some theoretical tools and results that can be useful in enhancing
our understanding of the (proof–theoretic) strength of systems representing knowledge by
means of conditional axioms or, instead, by means of rules.

1.1. From Conditional Axioms to Rules

In this work, we address the following general question. Assume that a certain
mathematical principle can be formalized in a first-order language by a set E of conditional
formulas of the form α(v) → β(v) (for instance, an induction principle). Then, given a first-
order theory T expressing some basic properties of the functions and relations involved,
T can be extended by adding the (universal closures of the) formulas in E as new axioms.
In this way, we obtain a new theory that we denote by T + E. However, it is also possible
(and in some cases perhaps more convenient, see some examples below) to extend T by
using the involved principle to produce a new inference rule. This can be carried out, for
example, by considering for each α(v) → β(v) in E an instance

∀v α(v)
∀v β(v)

of a new inference rule denoted by E–Rule. Let T + E–Rule be the closure of T under
first-order logic and applications of this new rule. This approach can also be seen as a
weaker version of the typical conversion process from a Hilbert-style axiomatic system
to a (Gentzen) sequent system. After leaving out the external quantifiers, the conversion
primarily involves identifying a sound decomposition for each axiom to generate the rules.

In general, T + E will be a proper extension of T + E–Rule, but how much stronger
than T + E–Rule can T + E be? What is the exact relationship between both theories? And,
are there other natural rules associated with a set E of conditional axioms that provide
interesting information about T + E?

Before delving into the answers to these questions, let us present the scenario from
which we extract both motivation and methods to deal with the previous problems: the
study of conservation results between formal arithmetic theories. By a conservation result
between two theories T1 and T2, we mean a proposition stating that for some class of
sentences Γ and every sentence θ ∈ Γ, if T1 proves θ, then so does T2 (and in such a case,
we say that T1 is Γ-conservative over T2).

Classical axiom schemes axiomatizing Peano arithmetics (say, Σn–induction, Σn–
collection, and uniform Σn–reflection, n ≥ 1) share basic axiomatization and conservativity
properties. It is a well-known fact that it is possible to develop a uniform treatment of con-
servation results for these schemes and, as a matter of fact, several (mainly proof–theoretic)
methods providing uniform derivations of the basic conservation results are known. These
methods include Herbrand Analysis as developed by W. Sieg in [6,7], S. Buss’ witnessing
method both in Peano arithmetic and in bounded arithmetic (see [8,9]), the model–theoretic
approach to Herbrand Analysis developed by J. Avigad in [10], and several approaches
based on applications of cut elimination, see for instance Parsons’ [11], or more recently,
the approach followed by L. Beklemishev in [12,13] (also closely related to Sieg’s method).

However, the basic ideas of these methods are, to a great extent, independent of any
specific arithmetic notion and, therefore, could be developed for arbitrary (countable)
first-order languages and theories. In order to explore this intuition, we can isolate the
main characteristics of these arithmetical contexts.

Most axiom schemes that are considered in first-order arithmetic produce (when
restricted to some class of formulas) sets of conditional axioms; that is, formulas of the form

α(⃗v) → β(⃗v),
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where v⃗ denotes a sequence v1, . . . , vn of possible free variables. A classical example from
formal arithmetics is the Σ1–induction scheme, IΣ1, given by the formulas

φ(0, v⃗) ∧ ∀x (φ(x, v⃗) → φ(x + 1, v⃗)) → ∀x φ(x, v⃗)

where φ(x, v⃗) varies within the class of formulas Σ1 in the arithmetic hierarchy. We can also
introduce an inference rule, E–Rule, associated with E in a natural way. Namely, E–Rule
denotes the inference rule whose instances are

∀v⃗ α(⃗v)
∀v⃗ β(⃗v)

for each α(⃗v) → β(⃗v) ∈ E. The rule corresponding to the previous Σ1–induction scheme is
denoted by Σ1–IR and consists of instances of the form

∀v⃗ (φ(0, v⃗) ∧ ∀x (φ(x, v⃗) → φ(x + 1, v⃗)))
∀v⃗ ∀x φ(x, v⃗)

where φ(x, v⃗) ∈ Σ1.
Then, given a base theory T, we are interested in conservation properties of the

extensions of T, T + E, and T + E–Rule (the closure of T under first-order logic and
applications of E–Rule.) The analysis of these conservation properties typically proceeds
from some level of syntactical complexity (represented for some class of formulas Π) and
(for some class of formulas Γ containing Π) studies of Γ–conservation results between the
theories associated with E over the base theory T.

It is a classical theorem in the proof theory of first-order arithmetics (proved by
Parsons [11]) that (over a base theory, T0, axiomatized by some elementary arithmetic
facts) the scheme IΣ1 is Π2-conservative over T0 + Σ1–IR. More precisely, T0 + IΣ1 is
a Π2-conservative extension of T0 + Σ1–IR. In this work, we isolate conditions under
which a similar result to Parsons’ theorem can be derived for a given set of conditional
axioms E. We show that if the formulas in the set of conditional axioms E have a suitable
syntactical complexity, then the conservation properties of the theories associated with
E can be derived from simple conditions on the E–Rule. In order to derive these general
counterparts of Parson’s theorem, the following auxiliary notions are introduced.

If, for each α(⃗v) → β(⃗v) ∈ E, the formulas α(⃗v) and β(⃗v) have a low syntactical
complexity with respect to the basic level Π (see Definition 6), then we say that E is a set of
normal conditional axioms with respect to Π. Let us denote by ∀B(Π) the set of universal
closures of boolean combinations of formulas in Π. Then, the set of ∀B(Π) consequences
of T + E can be described using an auxiliary inference rule EΠ–Rule, with instances

∀v⃗ ∀⃗z (θ(⃗v, z⃗) → α(⃗v))
∀v⃗ ∀⃗z (θ(⃗v, z⃗) → β(⃗v))

where α(⃗v) → β(⃗v) ∈ E and θ(⃗v, z⃗) is a conjunction of formulas that belong to Π or are
negations of some formulas in Π. Using a model–theoretic argument (based upon simple
properties of a general notion of an existentially closed model, following ideas developed by
Avigad in [10]) we prove that for every theory T (axiomatized by formulas with restricted
syntactical complexity, see Corollary 1),

• For every set of normal conditional axioms with respect to Π and E, T + E is ∀B(Π)-
conservative over T + EΠ–Rule (the closure of T under first-order logic and applica-
tions of EΠ–Rule).

Let us remark here that the auxiliary EΠ–Rule is a natural device in the proof–theoretic
approach to conservation results for arithmetical theories via cut elimination. As a matter of
fact, the rule EΠ–Rule was considered by J. C. Shepherdson in his analysis of open induction
(see lemma 2.3 in [14]). A very similar rule was also used for Σn induction by Parsons (see
section §3 in [11]) and more recently by Beklemishev in his work on Σn–collection (see [12])



Axioms 2024, 13, 306 4 of 24

and ∆n+1–induction (see [13]). Our proof of Corollary 1 (as a consequence of Proposition 2)
provides a model–theoretic interpretation of these proof–theoretic arguments.

Corollary 1 suggests the following notion (see Definition 7): we say that E is weakly
Π-reducible modulo T if T′ + EΠ–Rule and T′ + E–Rule are equivalent for every theory T′

extending T. Putting it all together, we can state a version of Parson’s theorem in a more
general context where the axiomatization of T has again a restricted syntactical complexity
(see Theorem 1 for this and other related conservation results):

• Let E be a set of normal conditional axioms with respect to Π. If E is weakly Π-
reducible modulo T, then T + E is ∀B(Π)-conservative over T + E–Rule.

This result, and more generally Theorem 1, can be considered as a reformulation of
some aspects of Kaye’s model–theoretic work in [15] where, using Henkin constructions,
Kaye derived conservation results in the spirit of Theorem 1. As pointed out in the survey
paper [16], a uniform model–theoretic treatment of conservation results between several
induction schemes and their parameter-free versions can be obtained using these ideas.
The model–theoretic core of this uniform approach was developed in a general setting
in [17]. The main conceptual difference between Kaye’s approach and our exposition in this
paper is, on top of the use of existentially closed models, the emphasis on the role played
by inference rules in these results that, we think, allows for a more systematic presentation.

In a similar vein, in Section 5, we reinterpret, using the notion of a set of normal
conditional sentences, a conservation result obtained by Kaye (see Theorem 1.4 in [17]).
Namely, we show that (see Theorem 3), given a theory T and a finite set E of normal
conditional sentences with respect to Π, then

• If a ∀B(Π) sentence θ can be derived from T together with m sentences in E, then θ

can be also derived from T + EΠ–Rule using nested applications of EΠ–Rule with a
depth of at most m.

For the reader’s convenience, Table 1 summarizes the axiomatizations of the theories
we will work with in this paper. Given a first-order language L, let E denote a set of
conditional axioms of the form α(⃗v) → β(⃗v) and let Π denote a basic fragment of L (as
defined in Definition 3). The first two theories are given by a base theory T together with
a set of axioms. The remaining theories are constructed using (Hilbert-style) inference
rules and thus are defined by the closure of the base theory T under applications of the
corresponding rule.

Table 1. Theories to be considered in this paper.

