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Abstract: In many technical applications, understanding the behavior of tribological contacts is
pivotal for enhancing efficiency and lifetime. Traditional experimental investigations into tribol-
ogy are often both costly and time-consuming. A more profound insight can be achieved through
elastohydrodynamic lubrication (EHL) simulation models, such as the ifas-DDS, which determines
precise friction calculations in reciprocating pneumatic seals. Similar to other distributed param-
eter simulations, EHL simulations require a labor-intensive resolution process. Physics-informed
neural networks (PINNs) offer an innovative method to expedite the computation of such complex
simulations by incorporating the underlying physical equations into the neural network’s param-
eter optimization process. A hydrodynamic PINN framework has been developed and validated
for a variant of the Reynolds equation. This paper elucidates the framework’s capacity to handle
multi-case scenarios—utilizing one PINN for various simulations—and its ability to extrapolate
solutions beyond a limited training domain. The outcomes demonstrate that PINNs can overcome
the typical limitation of neural networks in extrapolating the solution space, showcasing a significant
advancement in computational efficiency and model adaptability.

Keywords: elastohydrodynamic simulation; hydrodynamic pressure extrapolation; physics-informed
machine learning; physics-informed neural networks; pneumatic sealing; tribology

1. Introduction

Lubricated tribological contacts, such as sealing contacts, are critical parts of many
technical systems since they have a decisive influence on the performance, efficiency,
and durability of the corresponding technical system. The complexity of lubricated contacts
requires a comprehensive understanding of all occurring phenomena through a precise
model. The dynamic friction, influenced significantly by fluid dynamics, plays an essential
role in the accurate modeling of lubricated contacts. Achieving an analytical solution
for the behavior of lubricated contacts necessitates numerous simplifications, making it
impractical in many cases. Additionally, experimental characterization is often unfeasible
due to its time-consuming and costly nature. As a result, the dynamic friction behavior is
modeled using elastohydrodynamic lubrication (EHL) simulations, which account for the
phenomena through the Reynolds equation, delineating the pressure distribution within
the sealing gap and a calculation for the deformation of the contact partners. At ifas, an EHL
simulation model for the simulation of reciprocating seals, the ifas-DDS, was implemented.
The ifas-DDS calculates the friction of reciprocating seals by analyzing the hydrodynamics
within the sealing contact according to the Reynolds equation, the contact mechanics,
and the seal’s deformation. In prior work, a thorough investigation of the agreement of
the EHL simulation model with a test rig across various operating conditions, offering
validation through experimental measurements has been conducted [1]. However, a notable
limitation is the extensive computation time required for simulating short-term physical
processes, attributed to the complexity of the underlying partial differential equations and
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their computationally intensive numerical solutions. Enhancing computational power
presents a straightforward method to reduce computation time, but this may not always be
feasible, especially as simulation complexity increases (e.g., system with multiple contacts or
even multiple components) or for applications with the necessity to perform the calculations
in near real time (e.g., control applications or digital twins).

A possible alternative to the time-expensive EHL simulations is the use of machine
learning, e.g., with neural networks. However, traditional neural networks are constrained
by their inherent lack of understanding of the underlying physical principles governing
the datasets they are trained on. This limitation significantly restricts their capacity for
predictive extrapolation beyond the scope of the input data. Typically, the primary objective
of a neural network in regression tasks is to minimize the discrepancy between its predicted
outputs and the actual observed data. Although the parameters of the network can be
optimized to achieve this objective, the optimality of these parameters is often confined
to the range of data provided, potentially leading to overfitting. In recent years, a novel
method for encapsulating physical laws within computational models has been developed,
termed physics-informed neural networks (PINNs). This drawback underscores the neces-
sity for embedding physical rules directly into the model, enabling PINNs to overcome the
limitations of conventional neural networks by enhancing their predictive accuracy and
generalizability across unobserved data regimes.

PINNs integrate physical rules directly into the network’s architecture, representing a
significant advancement in physics-based machine learning. These innovative methods
are adept at addressing challenges characterized by partial differential equations (PDEs).
In contrast to conventional neural networks, which rely on a data-driven loss function,
the loss function of a PINN encompasses not only initial and boundary conditions but
also the PDEs’ residual. Cuomo et al. have described PINNs as a mesh-free approach that
transforms the complexities of solving PDEs by reformulating the direct solution of these
equations into an optimization problem focused on minimizing the loss function [2]. Most
research on PINNs applied to EHL simulations has focused on the hydrodynamic aspect
of the computation, thus neglecting the deformation, contact mechanics, and friction and
purely focusing on calculating the pressure. As a pioneer in this field, Almqvist investigated
the interpolation with PINNs for the determination of hydrodynamic pressure, described by
a simplified variant of the Reynolds equation [3]. In subsequent work, PINNs were applied
to 2D problems [4–6]. The newest achievements consider the computation of pressure and
cavitation in tribological systems [7–9]. The conducted research displays the potential of
PINNs to combine the strengths of distributed simulation models with the computational
efficiency of classical neural networks. This approach ensures that computations are not
only based on physical rules, offering robustness and accuracy, but also benefit from the
significantly reduced computation times associated with parameterized neural networks.