Extension T Augmented with/Closed Under

T + E ∀v⃗(α(⃗v) → β(⃗v)), with α(⃗v) → β(⃗v) ∈ E

T + UE ∀v⃗ α(⃗v) → ∀v⃗ β(⃗v), with α(⃗v) → β(⃗v) ∈ E

T + E–Rule
∀v⃗ α(⃗v)
∀v⃗ β(⃗v)

, with α(⃗v) → β(⃗v) ∈ E

T + EΠ–Rule
∀v⃗∀⃗z (θ(⃗v, z⃗) → α(⃗v))
∀v⃗∀⃗z (θ(⃗v, z⃗) → β(⃗v))

, with α(⃗v) → β(⃗v) ∈ E and θ ∈ (Π ∪ ¬Π)∧

T + EΠ
∀ –Rule

θ → α

θ → β
, with α → β ∈ E and θ ∈ ∃B(Π)

T + EΠ
∃ –Rule

θ → α

θ → β
, with α → β ∈ E and θ ∈ ∀B(Π)

[T, R]m
Nested applications of the corresponding rule R

with a depth of at most m
where m is a natural number and θ ∈ (Π ∪ ¬Π)∧ expresses the fact that θ(⃗v, z⃗) is a finite conjunction of formulas,
each of which is in Π or its negation is in Π.
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Table 2 summarizes the main conservation results obtained in this paper. For a given
base theory T, the theory T + E is conservative over each of the following subtheories (it
is important to note that, for the first three conservation results, we also require the base
theory T to be ∀∃B(Π)-axiomatizable, whereas the remaining four hold for base theories T
of arbitrary syntactical complexity).

Table 2. Conservation results demonstrated in this paper.

Subtheory Conservation Conditions on E Reference

T + EΠ–Rule ∀B(Π) α(⃗v) ∈ ∀B(Π), β(⃗v) ∈ ∀∃B(Π) Corollary 1

T + E–Rule ∀B(Π)
α(⃗v) ∈ ∀B(Π), β(⃗v) ∈ ∀∃B(Π),

E is weakly Π-reducible Theorem 1

T + UE ∃∀B(Π)
α(⃗v) ∈ ∀B(Π), β(⃗v) ∈ ∀∃B(Π),

E is weakly Π-reducible Theorem 1

T + EΠ–Rule ∀B(Π)
α ∈ B(∀B(Π)),

α → β sentences Lemma 5

[T, EΠ–Rule]m ∀B(Π)
α ∈ ∀B(Π) ∪ ∃B(Π),

E consists of m sentences Theorem 3

[T, EΠ
∃ –Rule]m ∃B(Π)

α ∈ ∀B(Π) ∪ ∃B(Π),
E consists of m sentences Theorem 3

[T, E–Rule]m ∀B(Π)
α ∈ ∀B(Π) ∪ ∃B(Π),

E consists of m sentences,
E is Π-reducible

Corollary 2

where E is said to be weakly Π-reducible (modulo T) if S + E–Rule ≡ S + EΠ–Rule for each theory S extending T,
and E is said to be Π-reducible (modulo T) if [S, E–Rule]1 ≡ [S, EΠ–Rule]1 for each theory S extending T.

1.2. Aim and Structure of the paper

In this paper, we prove some conservation results between, on the one hand, an
arbitrary theory axiomatized (over a basic theory T) by a set of conditional axioms E and,
on the other hand, theories axiomatized (again over T) by (nested) applications of the rules
E–Rule and EΠ–Rule. Although the results included here are not essentially new and the
corresponding arithmetical versions are well-known, we think that the model–theoretic
approach that we develop in their proofs is rather simple and clear. This simplicity aids in
making the whole presentation of these kinds of results in a general context very easy to
follow. In a fundamental sense, this paper revisits a substantial part of the work of Kaye
in [16,17] through the light of the methods introduced more recently by Avigad in [10].
It also reformulates Kaye’s results in terms of natural inference rules, as can be found in
more standard proof–theoretic works [12,18]. We hope this reformulation, together with
the model–theoretic approach we adopt here, can contribute to making the logical content
of these results more accessible to a wider audience, including researchers working on
topics with no direct connection with formal arithmetics.

The structure of this paper is as follows. The next section, Section 2, specifies the basic
notions and notation used in the paper. In Section 3, we present the basic model–theoretic
device used throughout the paper to derive conservation results. Here, a generalization
of the notion of an existentially closed model plays a central role. The notion of a normal
conditional axiom is introduced in Section 4, where some conservation results between
the theory axiomatized by conditional axioms and the one obtained by considering the
associated rules are established. The specific case of a finite set of conditional sentences is
analyzed in Section 5. This paper concludes with some considerations about the results
obtained and possible lines of future research.



Axioms 2024, 13, 306 6 of 24

2. Inference Rules and Conditional Axioms

We always work in classical first-order logic with equality. Let us fix a countable
first-order language L. A formula is a literal of L if it is atomic or negated atomic.

As usual, a theory T is a set of sentences of L closed under logical consequence (that is,
for each formula φ, if T |= φ, then φ ∈ T). An axiomatization of T is a set of formulas Γ
such that T = {φ : Γ |= φ}.

Through this paper, we shall deal with different sets of formulas built up from a basic
distinguished set using several syntactical operations. So, we shall begin by defining these
operations. Given a set of formulas Γ, the following notation will be used:

• ¬Γ is the set of formulas {¬φ(x⃗) : φ(x⃗) ∈ Γ}.
• ∃Γ is the set {∃x⃗φ(x⃗) : φ(x⃗) ∈ Γ} (the sets ∀Γ, ∃∀Γ, ∀∃Γ,. . . are defined accordingly

using the appropriate blocks of initial quantifiers).
• Γ∧ (resp. Γ∨) is the set of all finite conjunctions (resp. disjunctions) of formulas of Γ.

Γ+ is the closure of Γ under disjunctions and conjunctions.
• B(Γ) denotes the set of boolean combinations of formulas in Γ.

As usual, a tuple of elements (or variables) a1, . . . , an is abbreviated by a⃗, and we write
φ(x⃗) to indicate that the free variables of φ are among the tuple x⃗.

For a given base theory T, extensions of T can typically be axiomatized in two ways:
(1) by adding a new set of sentences E to T and closing under logical consequence, or (2)
by closing T under (first-order logic and) applications of some new inference rules. In this
paper, we shall explore the relationship between both extensions.

Firstly, we recall some basic notions and terminology on inference rules introduced by
Beklemishev in [18]. By an inference rule, we mean a set of instances, that is, expressions of
the form

φ1, . . . , φn

ψ

where φ1, . . . , φn, ψ are formulas. If R is an inference rule, then [T, R] denotes the closure
of T under first-order logic and unnested applications of R (that is, a proof in [T, R] may
contain several applications of R but they are not to occur on the same branch within the
proof). By recursion on k ∈ ω, we define [T, R]0 = T and [T, R]k+1 = [[T, R]k, R]. The
closure of T under first-order logic and applications of R is T + R =

⋃
k∈ω [T, R]k.

Definition 1. Let R1 and R2 be rules and let U be a theory.

1. The rule R1 is derivable from R2 modulo U if for every extension T of U, T + R2 extends
T + R1.

2. The rules R1 and R2 are equivalent modulo U if for every extension T of U, T + R1 ≡ T + R2
(that is, they are equivalent theories).

3. The rule R1 is reducible to R2 modulo U if for every extension T of U, [T, R2] extends
[T, R1].

4. R1 and R2 are congruent modulo U if for every extension T of U, [T, R1] ≡ [T, R2].

Many significant mathematical and combinatorial principles are expressed in the form
of implications, where the satisfaction of a certain condition A entails the presence of
another condition B. The formal representation of these principles corresponds to formulas
whose outermost connective is the logical implication symbol →. This motivates the
following definition.

Definition 2. We say that a set E of L-formulas is a set of conditional axioms if every element of
E is a formula of the form α(⃗v) → β(⃗v) (recall that for a formula φ, we write φ(⃗v) to mean that the
free variables of φ are among the variables v⃗).
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Let T be an L-theory and let E be a set of conditional axioms. Then, by definition,
T + E is the theory axiomatized by T plus the universal closure of every formula in E, i.e.,
the theory given by T plus

∀v⃗ (α(⃗v) → β(⃗v)),

for each α(⃗v) → β(⃗v) ∈ E.
A natural inference rule, E–Rule, can be associated with E by considering the instances

∀v⃗ α(⃗v)
∀v⃗ β(⃗v)

for each α(⃗v) → β(⃗v) ∈ E.
In this paper, we explore the relationship between the theories T + E, T + E–Rule, and

[T, E–Rule]k (k ≥ 1) for a given set of conditional axioms.
In order to be able to determine more precisely the relative proof–theoretic strength of

these theories, we shall fix some level of syntactical complexity for the formulas considered.
This will be performed through the notion of a basic fragment of a first-order language:

Definition 3. A set of formulas of L, Π, is a basic fragment of L if Π satisfies the following
conditions:

1. Every atomic formula of L belongs to Π.
2. If φ ∈ Π and θ is a subformula of φ, then θ ∈ Π.
3. If φ(x, v1, . . . , vn) ∈ Π and t is a term of L, then φ(t, v1, . . . , vn) ∈ Π.

In short, a basic fragment is a set of formulas that includes all atomic formulas and is
closed under subformulas and term substitution.

Let us enumerate a few natural examples of basic fragments.

• The sets ∀n and ∃n of formulas of L (where ∀0 = ∃0 denotes the class of open formulas
of L and for each n ≥ 0, ∃n+1 = ∃∀n and ∀n+1 = ∀∃n).

• The set of all literals of L (a formula is a literal if it is atomic or negated atomic).
• The set comprising all clauses (i.e., disjunctions of literals) of L.
• In the context of arithmetic languages, other examples are the classes in the arithmetical

hierarchy Πn and Σn, n ≥ 0, (see [19] or [20]); the sets Un and En, n ≥ 0, in the ∆0
hierarchy of bounded formulas (see [21]); and the sets Π̂b

n and Σ̂b
n, n ≥ 0, of strictly

bounded formulas considered in bounded arithmetic (see [20]).

Given a basic fragment Π, we associate E with a new set of conditional axioms denoted
by EΠ and given by the set of all formulas

(θ1 (⃗v, z⃗) ∧ · · · ∧ θk (⃗v, z⃗) → α(⃗v)) → (θ1 (⃗v, z⃗) ∧ · · · ∧ θk (⃗v, z⃗) → β(⃗v))

where α(⃗v) → β(⃗v) ∈ E, and for each j = 1, . . . , k, θj (⃗v, z⃗) ∈ Π ∪ ¬Π. We will also consider
its associated inference rule, EΠ–Rule, given by the set of instances

∀v⃗ ∀⃗z (θ1 (⃗v, z⃗) ∧ · · · ∧ θk (⃗v, z⃗) → α(⃗v))
∀v⃗ ∀⃗z (θ1 (⃗v, z⃗) ∧ · · · ∧ θk (⃗v, z⃗) → β(⃗v))

where α(⃗v) → β(⃗v) ∈ E and for each j = 1, . . . , k, θj (⃗v, z⃗) ∈ Π ∪ ¬Π.
Let us observe that T + E is equivalent to T + EΠ (both are different axiomatizations

of the same theory) but, in general, the theories [T, E–Rule] and [T, EΠ–Rule] are not
equivalent. Indeed, [T, EΠ–Rule] always extends [T, E–Rule] (to simulate an application of
E–Rule, one applies the corresponding instance of EΠ–Rule with θ(z1) ≡ (z1 = z1), which
belongs to Π for any basic fragment). However, in general, [T, E–Rule] may not necessarily
be an extension of [T, EΠ–Rule].
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3. A Model–Theoretic Standpoint

In this section, we introduce the machinery that we will use to derive our conservation
results between theories T + E and T + E–Rule, where E is a set of conditional axioms.

The methods we use in this paper are model–theoretic in nature and essentially follow
the methodology introduced by Avigad in [10] who, in turn, mentions that in the context of
bounded arithmetic, this methodology has been used in Zambella [22], where it is attributed
to unpublished work by Albert Visser.

Central to our approach is the notion of an ∃Π-closed model of a theory T, where Π is a
fixed but arbitrary basic fragment. This notion is a natural generalization of the well-known
concept of an existentially closed model and extends the concept of a Herbrand-saturated
model introduced in [10].

All the languages and models considered through this paper are countable. Given
two L structures A and B and a set of formulas Φ, we shall write A ≺Φ B to express
that B is a Φ-elementary extension of A; that is, A is a substructure of B, and for each
θ(u1, . . . , un) ∈ Φ and each a1, . . . , an ∈ A, we have

A |= θ(⃗a) ⇐⇒ B |= θ(⃗a).

Definition 4. Given a basic fragment Π of a first-order language L and an L structure A, the
Π-diagram of A is the set of sentences of the language L ∪ {a : a ∈ A} given by

DΠ(A) = {φ(⃗a) : A |= φ(⃗a) and φ(x⃗) ∈ Π ∪ ¬Π}

Remark 1. Let Π be a basic fragment of a language L and let A be an L structure.

1. If B is an L structure and A is a substructure of B, then

B |= DΠ(A) ⇐⇒ A ≺Π B.

2. For every L-theory T, the following conditions are equivalent:

(a) T + DΠ(A) is consistent.
(b) There exists B |= T such that A ≺Π B.

Remark 2. Let us observe that, for every two L structures A and B, we have

A ≺Π B ⇐⇒ A ≺B(Π) B.

The next definition introduces a straightforward generalization of the notion of an
existentially closed model.

Definition 5. Let A be an L structure. We say that A is an ∃Π-closed model of T if A |= T, and
for each B |= T, A ≺Π B implies A ≺∃Π B.

Observe that taking Π = ∀0, we obtain the classical notion of an existentially closed
model from Model Theory; taking Π = ∀1, we obtain the notion of a Herbrand-saturated
model from [10]; taking Π = ∆0, we obtain the notion of a 1-closed model from [23]; and
taking Π = Π̂b

i , we obtain the notion of an ∃Π̂b
i -closed model from [24].

The usual chain argument for constructing existentially closed models provides us
with an existence lemma. The proof of Lemma 1 is rather standard but we include a sketch
so that the reader can check where the properties defining the notion of a basic fragment Π
are needed.

Lemma 1. Let T be a ∀∃B(Π)-axiomatizable consistent theory. Then, for each A |= T, there exists
an ∃Π-closed model of T, B, such that A ≺Π B.
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Proof. Let A be a model of T. In the first step, we will construct a model of T, A1, satis-
fying A ≺Π A1, and for each C |= T with A1 ≺Π C and for all φ(x1, . . . , xn, y⃗) ∈ Π and
a1, . . . , an ∈ A,

C |= ∃y⃗ φ(a1, . . . , an, y⃗) ⇒ A1 |= ∃y⃗ φ(a1, . . . , an, y⃗).

To this end, we will form a chain of models of T of power ω,

A = A1
0 ≺Π A1

1 ≺Π · · · ≺Π A1
i ≺Π . . . ,

and take A1 =
⋃

i∈ω A1
i .

Let {θi(a1, . . . , ani , y⃗) : i ∈ ω} be an enumeration of all formulas in Π with parameters
ai from A.

i = 0: Put A1
0 = A.

i → i + 1: If T + DΠ(A1
i ) + ∃y⃗ θi(a1, . . . , ani , y⃗) is consistent, there exists D |= T such

that A1
i ≺Π D and D |= ∃y⃗ θi(a1, . . . , ani , y⃗). Define A1

i+1 to be D. If T + DΠ(A1
i ) +

∃y⃗ θi(a1, . . . , ani , y⃗) is inconsistent, define A1
i+1 to be A1

i .

Let us check that A1 =
⋃

i∈ω A1
i satisfies the required properties.

• A ≺Π A1. As usual, by induction on the syntactical complexity of the formulas in Π,
it is easy to see that the union of the chain A1 is a Π-elementary extension of each
model in the chain (here we use the assumption that a basic fragment Π is closed
under subformulas and term substitution).

• A1 |= T. It follows from the fact that ∀∃B(Π)-axiomatizable theories are preserved
under unions of Π-elementary chains. In fact, let ∀x⃗∃y⃗ θ(x⃗, y⃗) be an axiom of T, where
θ(x⃗, y⃗) ∈ Π, and consider a1, . . . , an ∈ A1. Pick i0 ∈ ω such that a1, . . . , an ∈ A1

i0
. Since

A1
i0

is a model of T, there are b1, . . . , bm ∈ A1
i0

such that A1
i0
|= θ(⃗a, b⃗). Since A1

i0
≺Π A1

and θ(x⃗, y⃗) ∈ B(Π), A1 |= θ(⃗a, b⃗). Hence, A1 |= ∃y⃗ θ(⃗a, y⃗), as required.

• Consider C |= T with A1 ≺Π C, φ(x1, . . . , xn, y⃗) ∈ Π and a1, . . . , an ∈ A such that C |=
∃y⃗ φ(a1, . . . , an, y⃗). Pick j ∈ ω such that φ(a1, . . . , an, y⃗) is θj(a1, . . . , anj , y⃗). Clearly,
T + DΠ(A1

j ) + ∃y⃗ θj(a1, . . . , anj , y⃗) is consistent and so A1
j+1 |= ∃y⃗ φ(a1, . . . , an, y⃗) by

construction. But then A1 |= ∃y⃗ φ(a1, . . . , an, y⃗) since A1
j+1 ≺Π A1.

Repeating the construction ω times, we obtain a chain of models of T:

A = A0 ≺Π A1 ≺Π A2 ≺Π . . .

such that any ∃Π sentence with constants from Ai that holds in some extension of Ai+1,
which is a model of T, holds in Ai+1 as well. Take B =

⋃
i∈ω Ai. It is clear that A ≺Π B and

B is an ∃Π-closed model of T.

Our basic device to prove the conservation results is the next lemma, which is a general
version of Theorem 3.4 in [10].

Lemma 2. Let T be a ∀∃B(Π)-axiomatizable theory and let T′ be a theory such that every ∃Π-
closed model of T is a model of T′. Then, T′ is ∀B(Π)-conservative over T.

Proof. Let φ ∈ ∀B(Π) be a sentence such that T′ ⊢ φ. We must show that T ⊢ φ.
Suppose that T ̸⊢ φ. Then, there exists A |= T + ¬φ. Since ¬φ is an ∃B(Π) sentence,

T + ¬φ is a ∀∃B(Π)-axiomatized, consistent theory and, by Lemma 1 and Remark 2, there
exists an ∃Π-closed model of T, B, such that A ≺B(Π) B. Firstly, by the assumption on
the theory T′, B is a model of T′. Secondly, put ¬φ ≡ ∃y⃗ φ0 (⃗y), with φ0 (⃗y) ∈ B(Π), and
pick a⃗ ∈ A, satisfying that A |= φ0 (⃗a). Since A ≺B(Π) B, B |= φ0 (⃗a), and so B |= ∃y⃗ φ0 (⃗y).
Then, B |= T′ + ¬φ, a contradiction.
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In order to apply Lemma 2, we will need the following result that mirrors theorem 3.3
outlined in [10]. It establishes a connection between validity within an ∃Π-closed model of
T and the provability within the theory T itself.