This contribution assesses the capabilities of PINNs in performing extrapolation and
handling multi-case scenarios. For this analysis, a hydrodynamic PINN framework is
employed, which has previously been implemented and validated for single-case and
interpolation scenarios [10]. Here, a single-case scenario refers to a specific set of inputs,
including pressure boundary conditions, geometry, and viscosity, while a multi-case sce-
nario involves a collection of inputs that vary across different configurations. Building
on this groundwork, this study investigates the performance of PINNs concerning not
only single-case, but also multi-case tasks involving variations in pressure boundaries and
geometry and extrapolation tasks across parameters such as pressure boundary, position,
and geometry. The difficulty rises for multi-case and extrapolation tasks compared to the
single-case and interpolation tasks investigated in the prior publication. Consistent with
the studies referenced earlier, this research focuses on the hydrodynamic aspect of EHL.
Consequently, it concentrates on calculating the pressure distribution while disregarding
factors such as friction, deformation, and contact mechanics. The subsequent section intro-
duces hydrodynamic lubrication, followed by a detailed description of PINNs. A detailed
overview of the latest research on the application of PINNs in hydrodynamic lubrication
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scenarios is also provided. Section 2.2.1 presents the investigated loss function, a variant of
the Reynolds equation. The comprehensive framework and the specific tasks examined are
delineated in Sections 2.3 and 2.4. Subsequently, the results are presented and validated
against a modified version of the ifas-DDS, herein referred to as the rigid ifas-DDS. This
variant similarly omits consideration of all previously mentioned aspects of the complete
EHL model. The paper concludes with a discussion and summary of the findings.

2. Materials and Methods
2.1. Hydrodynamic Lubrication

EHL simulations are an essential tool for the detailed analysis of friction, leakage,
and wear within lubricated mechanical interfaces. These simulations evaluate the dynamic
relationship between lubricants and the surfaces in contact, focusing on the computational
modeling of surface deformations and the resulting development of hydrodynamic pressure
within the contact zone. Such simulations are vital for designing and optimizing tribological
contacts in various industrial applications.

The ifas-DDS model is an advanced simulation framework, validated with experimen-
tal measurements for different operation points [1], specifically designed to elucidate the
complex interactions between a seal and its mating counterface. Central to this model is
the consideration of a lubricating film that separates the seal and counterface. This film
plays a pivotal factor in determining the behavior of the seal. The model employs the finite
element software Abaqus to accurately simulate the seal’s deformation under operational
conditions. The hydrodynamic phenomena are computed through the Reynolds equation,
which is seamlessly integrated into Abaqus via custom user subroutines.

Within the scope of this research, the primary emphasis is placed on solving the Reynolds
equation, while simplifying the model by excluding the deformation of the contacting surfaces,
the contact mechanics, and the friction. This approach focuses on investigating the lubrication
aspects without the added complexity of accommodating deformations.

To validate the PINN approach presented in this study, a variant of the ifas-DDS model,
the rigid ifas-DDS, is utilized. This validation allows for a direct comparison of both solvers,
PINN and rigid ifas-DDS, as both are implemented to solve the same underlying equations.
The rigid ifas-DDS omits the deformational, friction, and contact mechanics aspects to
concentrate on the lubrication dynamics. The original ifas-DDS model incorporates an
extended form of the Reynolds equation, augmented with flow factors Φτ and Φp, as
described by Patir and Cheng [11]. This enhancement allows for the accounting of surface
topography effects on lubrication, a critical consideration in accurately modeling real-world
scenarios. Additionally, the model integrates the Jakobsson–Floberg–Olsson cavitation
model, which describes the formation of a gaseous phase, e.g., due to vaporization or
dissolution of solved air in the fluid due to localized pressure drops by introducing the
cavity fraction θ [12]. Here, θ describes the local volume fraction of the gaseous phase
ranging from 0 at no cavitation to 1 for full cavitation.

The comprehensive Reynolds equation, as incorporated within the ifas-DDS model,
expands upon the original equation originally formulated by Osborne Reynolds in 1886.
This extended form is detailed as follows [13]:

v
2

∂

∂x

(
(1 − θ)

(
ρh + ρRqΦτ

))
︸ ︷︷ ︸

Couette flow

− 1
12η

∂

∂x

(
Φpρh3(1 − θ)

∂p
∂x

)
︸ ︷︷ ︸

Poiseuille flow

+
∂

∂t

(
(1 − θ)ρh

)
︸ ︷︷ ︸

Transient term

= 0 (1)

The Reynolds equation describes the hydrodynamic pressure p, in a lubricated contact.
This pressure depends on several parameters: the fluid’s density ρ, viscosity η, the relative
velocity v between the contact surfaces, the gap height h, the time t, the axial coordinate x,
and derivatives of pressure with respect to time and position, ∂

∂t and ∂
∂x . The parameters

Φτ and Φp signify the shear and pressure flow factors, respectively, which adjust the
equation to include the effects of surface roughness on the hydrodynamics. The parameter
Rq represents the root mean square roughness of the contact surfaces and includes the
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effect of surface textures on the distribution of hydrodynamic pressure. The cavity friction
θ measures the extent of cavitation within the lubricated contact.

2.2. Physics-Informed Neural Networks

The Reynolds equation, as previously introduced, serves as an essential mathemat-
ical tool for modeling pressure distribution in lubricated contacts. Given the absence of
an analytical solution, numerical methods such as finite volume, element, or difference
approaches are employed for solving tribological problems. However, these methods often
require extensive computational efforts due to their numerical characteristics.

In recent years, machine learning has emerged as a promising methodology in tribol-
ogy, demonstrating significant advancements in the field [14,15]. A notable application is
the development of deep neural networks for detecting faults in tribological systems, in-
cluding ball bearings, journal bearings, and slipper bearings [16–18]. For instance, Hess and
Shang have adeptly utilized a convolutional neural network to calculate the elastohydrody-
namic pressure distribution in journal bearings [19]. Usually, machine learning models are
data-driven, often referred to as black-box models, and benefit due to their flexibility and
straightforward implementation. However, since their emergence, hybrid models, which
combine data-driven approaches with physics-based insights, have gained significance.
These models profit from the frequent unavailability of sufficient measurement data and a
comprehensive mathematical system description, rendering both purely data-driven and
exclusively physics-based (white-box) modeling approaches impractical [20]. Over time,
various configurations of hybrid models, including sequential, parallel, and structured
forms, have been explored [21–23].