Proposition 1. Let A be an ∃Π-closed model of T and φ(x⃗) ∈ ∃∀¬Π, a⃗ ∈ A such that A |= φ(⃗a).
Then, there exist c⃗ ∈ A and θ1(x⃗, z⃗), . . . , θk(x⃗, z⃗) ∈ Π ∪ ¬Π such that

A |= θ1 (⃗a, c⃗) ∧ · · · ∧ θk (⃗a, c⃗) and T ⊢ θ1(x⃗, z⃗) ∧ · · · ∧ θk(x⃗, z⃗) → φ(x⃗).

Proof. Since A |= φ(⃗a) and φ(x⃗) ∈ ∃∀¬Π, there are φ0(x⃗, v⃗) ∈ ∀¬Π and d⃗ ∈ A such
that φ(x⃗) is ∃v⃗ φ0(x⃗, v⃗) and A |= φ0 (⃗a, d⃗). Since A is ∃Π-closed, T + DΠ(A) + ¬φ0 (⃗a, d⃗)
is inconsistent. Indeed, assume that T + DΠ(A) + ¬φ0 (⃗a, d⃗) is consistent. By Remark 1,
there exists B |= T + ¬φ0 (⃗a, d⃗) such that A ≺Π B. It follows from the fact that A is an
∃Π-closed model of T that A ≺∃Π B. But then A |= ¬φ0 (⃗a, d⃗) since ¬φ0(x⃗, v⃗) ∈ ∃Π, which
contradicts the fact that A |= φ0 (⃗a, d⃗).

Therefore,
T + DΠ(A) ⊢ φ0 (⃗a, d⃗).

In particular, T + DΠ(A) ⊢ ∃v⃗ φ0 (⃗a, v⃗) and hence T + DΠ(A) ⊢ φ(⃗a). By compactness,
there exist θ1 (⃗a, c⃗), . . . , θk (⃗a, c⃗) ∈ DΠ(A) such that T + θ1 (⃗a, c⃗) + · · ·+ θk (⃗a, c⃗) ⊢ φ(⃗a). Since
the constant symbols a⃗, c⃗ do not appear in the language of the theory T, we obtain

T ⊢ θ1(x⃗, z⃗) ∧ · · · ∧ θk(x⃗, z⃗) → φ(x⃗),

as required.

4. Normal Conditional Axioms

After introducing the basic model–theoretic machinery in the previous section, we
are now ready to establish our first general conservation theorem between axioms and
inference rules. To this end, we first need the following simple yet useful lemma.

Lemma 3. Let T be a theory and let E be a set of conditional axioms. Then, for every basic fragment
Π, EΠ–Rule and EB(Π)–Rule are congruent modulo T.

Proof. Since Π ⊆ B(Π), it is enough to show that for every theory U extending T,
[U, EΠ–Rule] extends [U, EB(Π)–Rule]. Even more, since B(Π) is closed under conjunctions
and negation, it is enough to show that for all α(⃗v) → β(⃗v) ∈ E and σ(u⃗, v⃗) ∈ B(Π), if
U ⊢ σ(u⃗, v⃗) → α(⃗v), then

[U, EΠ–Rule] ⊢ σ(u⃗, v⃗) → β(⃗v).

Given σ(u⃗, v⃗) ∈ B(Π), there are σij(u⃗, v⃗) ∈ Π ∪ ¬Π such that

σ(u⃗, v⃗) ≡
n∨

i=1

mi∧
j=1

σi,j(u⃗, v⃗).

Then, since U ⊢ σ(u⃗, v⃗) → α(⃗v), we have

U ⊢
n∧

i=1

 mi∧
j=1

σij(u⃗, v⃗) → α(⃗v)

.
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Then, n (unnested) applications of EΠ–Rule give us

[U, EΠ–Rule] ⊢
n∧

i=1

 mi∧
j=1

σij(u⃗, v⃗) → β(⃗v)


and, therefore,

[U, EΠ–Rule] ⊢
n∨

i=1

mi∧
j=1

σij(u⃗, v⃗) → β(⃗v),

as required.

The next Proposition establishes a general conservation theorem between a base theory
T augmented with a set of conditional axioms E and the associated inference rule theory
T + EΠ–Rule, where Π is an appropriate basic fragment. Namely, under very general
conditions, it is possible to replace the use of an axiom from E by the use of an inference
rule at the price of adding certain side formulas from the class Π during the application of
the inference rule.

Proposition 2. Let T be a theory, let Π be a basic fragment, and let E be a set of conditional axioms
such that

(S1) For every α(⃗v) → β(⃗v) ∈ E, α(⃗v) is T-provably equivalent to an ∃∀B(Π) formula; and
(S2) T + EΠ–Rule is ∀∃B(Π)-axiomatizable.

Then, T + E is ∀B(Π)-conservative over T + EΠ–Rule.

Proof. By Lemma 3, EΠ–Rule and EB(Π)–Rule are congruent and hence it is sufficient to
show that T + E is ∀B(Π)-conservative over T + EB(Π)–Rule. Note that B(Π) is also a
basic fragment and that B(B(Π)) = B(Π). By condition (S2) T + EB(Π)–Rule is ∀∃B(Π)-
axiomatizable. Hence, by Lemma 2 for the basic fragment B(Π), it suffices to prove that
every ∃B(Π)-closed model of T + EB(Π)–Rule is a model of T + E.

Let A be an ∃B(Π)-closed model of T + EB(Π)–Rule. Consider α(⃗v) → β(⃗v) ∈ E and
a⃗ ∈ A such that A |= α(⃗a). We must show that A |= β(⃗a).

By condition (S1), there exists α0 (⃗v) ∈ ∃∀B(Π) such that T ⊢ α(⃗v) ↔ α0 (⃗v) and so
A |= α0 (⃗a). By Proposition 1 for the basic fragment B(Π), there exist θ(⃗v, z⃗) ∈ B(Π) and
c⃗ ∈ A, satisfying

A |= θ(⃗a, c⃗)

and
T + EB(Π)–Rule ⊢ θ(⃗v, z⃗) → α0 (⃗v).

Then,
T + EB(Π)–Rule ⊢ θ(⃗v, z⃗) → α(⃗v)

and, by an application of EB(Π)–Rule, we obtain

T + EB(Π)–Rule ⊢ θ(⃗v, z⃗) → β(⃗v).

Therefore, A |= β(⃗a) since A |= T + EB(Π)–Rule and A |= θ(⃗a, c⃗).

Please note that conditions (S1) and (S2) of the above Proposition are satisfied by every
theory and every set of conditional axioms with suitable syntactical complexity. Namely, if
T is a ∀∃B(Π)-axiomatizable theory and E is a set of conditional axioms such that for all
α(⃗v) → β(⃗v) ∈ E we have α(⃗v) ∈ ∃∀B(Π) and β(⃗v) ∈ ∀∃B(Π), then T and E satisfy (S1)
and (S2). According to this, in what follows we focus on ∀∃B(Π)-axiomatizable theories
and sets of conditional axioms of restricted syntactical complexity. This motivates the
following definitions:
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Definition 6. A formula α(⃗v) → β(⃗v) is a normal conditional axiom with respect to Π if
(modulo logical equivalence) α(⃗v) ∈ ∀B(Π) and β(⃗v) ∈ ∀∃B(Π).

If, instead, for some theory T, α(⃗v) is T-provably equivalent to a ∀B(Π) formula and β(⃗v)
is T-provably equivalent to a ∀∃B(Π) formula, then we say that α(⃗v) → β(⃗v) is a normal
conditional axiom with respect to Π over T.

Remark 3. In the context of formal arithmetic, there are a good number of combinatorial or logical
principles that can be naturally expressed as a set of normal conditional axioms with respect to a
suitable basic fragment Π. For instance, the induction principle and the collection or Replacement
principles are prominent examples.

In a non-arithmetical context, an interesting example of normal conditional axioms could
be the geometric ones (cf. [25]). A geometric axiom is a formula following the geometric axiom
scheme below:

∀x⃗(P1(x⃗) ∧ · · · ∧ Pn(x⃗) → ∃y⃗1M1(x⃗, y⃗1) ∨ · · · ∨ ∃y⃗m Mm(x⃗, y⃗m))

where each Pj is an atom and each Mi is a conjunction of a list of atoms Qi1 , . . . , Qiℓ , and none of
the variables in any y⃗i are free in the Pj’s.

It is easy to check that a set of geometric axioms, E, is a set of normal conditional axioms with
respect to the basic fragment consisting of the atomic formulas of the language, At.

In view of the discussion preceding Definition 6 and as an immediate corollary of
Proposition 2, the following result is obtained.

Corollary 1. Let Π be a basic fragment and let T be a ∀∃B(Π)-axiomatizable theory. Let E be a
set of normal conditional axioms with respect to Π over T. Then, T + E is ∀B(Π)-conservative
over T + EΠ–Rule.

The previous corollary establishes a broadly applicable conservation result between
a set of conditional axioms T + E and the naturally associated inference rule T + EΠ–
Rule. Remarkably, in Corollary 1, we only imposed certain syntactical conditions on the
quantifier complexity of the involved theories. Therefore, this conservation phenomenon
remains independent of the specific combinatorial or mathematical principles that the set
of conditional axioms E could express.

Remark 4. It is important to notice that these conservation results are properties of the given
axiomatizations of the theories T + E. That is, there are sets of conditional axioms E1 and E2 such
that T + E1 and T + E2 are equivalent theories but the associated inference rules EΠ1–Rule and
EΠ2–Rule significantly differ in strength.