A promising advancement in the field of tribology is physics-informed machine learn-
ing (PIML), which enriches machine learning models with physics-based rules, thereby
enhancing their capability to accurately represent phenomena such as friction, wear, and lu-
brication [24]. Applications of PIML in tribology range from assessing lubrication con-
ditions in hydrodynamic interfaces to predicting wear or damage. Unlike conventional
machine learning methods, which rely exclusively on data-driven strategies (black-box
models), PIML, particularly through PINNs, incorporates physical principles to guide
the learning process. Consequently, these models often yield outputs that are not only
more accurate but also more reliable than those determined by data-driven approaches.
Compared to the prior mentioned hybrid models, a PINN can be viewed as a hybrid
model, with the neural network as the prediction model, but is fed with information from
governing physical laws during training by adding residual terms in the loss function [25].

The foundational work in the domain of physics-based regularization of neural net-
works was conducted by Hyuk [26] and Lagaris [27], following the proofs by Cybenko [28]
and Hornik [29]. Cybenko demonstrated that feed-forward neural networks with at least
one hidden layer are capable of approximating any continuous function to a desired degree
of accuracy. Hornik expanded this to include Borel measurable functions.

Although Hyuk and Lagaris did not explicitly use the term “physics-informed” in
their research, the objectives of their work bear a significant resemblance to what is now
understood as the principles underlying PINNs. In Hyuk’s approach, the loss function
of the neural network was extended to embed the governing differential equation, laying
the groundwork for the later-called field of PINNs. This exploration into guiding neural
network training with physical laws has significantly influenced subsequent develop-
ments in the field of PIML, bridging the gap between traditional machine learning and
domain-specific knowledge. The concept of integrating physical laws with neural network
training initially encountered rarely attention, primarily due to the lack of computational
resources and the underdevelopment of computational algebra techniques at the time.
However, this idea has experienced a resurgence, led by advancements in efficient gradient
calculation methods, such as automatic differentiation, and significant improvements in
hardware capabilities.
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The reappearance of PIML began with Owhadi in 2014, who incorporated prior
knowledge into the solution process. He proposed formulating the solution of PDEs as
Bayesian inference tasks, thereby introducing the idea of enriching algorithms with pre-
existing knowledge [30]. Building on this foundation, Raissi and colleagues implemented
a probabilistic machine learning algorithm for solving general linear equations via the
Gaussian process, adapting it specifically for the integro-differential or partial differential
equations [31,32]. This computation was further extended to tackle nonlinear partial
differential equations [33,34]. A further notable advance was the invention of PINNs,
which can be described as mesh-free models reformulating the solution of PDEs into
an optimization task of a loss function [2]. Raissi introduced PINNs as a new class of
hybrid solvers, which can determine the solution to several forward and inverse problems
described by PDEs with high accuracy [35–37]. In addition to solving PDEs, Antonello et al.
advanced the PINN concept to control tasks by adding the control inputs to the network,
resulting in an algorithm capable of solving control applications [38]. The research on
PINNs’ extrapolation capabilities includes work by Kim et al., who developed an algorithm
to adjust the gradient for the residual and boundary condition loss, aiming to extrapolate
the solution of Burger’s equation over time [39]. Fesser et al. explored transfer learning on
equations like Burger and Allen-Cahn to enhance time extrapolation [40].

Figure 1 illustrates an exemplary PINN. The depicted loss is hybrid since it is physics-
informed and data-based.

𝑡

Boundary Conditions

Initial Conditions

Data

Governing Equation

𝑥 𝜎

𝜎

𝜎

Input

𝜎

𝜎

𝜎

𝐼

…

𝑢

𝜕𝑘𝑢

𝜕𝑥𝑘

𝜕𝑗𝑢

𝜕𝑡𝑗

𝜆𝑖 𝓁𝑖 𝜇

Hidden Layers Output AD Losses Optimise

Figure 1. Schematic illustration of a physics-informed neural network [10].

The architecture of a PINN is analogous to that of a traditional neural network. It
processes an input array, such as position x and time t, through a deep network to deter-
mine the network’s output. The physics-informed loss is achieved by efficient gradient
computation using automatic differentiation. This computer algebra technique leverages
the principle that computer calculations consist of sequences of elementary operations and
functions. By recurrently applying the chain rule, automatic differentiation enables the
precise and rapid calculation of partial derivatives of any order [41]. These derivatives are
used to compute the residual loss, which resembles the governing equation and is defined
as an unsupervised loss [42].

In addition to residual loss, PINNs also integrate two other physics-informed losses:
the losses associated with boundary conditions and initial conditions. These are considered
supervised losses because the target values are known and explicitly included in the loss
computation. Figure 1 illustrates an extra loss component in a hybrid PINN, which is the
classical data-driven loss. The computation of these losses typically involves the calculation
of the L2-norm (mean squared error, MSE) across collocation points sampled within the
computational domain [43]. The losses are summed and eventually used to find the optimal
parameters, weights, and biases, of the hidden layers by an optimizer.

In the subsequent subsection, the physics-informed loss function investigated in this
study is detailed. Before this, an overview of existing research on the application of PINNs
to hydrodynamic lubrication is provided.
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2.2.1. Physical-Informed Loss

The initial publication on the application of PINNs to solve a simplified variant of the
Reynolds equation was by Almqvist in 2021 [3]. This pioneering work was expanded upon
by researchers such as Zhao et al., Li et al., and Yadav et al., who developed more advanced
algorithms to address the 2D Reynolds equation in contexts ranging from linear sliders
to gas bearings and journal bearings, respectively, [4–6]. A significant advancement was
achieved by Rom, who became the first to implement PINNs for the stationary Reynolds
equation, incorporating the Jakobsson–Floberg–Olsson (JFO) cavitation model. Moreover,
Rom extended the PINN’s input to include relative eccentricity, thereby enabling the PINN
to handle several geometrical configurations [7].

Furthering these advancements, Cheng et al. successfully implemented a PINN capa-
ble of solving the Reynolds equation with either the JFO or Swift–Stieber (SS) cavitation
models. Their approach utilized three different multi-task learning strategies to effectively
balance the loss components associated with the models [8]. Most recently, Xi et al. in-
vestigated the stationary Reynolds equation with cavitation, introducing both soft and
hard constraints within the loss function to enhance the precision of the solution [9]. Ad-
ditionally, Rimon et al. explored the feasibility of applying PINNs to EHL simulations,
employing a simplified Reynolds equation and describing the seal’s deformation through
the Lamé equation [44].

It is important to emphasize that the primary emphasis of these contributions has
largely been on refining the PINN itself rather than on the development of a comprehen-
sive framework for deploying PINNs in hydrodynamic lubrication tasks. Consequently,
a significant degree of manual work remains necessary. Moreover, the research has fo-
cused on interpolation capabilities, thereby limiting the PINNs’ ability to predict pressure
distributions for parameter combinations outside their training domain.

In this work, an automated framework was utilized to undertake the complex and
time-consuming task of tuning the essential parameters of the whole training process,
reducing the required manual work. Additionally, this study presents the capability of
PINNs to solve several multi-case and extrapolation tasks. These applications, particularly
in solving the Reynolds equation, have previously been either minimally investigated or
completely overlooked. The focus lies in a variant of the Reynolds equation, but can be
extended to the complete mathematical equation in the future. The assumptions made in
this work are as follows:

• θ = 0 (no cavitation)
• Φτ = 0, Φp = 1 (ideally smooth surface)
• ρ = constant (incompressible)
• Stationary: Partial derivatives with respect to time are irrelevant

These assumptions result in the following Reynolds equation:

v
2

∂

∂x
h − 1

12η

∂

∂x

(
h3 ∂p

∂x

)
= 0 (2)

Figure 2 shows the hydrodynamic (HD)-PINN with two hidden layers as an example.
The pressure p is computed by the network, which obtains the position x, the fluid density
ρ, the dynamic viscosity η, the velocity of the counter surface v, and the four parameters
h1, h2, h3, and xb, which describe the investigated height profile.

The height profile between the seal and the counter surface is described with the four
coefficients over the position interval x ∈ [xl , xr] as follows:

h(x) =


h1−h2
xb−xl

· ReLU(xb − x) + h2 + h3 ·
(

x − xl+xr
2

)2
− h3 · xl+xr

2
2

xb ̸= xl

h1 + (h2 − h1) · (x − xl) + h3 ·
(

x − xl+xr
2

)2
− h3 · xl+xr

2
2

xb = xl

(3)

The parameters h1 and h2 describe the height at the left and right end, respectively.
The investigation of curvature is achieved by setting the coefficient h3 and the ReLU



Lubricants 2024, 12, 122 7 of 18

function allows the creation of bends at the specific position determined by xb. In this work,
rigid surfaces are investigated; therefore, the geometry, described by the parameters, is
fixed and provided to the PINN as a part of its input. After the pressure is computed, the
loss is computed as shown in Figure 2. The physics-informed Reynolds loss, residual loss, is
determined by applying automatic differentiation and described by the following equation:

lRey = MSE
(

v
2

∂

∂x
ρh − 1

12η

∂

∂x

(
ρh3 ∂p

∂x

)
, 0
)

(4)

The MSE of the Reynolds equation is compared to zero and mirrors the residual term
of common EHL simulations. The boundary condition is considered by the boundary loss,
as follows:

lBC = MSE(pl,r, pb,l,r) (5)

The total loss is calculated as the sum of the residual loss and the boundary loss, both
of which are incorporated into the HD-PINN framework described herein.
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Figure 2. Illustration of the HD-PINN.

2.3. HD-PINN Framework

In previous research, an HD-PINN framework was developed and validated for single-
case tasks. This framework, depicted in Figure 3, comprises three primary components.
The core of the framework is the PINN itself, which computes the pressure distribution
for each collocation point. For the actual network parameter optimization, the Adaptive
Moment Estimation (Adam) algorithm, a gradient-based, first-order optimization method
designed for stochastic objective functions, is embedded [45]. Recognized as a state-of-the-
art optimizer for classical neural network [46,47], Adam’s application to PINNs has shown
success, attributed to its minimal memory requirements and effectiveness in handling
large-scale problems.

A significant challenge in PINN development is the need to balance various loss terms
effectively; while conventional neural networks typically focus on a single loss function,
PINNs engage in multi-objective optimization, necessitating loss balancing strategies.
To address this, the Relative Loss Balancing with Random Lookback (ReLoBRaLo) method
proposed by Bischof et al. was integrated into the HD-PINN framework. ReLoBRaLo
leverages four algorithms: boundary scaling [48], tracking learning progress by considering
losses from current and previous iterations, implementing exponential decay of the learning
rate over iterations [49], and employing a random lookback to account for the entirety
of the learning process [43]. The balancing algorithms achieved a relevant performance
enhancement during the training.