A set of geometric axioms E can be used to illuminate this aspect of the approach developed in
this work. Let us observe that if E is a set of geometric axioms, then each element in E is a conditional
axiom α(⃗v) → β(⃗v), where α(⃗v) is a conjunction of atomic formulas. As a consequence,

∀v⃗ (α(⃗v) → α(⃗v))
∀v⃗ (α(⃗v) → β(⃗v))

is an instance of EΠ–Rule (with Π = At) and it follows that, for every theory T, [T, EΠ–Rule] is
equivalent to T + E, rendering trivial every conservation result between both theories. However, let
us observe that if we put

D = {¬β(⃗v) → ¬α(⃗v) : α(⃗v) → β(⃗v) ∈ E}

then T + E ≡ T + D and D is also a set of normal conditional axioms with respect to Π.
By Proposition 2, T + E is ∀B(Π)-conservative over T + DΠ–Rule, but now T + DΠ–Rule

is a theory presumably weaker than T + E (since the applications of rule DΠ–Rule only produce
∀B(Π) formulas).
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Moreover, Corollary 1 suggests a natural scenario in which the conservativity of T + E
over the directly associated inference rule T + E–Rule can be established, namely when E–
Rule and EΠ–Rule are shown to be equivalent rules. This prompts the following definition.

Definition 7. Let T be a theory and let E be a set of conditional axioms. We say that

• E is weakly Π-reducible modulo T if EΠ–Rule is derivable from E–Rule modulo T.
• E is Π-reducible modulo T if EΠ–Rule is reducible to E–Rule modulo T.

Paradigmatic examples of Π-reducible sets of conditional axioms are provided by the
different versions of the induction principle in first-order arithmetics, usually formulated
by means of a scheme. In particular, the open induction scheme gives us a simple but very
clear example that was already studied in the early 1960s by Shepherdson (see [14]). Let
us consider a first-order language L extending the language of first-order arithmetics. Let
T be a theory in the language L axiomatized by ∀B(Π) sentences and let E be the set of
conditional sentences generated by the scheme

φ(0, v⃗) ∧ ∀x (φ(x, v⃗) → φ(x + 1, v⃗)) → ∀x φ(x, v⃗)

where φ(x, v⃗) varies within the set ∀0 of all open formulas of L. Then,

(⋆) E is ∀0-reducible modulo T.

To see this, it is enough to notice that, given φ(x, v⃗), θ(⃗v, z⃗) ∈ ∀0 such that, for some
extension U of T,

U ⊢ ∀v⃗∀⃗z (θ(⃗v, z⃗) → φ(0, v⃗) ∧ ∀x (φ(x, v⃗) → φ(x + 1, v⃗)))

then the sentence ∀v⃗∀⃗z (θ(⃗v, z⃗) → ∀x φ(x, v⃗)) can be derived in [U, E–Rule] from a single
instance of E–Rule as follows:

Let ψ(x, v⃗, z⃗) be the formula θ(⃗v, z⃗) → φ(x, v⃗). Then,

U ⊢ ∀v⃗∀⃗z (ψ(0, v⃗) ∧ ∀x (ψ(x, v⃗) → ψ(x + 1, v⃗)))

and, therefore, [U, E–Rule] ⊢ ∀v⃗∀⃗z ∀x ψ(x, v⃗), but this last sentence is easily seen to be
equivalent to ∀v⃗∀⃗z (θ(⃗v, z⃗) → ∀x φ(x, v⃗)).

In [14], the theory T + E was denoted by IAO and T + E–Rule by RIO. Bearing in
mind Corollary 1 and (⋆), we obtain an alternative proof of Theorem 2.2 in [14] stating that
IAO is ∀1-conservative over RIO.

Now we are ready to prove our first general conservation theorem of a theory from
T + E over the associated inference rule theory T + E–Rule. As a by-product, we will also
obtain the conservativity of T + E over a certain parameter-restricted version of that theory.
In fact, given a set of conditional axioms E, we define the set of sentences

UE = {∀v⃗ α(⃗v) → ∀v⃗ β(⃗v) : α(⃗v) → β(⃗v) ∈ E}

(U stands for uniform, for in order to apply an axiom of UE, the antecedent α(⃗v) must be
uniformly true, i.e., true for all values of the parameters v⃗). It is clear that T + E implies
T + UE, which, in turn, implies T + E–Rule

Theorem 1. Let T be a ∀∃B(Π)-axiomatizable theory and let E be a set of normal conditional
axioms with respect to Π over T. If E is weakly Π-reducible modulo T, then

1. T + E is ∀B(Π)-conservative over T + E–Rule.
2. T + E is ∃∀B(Π)-conservative over T + UE.
3. In fact, if a theory D satisfies that every extension of T + D is closed under E–Rule, then

T + E is ∃∀B(Π)-conservative over T + D.
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Proof. Part (1) directly follows from Proposition 2. Note that conditions (S1) and (S2) in the
statement of Proposition 2 are satisfied since E is a set of normal conditional axioms with
respect to Π over T and T + E–Rule and T + EΠ–Rule are equivalent since E is assumed to
be weakly Π-reducible modulo T.

Let us prove part (2). Let ψ ∈ ∃∀B(Π) be a sentence such that T + UE ̸⊢ ψ. Then,
T′ = T + UE + ¬ψ is consistent and ∀∃B(Π)-axiomatizable; hence, by Lemma 1, there
exists an ∃B(Π)-closed model of T′, say A.

Observe that T′ is closed under E–Rule. By weak Π-reducibility modulo T and
Lemma 3, T′ is also closed under EB(Π)–Rule. Hence, reasoning as in the proof of Proposi-
tion 2, we obtain that A |= T′ + E. In particular, A |= T + E + ¬ψ and so T + E ̸⊢ ψ.

As for part (3), let us observe that T + D extends T + UE (for otherwise there would
be α(⃗v) → β(⃗v) ∈ E such that T + D + ∀v⃗ α(⃗v) ̸⊢ ∀v⃗ β(⃗v) and so T + D + ∀v⃗ α(⃗v) would
not be closed under E-Rule, contradicting the hypothesis on D). Hence, part (3) follows
from part (2).

Remark 5. Theorem 1 provides a general method for proving the conservativity of a set of axioms E
over the associated inference rule E–Rule: (i) expressing E as a set of normal conditional axioms
with respect to an appropriate basic fragment Π, and (ii) showing that E is weakly Π-reducible (i.e.,
EΠ–Rule is derivable from E–Rule).

In the realm of arithmetic, significant results can be derived from this approach. For instance, it
can be readily demonstrated that the theory of Σ1-induction IΣ1 can be formulated as a set of normal
conditional axioms with respect to the basic fragment Π1. Subsequently, the resulting EΠ1–Rule
can be derived from (or, more precisely, reduced to) Σ1–IR modulo I∆0. This leads to a proof of the
well-known fact regarding the Π2 conservativity of IΣ1 over I∆0 + Σ1–IR. Through this approach,
numerous other significant conservation results for arithmetic theories can be proved.

In the setting of formal number theory, a natural question regarding the proof strength
of an arithmetic theory T is to characterize the Γ consequences of the theory; that is, the set
of all theorems of T of a fixed quantifier complexity Γ. To fix notation, given a theory T and
a set of formulas Γ in the language of T, we denote

ThΓ(T) = {φ ∈ Γ : φ is a sentence and T ⊢ φ}.

Two prototypical results in this regard are the well-known facts that I∆0 + Σ1–IR char-
acterizes the Π2 consequences of Σ1-induction ThΠ2(IΣ1) and that UIΣ1 characterizes
ThΣ3(IΣ1).

In [17], Kaye already observed that these fundamental facts can be extended to a
broader, arithmetic-free context, and that they can be established by using simple model–
theoretic arguments. Our Theorem 1 provides an alternative proof of Kaye’s observation.
Specifically, suppose that T is a ∀B(Π)-axiomatizable theory and that E is a set of condi-
tional axioms satisfying that if α(⃗v) → β(⃗v) ∈ E, then both α(⃗v) and β(⃗v) are in ∀B(Π)
(possibly modulo T). Then, T + EΠ–Rule is ∀B(Π)-axiomatizable and T + UE is ∃∀B(Π)-
axiomatizable. Therefore, if E satisfies the assumptions of Theorem 1, we obtain charac-
terizations of Th∀B(Π)(T) and Th∃∀B(Π)(T). Namely, T + EΠ–Rule captures, precisely, the
∀B(Π) consequences of T + E, and T + UE captures, precisely, the ∃∀B(Π) consequences
of T + E.

To close this section, we show how to derive from Theorem 1 another result of Kaye
regarding general L-theories. Namely, Theorem 1.1. of [17] establishes that if T is any
∀n+1-axiomatizable L-theory (n ≥ 1), then

Th∃n+1(T) ≡ ThB(∃n)(T).
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Here we obtain a slightly more general version of this result: if Π is a basic fragment of a lan-
guage L and T is a ∀∃B(Π)-axiomatizable L-theory, then Th∃∀B(Π)(T) and ThB(∃B(Π))(T)
coincide (note that Kaye’s result can be recovered by taking Π = ∀n−1).

Theorem 2. If T is a ∀∃B(Π)-axiomatizable theory, then

Th∃∀B(Π)(T) ≡ ThB(∃B(Π))(T).

Proof. Without a loss of generality, it suffices to prove the result under the assumption
that the basic fragment Π is closed under boolean combinations. Assume Π = B(Π) and
let T be any ∀∃Π-axiomatized theory. We must show that Th∃∀Π(T) and ThB(∃Π)(T) are
equivalent theories.

First of all, observe that T can be axiomatized by a set of conditional axioms as follows.
Let T0 denote the theory in the language of T with no non-logical axioms and define

RT = {∀y⃗¬φ(x⃗, y⃗) → ⊥ : ∀x⃗∃y⃗ φ(x⃗, y⃗) ∈ T, φ(x⃗, y⃗) ∈ Π},

where ⊥ ∈ ∀Π denotes the (false) sentence ∀x (x ̸= x). It is clear that T ≡ T0 + RT . Now
consider the new set of conditional axioms E = (RT)

Π; that is, E is the set of conditional
axioms given by

(θ(x⃗, z⃗) → ∀y⃗¬φ(x⃗, y⃗)) → (θ(x⃗, z⃗) → ⊥),

where θ(x⃗, z⃗) ∈ Π, ∀x⃗∃y⃗ φ(x⃗, y⃗) ∈ T, and φ(x⃗, y⃗) ∈ Π. We also have T ≡ T0 + E and now it
is immediate to verify that E is a set of normal conditional axioms with respect to Π, which,
in addition, is Π-reducible modulo T0. By Theorem 1, we obtain that T is ∃∀Π-conservative
over T0 + UE, which, by definition, is given by the set of sentences

∀x⃗∀⃗z (θ(x⃗, z⃗) → ∀y⃗¬φ(x⃗, y⃗)) → ∀x⃗∀⃗z (θ(x⃗, z⃗) → ⊥),

where θ(x⃗, z⃗) ∈ Π, ∀x⃗∃y⃗ φ(x⃗, y⃗) ∈ T, and φ(x⃗, y⃗) ∈ Π. But it is straightforward to check
that UE can be rewritten as a set of sentences which, modulo logical equivalence, are in
B(∃Π). Namely,

∃x⃗∃⃗z θ(x⃗, z⃗) → ∃x⃗∃⃗z∃y⃗ (θ(x⃗, z⃗) ∧ φ(x⃗, y⃗)),

where θ(x⃗, z⃗) ∈ Π, ∀x⃗∃y⃗ φ(x⃗, y⃗) ∈ T, and φ(x⃗, y⃗) ∈ Π. Consequently, ThB(∃Π)(T) implies
T0 + UE, which, in turn, implies Th∃∀Π(T) by conservativity. For the opposite direction,
observe that (modulo logical equivalence) every B(∃Π) sentence can be rewritten as an
∃∀Π sentence.

5. Finite Sets of Conditional Sentences

In the previous section, we obtained a number of conservation theorems of T + E
over T + E–Rule or T + EΠ–Rule for a general set of normal conditional axioms E. In this
section, we will prove finer conservation results for the particular case where E is a finite set
of normal sentences. In other words, we are interested in cases where E can be expressed as

{α1 → β1, . . . , αm → βm},

where m ∈ ω and all αis and βis are sentences, i.e., they contain no free variables.
Again, the original motivation for considering these particular sets of conditional

axioms comes from results in the context of formal arithmetics. A well-studied fragment of
first-order Peano arithmetic is the scheme of parameter-free Σ1-induction IΣ−

1 given by a
basic algebraic theory P− together with

Iφ : φ(0) ∧ ∀x (φ(x) → φ(x + 1)) → ∀x φ(x),

where φ(x) ∈ Σ−
1 ; that is, φ(x) ∈ Σ1 and contains no other free variables than the induction

variable x. Note that IΣ−
1 can be seen as a set of normal conditional sentences with respect
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to Π = Π1. It is well-known that IΣ1 and its parameter-free counterpart IΣ−
1 share the

same Π2 consequences (indeed, the Σ3 consequences are also preserved), but IΣ−
1 enjoys

the following nice property:

Let θ be a Π2 sentence. If for some φ1(x), . . . , φm(x) ∈ Σ−
1 we have I∆0 + Iφ1 + · · ·+

Iφm ⊢ θ, then [I∆0, Σ1–IR]m ⊢ θ.

The previous property is a well-known conservation theorem for fragments of arith-
metic obtained (independently) by Z. Adamowicz, T. Bigorajska, G. Mints, and also by Z.
Ratajczyk. The result generalizes to IΣ−

n for each n ≥ 1, but we cannot expect to have a
similar result for (parametric) IΣ1 since IΣ1 is well-known to be finitely axiomatizable.

At first sight, the previous result for IΣ−
1 could seem to be a very particular property

of the induction scheme in the formal arithmetic setting. However, and this was already
observed by Kaye in [17], this property again corresponds to a very general purely logical
fact for theories described in terms of conditional sentences, see theorem 1.4 in [17] (let
us observe that similar results in the context of bounded arithmetic theories have been
obtained by Jeřábek in [26].)

In the present section, we shall prove a (slightly more general) version of theorem 1.4
in [17] using our methodology. Namely, we shall obtain a conservation theorem relating
the number of conditional sentences needed to derive a ∀B(Π) formula from E and the
depth of the nested applications of the corresponding EΠ–Rule, see Theorem 3 below.

Through this section, Π will denote an arbitrary basic fragment. We shall begin with
an analysis of EΠ–Rule when E is a set of conditional sentences but E is not necessarily a
finite set. Let us observe that, since E is a set of sentences and, by Lemma 3, EΠ–Rule is
congruent with EB(Π)–Rule, it is straightforward to check that EΠ–Rule is congruent with
the following rule (that we shall denote by EΠ

∀ –Rule):

θ → α

θ → β
(for each sentence θ ∈ ∃B(Π) and α → β ∈ E).

This motivates the introduction of a kind of dual version of EΠ–Rule that we shall denote
by EΠ

∃ –Rule. Instances of this new rule are

θ → α

θ → β
(for each sentence θ ∈ ∀B(Π) and α → β ∈ E).

Please notice that the subscript ∃ in the name of the EΠ
∃ –Rule indicates that, as shown

in Theorem 3 below, under certain assumptions, T + E is ∃B(Π)-conservative over appli-
cations of this rule. Similarly, the subscript ∀ in the name of the EΠ

∀ –Rule indicates that,
under certain assumptions, T + E is ∀B(Π)-conservative over applications of EΠ

∀ –Rule.

Lemma 4. Let T be a theory and let E be a set of conditional sentences.

1. For every sentence σ ∈ ∃B(Π), [T + σ, EΠ–Rule] ≡ [T, EΠ–Rule] + σ.
2. For every sentence τ ∈ ∀B(Π), [T + τ, EΠ

∃ –Rule] ≡ [T, EΠ
∃ –Rule] + τ.

Proof. (1) We only prove that, for all sentences σ ∈ ∃B(Π), [T, EΠ–Rule] + σ extends
[T + σ, EΠ–Rule] (the opposite direction is trivial).

Let θ(u⃗) ∈ (Π ∪ ¬Π)∧ be such that T + σ ⊢ ∀u⃗ (θ(u⃗) → α), for some sentence
α → β ∈ E. Since σ is ∃y⃗ σ0 (⃗y) for some σ0 (⃗y) ∈ B(Π) (and we can assume that the
variables in y⃗ are all different from the ones in u⃗), we obtain

T ⊢ ∀y⃗ ∀u⃗ (σ0 (⃗y) ∧ θ(u⃗) → α).

But recall that, by Lemma 3, EΠ–Rule is congruent with EB(Π)–Rule, and therefore it follows
that [T, EΠ–Rule] ⊢ ∀y⃗ ∀u⃗ (σ0 (⃗y) ∧ θ(u⃗) → β). Thus,

[T, EΠ–Rule] ⊢ σ → ∀u⃗ (θ(u⃗) → β)
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and the result follows.

(2) We prove that, given τ ∈ ∀B(Π), [T, EΠ
∃ –Rule] + τ extends [T + τ, EΠ

∃ –Rule].
Let θ ∈ ∀B(Π) be a sentence such that T + τ ⊢ θ → α for some α → β ∈ E. Since θ

and τ are (respectively) ∀u⃗ θ0(u⃗) and ∀y⃗ τ0 (⃗y) for some τ0 (⃗y), θ0(u⃗) ∈ B(Π) (and we can
assume that the variables in y⃗ are all different from the ones in u⃗), we obtain

T ⊢ ∀y⃗ ∀u⃗ (τ0 (⃗y) ∧ θ0(u⃗)) → α.

So, [T, EΠ
∃ –Rule] ⊢ τ → (θ → β), and the result follows.

The first interesting fact about sets of conditional sentences is the following improve-
ment of Proposition 2.

Lemma 5. Let E be a set of conditional sentences such that if α → β ∈ E, then α ∈ B(∀B(Π)).
Then, for every theory T, T + E is ∀B(Π)-conservative over T + EΠ–Rule.

Proof. Let T1 denote the theory axiomatized by Th∀B(Π)(T + EΠ–Rule). We shall prove
that every ∃B(Π)-closed model of T1 is a model of Th∀B(Π)(T + E). Thus, the result will
follow from Lemma 2.
Let A be an ∃B(Π)-closed model of T1. First of all, note that

(•) (T + EΠ–Rule) + DB(Π)(A) is consistent.

Proof of (•): For otherwise by compactness, there would exist δ(⃗v) ∈ B(Π) and a⃗ ∈ A

satisfying A |= δ(⃗a) and T + EΠ–Rule ⊢ ∀v⃗¬δ(⃗v). Since ∀v⃗¬δ(⃗v) ∈ ∀B(Π), we
would have A |= ∀v⃗¬δ(⃗v), a contradiction.

Hence, there exists B |= T + EΠ–Rule such that A ≺B(Π) B. Let us show that B |= E.
Pick α → β ∈ E such that B |= α. It follows from A ≺B(Π) B and the fact that A is

an ∃B(Π)-closed model of T1 that A ≺∃B(Π) B. Since α ∈ B(∀B(Π)) and A ≺∃B(Π) B, we
also have A |= α. But note that every B(∀B(Π)) sentence can be rewritten (modulo logical
equivalence) as an ∃∀B(Π) sentence.