Unlike traditional neural networks, PINNs possess a greater number of hyperparame-
ters, particularly due to their loss balancing algorithm. To achieve efficient and automated
tuning of these hyperparameters, the Bayesian optimizer was integrated into the HD-PINN
framework. This optimizer utilizes a probabilistic surrogate model to estimate the loss
function, thereby facilitating the tuning of many hyperparameters [50]. Its effectiveness in
application to PINNs has been demonstrated and validated [51].
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Figure 3. The HD-PINN framework and its training process.

Figure 3 provides an overview of the training process of the framework. Initially,
the Bayesian optimizer determines the hyperparameters for initializing both the PINN
and Adam. Subsequently, the PINN determines the pressure distribution, and the cor-
responding loss is calculated. If the training is not finished, due to a low loss or a high
number of iterations, the loss is used to update the PINN’s weights and biases, resulting in
a new computed pressure distribution. After this cycle is finished, the hyperparameters are
reevaluated by the Bayesian optimizer, and the whole framework starts over.

2.4. Test Cases

The focus and novelty of this research lies on the capability of PINNs to solve multi-
case and extrapolation tasks. In prior research, the ability to solve single-case scenarios has
been proven. Single-case represents a scenario with a fixed set of inputs, while a multi-case
scenario refers to a collection of inputs, including the pressure boundary conditions and
the geometry in this study. The focus on extrapolation pertains to these two parameters,
as well as to the position. Here, the PINN was trained within a constrained range of the
actual sealing and housing geometries and was then assessed across the entirety of the
positional space. The following five scenarios were investigated:

• The height multi-case analysis involved a linear convergent profile, where the param-
eter h1 varied within the range from 0.3 to 1.0, holding h2 constant at 0.2, and the
pressure boundaries pb,l and pb,r were set to 0.5 and 1.0, respectively.

• For the pressure boundary multi-case scenarios, a linear convergent profile was con-
sidered with both pb,l and pb,r varying across the range from 0 to 1.

• Height extrapolation tasks were extended beyond the original multi-case domain for
h1, exploring values from 0.2 down to 0.1 and up from 1.1 to 1.3.

• Pressure boundary extrapolation tested the PINN with scenarios outside the multi-
case training domain, specifically for pressure boundary combinations of (pb,l , pb,r) =
(0.5, 1.2), (pb,l , pb,r) = (1.1, 1.2), and (pb,l , pb,r) = (1.5, 2.0).

• Position extrapolation was investigated for a linear convergent height profile with
fixed pressure boundaries (pb,l , pb,r) = (0.5, 1.0), where the right boundary position
xr varied from 0.9 down to 0.1.

Each scenario contained the two losses described in Equations (4) and (5), with the
velocity of the counter surface v set to 1 and the fluid viscosity η also equal to 1. As previ-
ously mentioned, the focus was on calculating the hydrodynamic pressure distribution;
thus, deformation, contact mechanics, and friction were neglected. The validation data was
derived from the rigid ifas-DDS, which similarly disregards all aforementioned aspects
and numerically computes the pressure distribution. In the next section, the results of the
training are presented. After obtaining a feasible set of hyperparameters by the Bayesian
optimizer the PINNs were trained and compared with the rigid ifas-DDS.
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3. Results
3.1. Height Multi-Case

The initial analysis focused on the height multi-case scenario, examining the PINN’s
capability to predict the pressure distribution across different geometries. Figure 4 presents
the outcomes for h1 = 0.3 and 0.4, with 0.3 representing the lower limit of the training
domain. It is observed that the accuracy of the PINN improves in the second scenario.
This enhancement in PINN performance, with an increase in the parameter h1, is further
observed in the subsequent Figures 5–7. The HD-PINN framework demonstrates the
capability to address the height multi-case task effectively across a considerable segment of
the examined geometric range, exhibiting improved performance at higher values of h1.
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Figure 4. Pressure distribution for the multi-case PINN for h1 = 0.3 and 0.4.
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Figure 5. Pressure distribution for the multi-case PINN for h1 = 0.5 and 0.6.
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Figure 6. Pressure distribution for the multi-case PINN for h1 = 0.7 and 0.8.
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Figure 7. Pressure distribution for the multi-case PINN for h1 = 0.9 and 1.0.

3.2. Pressure Boundary Multi-Case

The framework was further evaluated in a multi-case scenario, where the pressure
boundaries varied. The results are illustrated in Figures 8 and 9, showcasing the PINN’s
performance in accurately predicting the pressure distribution across various boundaries
within the designated training range.
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Figure 8. Pressure distribution for the multi-case PINN for (pb,l , pb,r) = (0.0, 1.0) and (pb,l , pb,r) =

(0.5, 0.0).
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Figure 9. Pressure distribution for the multi-case PINN for pl = 0.5 and pr = 1.0.

3.3. Height Extrapolation

After evaluating the interpolation capabilities of the height multi-case PINN, its
performance in extrapolation tasks was investigated. Figure 10 depicts the results when
the parameter h1 is set to 0.2 and 0.1, leading to a divergent height profile. Under these
conditions, the multi-case PINN fails to predict even the correct sign of the pressure
distribution. This outcome suggests that the PINN has not adequately captured the concepts
underlying convergent and divergent height profiles. Notably, for divergent profiles,
the pressure distribution becomes negative, which, in practical scenarios, would typically
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signify the onset of cavitation. However, prior research has shown the PINN’s ability
to accurately predict negative pressure distributions for divergent gaps [10], indicating
that the parameter h1’s representation might not be sufficient to facilitate optimal PINN
training. Compared to the work of Rom [7], the parameter h1 is more nested than the
relative eccentricity provided to the multi-case PINN, therefore the influence of the h1 on
the geometry is more complicated than the linear operation in the case of Rom.
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0
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4

6

Figure 10. Pressure distribution for the multi-case PINN for h1 = 0.1 and 0.2.