Therefore, by applying Proposition 1, we obtain that there exist a⃗ ∈ A and θ(⃗z) ∈ B(Π)
such that A |= θ(⃗a) and T1 ⊢ ∃⃗z θ(⃗z) → α. Then,

T + EΠ–Rule ⊢ ∃⃗z θ(⃗z) → β

(recall that EΠ and EB(Π) are congruent rules) and so B |= ∃⃗z θ(⃗z) → β. But, B |= ∃⃗z θ(⃗z)
since A ≺B(Π) B. Therefore, B |= β, as required.

We have thus shown that there is B |= T + E such that A ≺B(Π) B and, therefore,
A |= Th∀B(Π)(T + E), as required.

We now turn to the study of the case where E is a finite set of conditional sentences.
First, we introduce some notation. If E = {ψ}, where ψ is a conditional sentence, then
EΠ–Rule will be denoted by ψΠ–Rule and EΠ

∃ –Rule will be denoted by ψΠ
∃ –Rule. The next

lemma shows that for every conditional sentence ψ, nested applications of ψΠ–Rule (or
ψΠ
∃ –Rule) collapse to unnested applications of the rule.

Lemma 6. Assume ψ is a conditional sentence of the form α → β.

1. If α ∈ ∀B(Π), then [T, ψΠ–Rule] ≡ T + ψΠ–Rule.
2. If α ∈ ∃B(Π), then [T, ψΠ

∃ –Rule] ≡ T + ψΠ
∃ –Rule.

Proof. (1): By Lemma 3, ψΠ–Rule and ψB(Π)–Rule are congruent, and thus we can assume,
without loss of generality, that Π is closed under boolean combinations (that is, Π = B(Π)).
In addition, we also take advantage of the fact that, since we are dealing with conditional
sentences, each instance of ψΠ–Rule can be easily transformed into an equivalent instance
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of ψΠ
∀ . Thus, in the following proofs, we shall deal with instances of ψΠ

∀ –Rule, although we
refer to them as instances of ψΠ–Rule.

First, we show that k ≥ 1 unnested applications of ψΠ–Rule can be replaced by a
single unnested application of this rule: Let θ be an ∃Π sentence equivalent to

∨k
i=1 θi,

where θ1, . . . , θk ∈ ∃Π are sentences such that for each i = 1, . . . , k, we have T ⊢ θi → α.
Then, T ⊢ θ → α, and as a consequence, since for each i = 1, . . . , k,

T ⊢ (θ → β) → (θi → β),

we obtain that these k applications of ψΠ–Rule corresponding to θ1, . . . , θk can be replaced
by the instance given by the sentence θ.

Now we show how to deal with nested applications of ψΠ–Rule. Let θ1, θ2 ∈ ∃Π be
sentences such that

T ⊢ θ1 → α, and T + (θ1 → β) ⊢ θ2 → α.

Let θ ∈ ∃Π be a sentence equivalent to θ1 ∨ θ2. Let us see that T ⊢ θ → α.

Indeed, we argue using T and assume that θ holds. Firstly, if θ1 holds, then we obtain
α since T ⊢ θ1 → α by our hypothesis. Secondly, if θ1 does not hold, then we have θ1 → β
and θ2. But, since by hypothesis T + (θ1 → β) ⊢ θ2 → α, it follows that θ2 → α. As a
consequence, we obtain α again, as required.

We showed that T ⊢ θ → α and therefore one application of ψΠ–Rule is enough to
derive θ → β, which is equivalent to (θ1 → β) ∧ (θ2 → β). So, two nested applications
of ψΠ–Rule can be replaced by one unnested application of the rule, and the equivalence
between [T, ψΠ–Rule] and T + ψΠ–Rule follows.

(2) A straightforward modification of the previous proof allows us to derive part (2). We
must notice that ψΠ

∃ –Rule is congruent with ψ
B(Π)
∃ –Rule, as can be easily seen.

Now we consider a finite set E = {ψ1, . . . , ψm} of conditional sentences. In this case,
applications of the corresponding EΠ–Rule (respectively, EΠ

∃ –Rule) can be described in
terms of the set of rules ψj

Π–Rule (respectively, (ψj)
Π
∃ –Rule), j = 1, . . . , m. We shall study

the interaction of these m rules and derive a collapse result.

Proposition 3. Let E = {ψ1, . . . , ψm} be a finite set of conditional sentences with cardinal m.
Then, for every theory T,

1. If for every α → β ∈ E, α ∈ ∀B(Π), then T + EΠ–Rule ≡ [T, EΠ–Rule]m.
2. If for every α → β ∈ E, α ∈ ∃B(Π), then T + EΠ

∃ –Rule ≡ [T, EΠ
∃ –Rule]m.

Proof. (1) As we pointed out in the proof of Lemma 6, we can assume, without loss of
generality, that Π is closed under boolean combinations. In addition, we deal with instances
of ψΠ–Rule as instances of ψΠ

∀ –Rule. Now, the proof proceeds by induction on m ≥ 1, the
number of sentences in the set E.
m = 1: In this case, the result is just part (1) in Lemma 6.

m → m + 1: Consider E = {ψ1, . . . , ψm, ψm+1} where for each j, 1 ≤ j ≤ m + 1, ψj is a
conditional sentence αj → β j with αj ∈ ∀B(Π). We assume that the result holds for every
set of conditional sentences with cardinal m.

In order to derive the result for E, it is enough to show that [T, EΠ–Rule]m+1 is closed
under ψΠ

j –Rule for each j = 1, . . . , m + 1. Let us assume that

[T, EΠ–Rule]m+1 ⊢ θ → αp

for some p (1 ≤ p ≤ m + 1) and θ ∈ ∃Π. Put D = E − {ψp}. It is enough to show
that [T, DΠ–Rule]m ⊢ θ → αp, since then it will follow that [T, EΠ–Rule]m+1 ⊢ θ → βp,
as required.
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We observe that ¬αp is equivalent to an ∃B(Π) sentence and, as a consequence, by
Lemma 4,

[T, DΠ–Rule]m + ¬αp ≡ [T + ¬αp, DΠ–Rule]m.

Now the crucial point is the following fact:

Claim: (T + ¬αp) + DΠ–Rule extends T + EΠ–Rule.
Proof of Claim: We shall prove this by showing, by induction on k ≥ 1, that for all
k ≥ 1, (T + ¬αp) + DΠ–Rule extends [T, EΠ–Rule]k:

• For k = 1, this is straightforward in view of the following easy fact: if S extends
T and S ⊢ σ → αp for some sentence σ ∈ ∃Π, then S + ¬αp ⊢ σ → βp.
• Assume that for some k ≥ 1 the result holds, and assume that

[T, EΠ–Rule]k ⊢ σ → αj

for some j, (1 ≤ j ≤ m + 1) and σ ∈ ∃Π. By the induction hypothesis on k,

(T + ¬αp) + DΠ–Rule ⊢ σ → αj

and we can now distinguish two cases:

· If j ̸= p, then obviously (T + ¬αp) + DΠ–Rule ⊢ σ → β j.
· If j = p, then, as in case k = 1, [T, EΠ–Rule]k + ¬αp ⊢ σ → βp.

But, by the induction hypothesis on k, (T + ¬αp) + DΠ–Rule extends
[T, EΠ–Rule]k; so,

(T + ¬αp) + DΠ–Rule ⊢ σ → βp

as required.

This proves the claim.

Consider A |= [T, DΠ–Rule]m. If A |= αp, then, obviously, A |= θ → αp; hence, let us
assume that A |= ¬αp. Then,

A |= [T, DΠ–Rule]m + ¬αp.

Now, by the induction hypothesis (on m), [T, DΠ–Rule]m ≡ T + DΠ–Rule, and so

A |= (T + ¬αp) + DΠ–Rule.

In view of the claim above, we obtain A |= [T, EΠ–Rule]m+1, and therefore, A |= θ →
αp. This shows that [T, DΠ–Rule]m ⊢ θ → αp and concludes the proof.

(2): It is easy to adapt the proof of item (1). We omit the details.

Remark 6. Let us note that Proposition 3 also holds for every finite set of conditional sentences, E,
satisfying that for all α → β ∈ E, α ∈ ∀B(Π) ∪ ∃B(Π).

For instance, we can deal with part (2) of Proposition 3 just by putting

E1 = {α → β ∈ E : α ∈ ∃B(Π)}, and E2 = {α → β ∈ E : α ∈ ∀B(Π)}

and having in mind that for all T, if α → β ∈ E2, then we obtain [T, (E2)
Π
∃ –Rule] ⊢ α → β, since

α ∈ ∀B(Π) and T ⊢ α → α. Therefore, [T, (E2)
Π
∃ –Rule] ≡ T + E2, and it follows that

[T, EΠ
∃ –Rule]m ≡ [[T, (E2)

Π
∃ –Rule], (E1)

Π
∃ –Rule]m1 ≡ T + EΠ

∃ –Rule

where m1 = |E1|. We can deal with part (1) in a similar way.
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We are now in a position to prove the main result of the present section. From
Proposition 3 and Lemma 5, we derive the following version of theorem 1.4 of [17].

Theorem 3. Let T be a theory and let E be a finite set of conditional sentences such that for every
α → β ∈ E, α ∈ ∀B(Π) ∪ ∃B(Π). Let m be the number of elements of E. Then,

1. T + E is ∀B(Π)-conservative over [T, EΠ–Rule]m.
2. T + E is ∃B(Π)-conservative over [T, EΠ

∃ –Rule]m.