Figures 11 and 12 display the results for the extrapolation of h1 up to 1.3. The height
profile remains convergent and the prediction accuracy is maintained within an acceptable
range. However, it is observed that the performance diminishes as the value of the height
parameter h1 is further increased. Figure 13 displays the maximum pressure determined
by the ifas-DDS and the HD-PINN for the different values of h1. The difference increases
significantly for the lower range of h1. For higher values, starting from 0.4, good agreement
is observed in the upper range of the multi-case training domain. Increasing the value of h1
beyond that results in an increased deviation of ifas-DDS and HD-PINN.
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Figure 11. Pressure distribution for the multi-case PINN for h1 = 1.1 and 1.2.
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Figure 12. Pressure distribution for the multi-case PINN for h1 = 1.3.
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Figure 13. Maximum pressure of ifas-DDS and HD-PINN for h1 between 0.1 and 0.3 (left), and 0.3
and 1.3 (right). The vertical line represents the upper limit of the trained h1.

3.4. Pressure Boundary Extrapolation

Similar to height extrapolation tasks, extrapolations for pressure boundaries were
also investigated. Figure 14 shows the extrapolation results for two PINNs with identical
hyperparameters but trained under different conditions: one for a single-case scenario
(with pl = 0.5 and pr = 0.2) and the other for a multi-case scenario. It can be observed
that the extrapolation performance benefits from multi-case training. This improvement is
further validated in Figure 15, where the pressure boundaries are successfully extrapolated
up to 2.0.
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Figure 14. Pressure distribution for the single-case PINN for (pb,l , pb,r) = (0.8, 0.2) (trained on
(pb,l , pb,r) = (0.5, 0.2)) (left) and multi-case PINN (right) for (pb,l , pb,r) = (0.5, 1.2).
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Figure 15. Pressure distribution for the multi-case PINN for (pb,l , pb,r) = (1.1, 1.2) (left) and
(pb,l , pb,r) = (1.5, 2.0) (right).

3.5. Position Extrapolation

The final scenario investigated the extrapolation of position, thereby restricting the
PINN’s training domain in terms of position data. The right pressure boundary was as-
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signed a specific value, obtained from the rigid ifas-DDS model. The range of extrapolation
spanned from 0.9 to 0.1. The PINN calculated the pressure distribution across the entire
position domain, from 0.0 to 1.0. As depicted in Figures 16–20, with a vertical line represent-
ing the training boundary, there is a decline in accuracy as the position limit becomes more
constrained. However, no significant deviation from the rigid ifas-DDS model is detected
up to a positional limit of xr = 0.7. Beyond this point, starting from xr = 0.6, the predicted
pressure distributions begin to deviate from those of the complete extrapolation region ac-
cording to the rigid ifas-DDS. It is worth mentioning that the extrapolation maintains good
performance over a considerable range. For instance, Figure 20 demonstrates extrapolation
starting from xr = 0.1, where a good agreement with the rigid ifas-DDS model is observed
up to x = 0.5.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Figure 16. Pressure distribution for the extrapolation task for xr = 0.9 (left) and 0.8 (right).
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Figure 17. Pressure distribution for the extrapolation task for xr = 0.7 (left) and 0.6 (right).
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Figure 18. Pressure distribution for the extrapolation task for xr = 0.5 (left) and 0.4 (right).
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Figure 19. Pressure distribution for the extrapolation task for xr = 0.3 (left) and 0.2 (right).
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Figure 20. Pressure distribution for the extrapolation task for xr = 0.1.

4. Discussion

The investigation of PINNs in solving multi-case scenarios and performing extrapola-
tion tasks revealed their potential in the context of accelerating hydrodynamic lubrication
computation. In multi-case scenarios and extrapolation of pressure boundaries, PINNs
exhibited commendable accuracy. Their ability to precisely predict pressure distributions
across a variety of conditions underscores their adaptability and robustness. Position
extrapolation tasks also demonstrated the efficiency of PINNs. Even with the omission
of data to train on, PINNs maintained an acceptable level of agreement with the rigid
ifas-DDS. These results indicate a promising possibility for applications where datasets are
not completely attainable, underlining the PINNs’ capability to infer missing information
to a reasonable degree of precision.

However, challenges emerged in height multi-case scenarios, especially as the param-
eters approached the boundaries of the trained height range. Within the confines of the
designated range, PINNs performed adeptly, accurately capturing the pressure distribution.
Yet, as the parameter values approached the extremities of this range, a noticeable decline
in performance was observed. The extrapolation tasks, in particular, suffered significantly.
This issue can be attributed to the complexity of the height parameter, which, unlike the
simplified forms used in previous studies such as those used by Rom [7], presents a more
complex challenge for the network to learn and generalize. Rom extended the PINN’s
input by the relative eccentricity, which was not nested in the formula of the geometry.
This discrepancy in performance highlights the critical importance of the formulation and
representation of input parameters in training PINNs. The complex nature of parameters
like height requires careful consideration and potentially more sophisticated preprocessing
or reformulation of the height formula.
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5. Conclusions

This contribution demonstrates the capacity of PINNs to undertake multi-case and
extrapolation tasks in determining the pressure distribution within sealing contacts in a
housing, as governed by the Reynolds equation. It began with an introduction to PINNs
and surveyed current research on their application in hydrodynamic lubrication, followed
by a detailed presentation of the physics-informed loss and a description of the whole
HD-PINN framework.

In terms of position extrapolation, the PINN aligned well with the rigid ifas-DDS,
despite the constraints of limited information. The first notable deviation occurred for
right boundaries smaller than 0.6. This deviation did not occur immediately beyond the
boundary. For instance, in the case of xr = 0.1, a noticeable deviation became evident at
around x > 0.5. This observation underscores the capabilities of PINNs in performing
extrapolation tasks to a certain extent. The good results, regarding the pressure boundary
extrapolation tasks, further support this statement. For extrapolation pressure boundary
tasks, the single-case PINN did not compute the pressure distribution accurately. In contrast,
the multi-case PINN demonstrated proficiency in both extrapolation and interpolation
tasks related to pressure boundaries. Nonetheless, the PINN encountered challenges when
addressing multi-case and height-related extrapolation tasks. Specifically, for values of h1
approaching or falling below the lower range, resulting in a divergent gap, the model’s
accuracy declined. This may be attributed to how the height parameter’s information was
presented to the PINN. However, for higher h1, even in the extrapolation regime, the PINN
showed satisfying results compared to the rigid ifas-DDS.

The findings of this study represent a notable advancement in the domain of lubricated
contact simulations, presenting a novel approach to accelerate hydrodynamic pressure
computation. This is due to the application of PINNs, which directly compute pressure,
compared to distributed parameter simulation models, which depend on numerical meth-
ods. Additionally, the demonstrated capability of a single PINN to solve multi-case tasks
highlights the potential of PINNs to be applied to several scenarios. This could allow for
accelerated calculations of hydrodynamic pressure for varying parameters following one
initial training. Furthermore, the ability to extrapolate the pressure distribution beyond
the confines of the trained regime is a promising advancement in the investigation of
tribological simulations, providing the potential to acquire insights into system areas where
direct measurements are unfeasible. Traditional simulation models, in comparison, typi-
cally do not offer the capability for such extrapolation, thereby necessitating the numerical
computation across the entirety of the seal’s geometry.

Future research will focus on integrating transient and cavitation terms of the Reynolds
equation into the framework. Particularly, exploring extrapolation across the time domain
emerges as a promising avenue for advancing the field of tribology. Furthermore, the height
parameter inputs will be investigated so that the PINN can solve multi-case and extrapola-
tion tasks for different geometries.
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Abbreviations
The following abbreviations are used in this manuscript:

Adam Adaptive moment estimation
EHL Elastohydrodynamic lubrication
HD Hydrodynamic
JFO Jakobsson–Floberg–Olsson
MSE Mean squared error
PDE Partial differential equation
PINN Physics-informed neural network
PIML Physics-informed machine learning
ReLU Rectified linear unit
ReLoBRaLo Relative Loss Balancing with Random Lookback
SS Swift–Stieber

Nomenclature
Symbol Definition Unit
h Gap height [-]
h1 Height at left end [-]
h2 Height at right end [-]
h3 Curvature of sealing [-]
h4 Position for sealing bend [-]
p Hydrodynamic pressure [-]
pb,l,r Pressure boundary condition for left and right boundary [-]
pl,r Pressure at the left and right boundary [-]
Rq Root mean squared contact surface roughness [-]
t Time [-]
v Velocity of counter surface [-]
x Axial coordinate [-]
xb Position of sealing bend [-]
xl Left end of geometry [-]
xr Right end of geometry [-]
η Fluid viscosity [-]
θ Cavity friction [-]
ρ Fluid density [-]
Φp Pressure flow factors [-]
Φτ Shear flow factors [-]
∂p

∂x,t Partial derivative of pressure with regards to time and position [-]
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18. Canbulut, F.; Yildirim, Ş.; Sinanoğlu, C. Design of an Artificial Neural Network for Analysis of Frictional Power Loss of
Hydrostatic Slipper Bearings. Tribol. Lett. 2004, 17, 887–899. [CrossRef]

19. Hess, N.; Shang, L. Development of a Machine Learning Model for Elastohydrodynamic Pressure Prediction in Journal Bearings.
J. Tribol. 2022, 144, 4053815. [CrossRef]

20. Velioglu, M.; Mitsos, A.; Dahmen, M. Physics-Informed Neural Networks (PINNs) for Modeling Dynamic Processes Based on
Limited Physical Knowledge and Data. In Proceedings of the 2023 AIChE Annual Meeting, Orlando, FL, USA, 5–10 November 2023.

21. Psichogios, D.C.; Ungar, L.H. A hybrid neural network–first principles approach to process modeling. AIChE J. 1992, 38, 1499–1511.
[CrossRef]

22. Su, H.T.; Bhat, N.; Minderman, P.A.; McAvoy, T.J. Integrating Neural Networks with First Principles Models for Dynamic
Modeling. IFAC Proc. Vol. 1992, 25, 327–332. [CrossRef]

23. Kahrs, O.; Marquardt, W. The validity domain of hybrid models and its application in process optimization. Chem. Eng. Process.
Process Intensif. 2007, 46, 1054–1066. [CrossRef]

24. Marian, M.; Tremmel, S. Physics-Informed Machine Learning—An Emerging Trend in Tribology. Lubricants 2023, 11, 463.
[CrossRef]

25. Nabian, M.A.; Meidani, H. Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and
Analysis. J. Comput. Inf. Sci. Eng. 2020, 20, 436. [CrossRef]

26. Lee, H.; Kang, I.S. Neural algorithm for solving differential equations. J. Comput. Phys. 1990, 91, 110–131. [CrossRef]
27. Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial Neural Networks for Solving Ordinary and Partial Differential Equations. IEEE

Trans. Neural Netw. 1998, 9, 987–1000. [CrossRef] [PubMed]
28. Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control. Signals Syst. 1989, 2, 303–314. [CrossRef]
29. Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989,

2, 359–366. [CrossRef]
30. Owhadi, H. Bayesian Numerical Homogenization. Multiscale Model. Simul. 2015, 13, 812–828. [CrossRef]
31. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Inferring solutions of differential equations using noisy multi-fidelity data. J. Comput.