Proof. In view of Remark 6, part (1) follows from Lemma 5 and Proposition 3.
We give a direct proof for part (2).
Let φ ∈ ∃B(Π) be a sentence such that T + E ⊢ φ. We shall prove that [T, EΠ

∃ –Rule]m ⊢
φ by induction on m ≥ 1:

m = 1: If E = {α → β} and T + (α → β) ⊢ φ, then T ⊢ ¬φ → ¬(α → β). As a
consequence, T ⊢ (¬φ → α) ∧ (¬φ → ¬β). Since ¬φ ∈ ∀B(Π), we obtain

[T, EΠ
∃ –Rule] ⊢ ¬φ → β

and, therefore, [T, EΠ
∃ –Rule] ⊢ φ.

m → m + 1: Let E = {α1 → β1, . . . , αm+1 → βm+1} be a set of sentences. First, we
consider the case where αj ∈ ∃B(Π) for all j = 1, . . . , m + 1. Let φ ∈ ∃B(Π) be a sentence
such that T +

∧m+1
j=1 (αj → β j) ⊢ φ. Then,

T ⊢ ¬φ → ¬
m+1∧
j=1

(αj → β j)

and, in particular, it follows that T ⊢ ¬φ → ∨m+1
j=1 ¬β j. For each l = 1, . . . , m + 1, let

Tl be the theory T + El where El = E − {αl → βl}. Then, Tl + (αl → βl) ⊢ φ, and
reasoning as in case m = 1, we obtain Tl ⊢ ¬φ → αl . If αl ∈ ∃B(Π), then by the induction
hypothesis, [T, EΠ

∃ –Rule]m ⊢ ¬φ → αl . We proved in this way that for all l (1 ≤ l ≤ m + 1),
[T, EΠ

∃ –Rule]m+1 ⊢ ¬φ → βl . As a consequence,

[T, EΠ
∃ –Rule]m+1 ⊢ ¬φ →

m+1∧
j=1

β j

and it follows that [T, EΠ
∃ –Rule]m+1 ⊢ φ.

For the general case, we put

E1 = {α → β ∈ E : α ∈ ∃B(Π)} and E2 = {α → β ∈ E : α ∈ ∀B(Π)}

and observe that T + E2 ≡ [T, (E2)
Π
∃ –Rule]. Then, by the previous restricted case, T + E

is ∃B(Π)-conservative over [T + E2, (E1)
Π
∃ –Rule]m1 (where m1 = |E1|). Hence, T + E is

∃B(Π)-conservative over

[[T, (E2)
Π
∃ –Rule], (E1)

Π
∃ –Rule]m1

which is, obviously, a subtheory of [T, EΠ
∃ –Rule]m.

Corollary 2. Let E be a set of normal conditional axioms with respect to Π over T such that E
is Π-reducible modulo T. If F is a finite subset of UE with m elements or F is a finite set of m
sentences included in E, then

Th∀B(Π)(T + F) ⊆ [T, E–Rule]m.
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6. Conclusions and Future Work

Both in pure and in applied logic, the question of whether it is more convenient to
formalize a certain mathematical principle as an axiom or as an inference rule is important
and ubiquitous.

In this work, we developed a general logical framework that allows for replacing
axioms with corresponding inference rules without greatly affecting the proof–theoretical
strength, preserving theorems up to a certain level of quantifier complexity. While these
results are familiar to logicians working in arithmetic formal theories, we believe they could
also benefit a broader audience in logic.

The proof methods we use are conceptually very simple: we essentially combine
syntactical manipulations and basic model–theoretic constructions. This should make the
article accessible to a wide audience.

Several avenues for future research suggest themselves. Firstly, it is natural to ask
whether the main results of the present paper also hold for other settings different from
classical first-order logics (such as, for example, intuitionistic logic or minimal logic). In
order to explore this line of future work, one should have to isolate first a suitable notion that
could play the role of the ∃Π-closed models for these new settings. Secondly, and still from
a theoretical point of view, it would also be of interest to explore possible applications of the
obtained results to other formal theories different from the arithmetical ones (for example,
theories axiomatized by geometric axioms could serve as a first field of study). Finally,
from an applied perspective, it would be desirable to investigate possible applications
to rule-based reasoning in computational logic. In areas such as logic programming,
expert systems, or the Semantic Web, rule-based knowledge representation is a crucial and
powerful tool, and implementations of rule-based systems naturally emerge. A formal
analysis of the axioms-as-rules strategy could be of interest in these fields.

We close this paper with some pointers to the kind of applications that we think
deserve further exploration.

6.1. Description Logics

Conditional axioms are frequently used as "general axioms" in description logics. For
example, in ALC logic, consider the axiom

∃r1.∀r2 A ⊑ ∀s1.∃s2.B

which, when translated to first-order logic (with A and B being concept names translated
to unary predicates and roles r, s1, and s2 as binary relations), becomes

∀x(∃y1(r1(x, y1) ∧ ∀y2(r(y1, y2) → A(y2))) → ∀z1(s1(x, z1) → ∃z2(s2(z1, z2) ∧ B(z2))))

which is equivalent to the normal condition axiom (defined in Section 4):

∃y1∀y2(r1(x, y1) ∧ (r(y1, y2) → A(y2))) → ∀z1∃z2(s1(x, z1) → (s2(z1, z2) ∧ B(z2)))

An example of the utility of introducing rules would be as a mechanism for simplifica-
tion through design patterns. Consider the following example extracted from [27]:

O1 = { Jaguar ⊑ Animal, Jaguar ⊑ ∀ hasChild.Jaguar ,
Tiger ⊑ Animal, Tiger ⊑ ∀ hasChild.Tiger ,
Lion ⊑ Animal, Lion ⊑ ∀ hasChild.Lion }

Note that, since it is not possible to quantify over concepts in typical description logics,
expressing the fact that every subclass of animals only has a child of the same subclass is
not feasible. Nevertheless, by employing a certain type of (meta)rules [27], it is possible
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to obtain a representation of such information, which allows for the elimination of certain
axioms from the ontology:

O2 = { Jaguar ⊑ Animal, Tiger ⊑ Animal, Lion ⊑ Animal }

g : {?X ⊑ Animal }︸ ︷︷ ︸
Body

→ {?X ⊑ ∀ hasChild. ?X}︸ ︷︷ ︸
Head

,

which could be added to the standard tableau-based consistency class algorithm as a rule
that acts on classes:

R :
a :?X ⊑ Animal

a :?X ⊑ ∀ hasChild. ?X

The question that arises with this transformation is what degree of conservativity is
maintained between the original ontology O1 and the new representation O2 + R.

In the framework of first-order logic, we could deal with g as an axiom scheme, where
X ranges over a convenient class of formulas. In this way, we could obtain a set of condi-
tional axioms E and applications of the (meta)rule R that will correspond to applications of
the E–Rule. Nevertheless, although we do not discard that some conservation results could
be derived by a more or less direct application of the machinery developed in this paper,
the chief question here would be: Is it possible to derive, in the setting of description logics,
some results and techniques similar to the ones developed in this paper for first-order
theories? In particular, can such an approach be useful in settling the exact conservation
between the ontologies O1 and O2 + R (or other similar cases)?

6.2. Coherent/Geometric Logic

In Remark 3, we briefly discussed the notion of a (finitary) geometric axiom (also
known as a coherent formula). There we pointed out that a set E of geometric axioms
provides us with an example of a normal set of conditional axioms with respect to the basic
fragment Π of all atomic formulas of the language. We also noticed that if we put

D = {¬β(⃗v) → ¬α(⃗v) : α(⃗v) → β(⃗v) ∈ E}

then T + E ≡ T + D, and D is also a set of normal conditional axioms with respect to Π.
Therefore, by Proposition 2, T + E is ∀B(Π)-conservative over T + DΠ–Rule.

It is a theorem of Barr that if a geometric sentence is derivable from a geometric theory
using classical (first-order) logic, then it is also derivable using intuitionistic logic. As noted
in [25], this result can be easily derived using a cut–elimination argument. However, can
the model–theoretic methods that we presented in this paper be adapted to derive Barr’s
theorem or some related result?

Towards a positive answer to this problem, the following question could be considered.
In [28], Coste, Lombardi, and Roy deal with dynamical theories axiomatized by geometric
axioms (in [28], the term "dynamical axiom" is used to refer to geometric axioms). A key
notion in that work is the notion of a dynamical proof (closely related to a derivation of a basic
sequence in a cut-free system with mathematical rules, as pointed out in [25]). Theorem 1.1
in [28] shows that there is a construction associating a dynamical proof to each classical
proof of an atomic formula B from a set of atomic formulas R. Is it possible to transform a
proof of a geometric sentence in T + DΠ–Rule in (some kind of) a dynamical proof?

6.3. Inference Rules and Automated Reasoning

The examples we just mentioned are interesting not only from a theoretical point of
view. The inference rules we described in these examples can be implemented as tools
for automated reasoning. Automated theorem proving is an important research field
with applications in Artificial Intelligence and Program Verification (just to mention two
application areas). Inference rules provide the base for efficient implementations of the
reasoning principles expressed by conditional axioms. In addition to providing a guide
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to the search for appropriate inference rules, the results presented in this paper can play
a fundamental role in the analysis of the formal properties (correctness, completeness,
conservativeness,...) of the systems finally developed.

A classic example of such use is provided by the Boyer–Moore Nqthm theorem
prover [29] and the closely related system ACL2 [30], developed by Kaufmann and Moore,
used in the modeling and verification of computer hardware and software. In these systems,
the (noetherian) induction principle is implemented as an inference rule that provides a
powerful tool to derive properties of functions defined by recursion. Model–theoretic
methods play an important role in the proofs of the correctness properties of ACL2, as
shown in [31].
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