Phys. 2017, 335, 736–746. [CrossRef]
32. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Machine learning of linear differential equations using Gaussian processes. J. Comput.

Phys. 2017, 348, 683–693. [CrossRef]
33. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Numerical Gaussian Processes for Time-dependent and Non-linear Partial Differential

Equations. Siam J. Sci. Comput. 2018, 40, 17M1120762. [CrossRef]
34. Raissi, M.; Karniadakis, G.E. Hidden physics models: Machine learning of nonlinear partial differential equations. J. Comput.

Phys. 2018, 357, 125–141. [CrossRef]
35. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial

Differential Equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
36. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial

Differential Equations. arXiv 2017, arXiv:1711.10566v1.
37. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]

http://dx.doi.org/10.1016/j.triboint.2023.108871
http://dx.doi.org/10.1007/s40544-023-0791-1
http://dx.doi.org/10.1002/ceat.202200471
http://dx.doi.org/10.13052/ijfp1439-9776.2223
http://dx.doi.org/10.1016/j.triboint.2019.01.048
http://dx.doi.org/10.3390/lubricants9090086
http://dx.doi.org/10.1007/s11831-022-09841-5
http://dx.doi.org/10.1115/1.4032525
http://dx.doi.org/10.1108/00368791211249647
http://dx.doi.org/10.1007/s11249-004-8097-6
http://dx.doi.org/10.1115/1.4053815
http://dx.doi.org/10.1002/aic.690381003
http://dx.doi.org/10.1016/S1474-6670(17)51013-7
http://dx.doi.org/10.1016/j.cep.2007.02.031
http://dx.doi.org/10.3390/lubricants11110463
http://dx.doi.org/10.1115/1.4044507
http://dx.doi.org/10.1016/0021-9991(90)90007-N
http://dx.doi.org/10.1109/72.712178
http://www.ncbi.nlm.nih.gov/pubmed/18255782
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1137/140974596
http://dx.doi.org/10.1016/j.jcp.2017.01.060
http://dx.doi.org/10.1016/j.jcp.2017.07.050
http://dx.doi.org/10.1137/17M1120762
http://dx.doi.org/10.1016/j.jcp.2017.11.039
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045


Lubricants 2024, 12, 122 18 of 18

38. Antonelo, E.A.; Camponogara, E.; Seman, L.O.; Souza, E.R.d.; Jordanou, J.P.; Hubner, J.F. Physics-Informed Neural Nets for
Control of Dynamical Systems. Neurocomputing 2024, 579, 127419. [CrossRef]

39. Kim, J.; Lee, K.; Lee, D.; Jin, S.Y.; Park, N. DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation.
arXiv 2021, arXiv:2012.02681v1.

40. Fesser, L.; D’Amico-Wong, L.; Qiu, R. Understanding and Mitigating Extrapolation Failures in Physics-Informed Neural Networks.
arXiv 2023, arXiv:2306.09478v2.

41. Baydin, A.G.; Pearlmutter, B.A.; Radul, A.A.; Siskind, J.M. Automatic differentiation in machine learning: A survey. Atilim Gunes
Baydin. 2017, 18, 5595–5637.

42. Cai, S.; Mao, Z.; Wang, Z.; Yin, M.; Karniadakis, G.E. Physics-informed neural networks (PINNs) for fluid mechanics: A review.
Acta Mech. Sin. 2021, 37, 1727–1738. [CrossRef]

43. Bischof, R.; Kraus, M. Multi-Objective Loss Balancing for Physics-Informed Deep Learning. arXiv 2021, arXiv:2110.09813v2.
44. Rimon, M.T.I.; Hassan, M.F.; Lyathakula, K.R.; Cesmeci, S.; Xu, H.; Tang, J. A Design Study of an Elasto-Hydrodynamic Seal

for sCO2 Power Cycle by Using Physics Informed Neural Network. In Proceedings of the ASME Power Applied R&D 2023,
American Society of Mechanical Engineers, Long Beach, CA, USA, 6–8 August 2023. [CrossRef]

45. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
46. Schmidt, R.M.; Schneider, F.; Hennig, P. Descending through a Crowded Valley—Benchmarking Deep Learning Optimizers.

arXiv 2020, arXiv:2007.01547v6.
47. Reyad, M.; Sarhan, A.M.; Arafa, M. A modified Adam algorithm for deep neural network optimization. Neural Comput. Appl.

2023, 35, 17095–17112. [CrossRef]
48. Heydari, A.A.; Thompson, C.A.; Mehmood, A. SoftAdapt: Techniques for Adaptive Loss Weighting of Neural Networks with

Multi-Part Loss Functions. arXiv 2019, arXiv:1912.12355.
49. Wang, S.; Teng, Y.; Perdikaris, P. Understanding and mitigating gradient pathologies in physics-informed neural networks. arXiv

2020, arXiv:2001.04536.
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