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Abstract: Nucleosomes are non-uniformly distributed across eukaryotic genomes, with stretches of
‘open’ chromatin strongly associated with transcriptionally active promoters and enhancers. Under-
standing chromatin accessibility patterns in normal tissue and how they are altered in pathologies can
provide critical insights to development and disease. With the advent of high-throughput sequencing,
a variety of strategies have been devised to identify open regions across the genome, including
DNase-seq, MNase-seq, FAIRE-seq, ATAC-seq, and NicE-seq. However, the broad application of
such methods to FFPE (formalin-fixed paraffin-embedded) tissues has been curtailed by the major
technical challenges imposed by highly fixed and often damaged genomic material. Here, we review
the most common approaches for mapping open chromatin regions, recent optimizations to overcome
the challenges of working with FFPE tissue, and a brief overview of a typical data pipeline with
analysis considerations.

Keywords: chromatin; FFPE; nucleosome; nucleosome-free region; nucleosome-depleted region

1. Introduction

Alterations in chromatin structure and function are hallmark features of normal cell
fate decisions, as well as pathological processes [1,2]. As such, understanding the epigenetic
features that regulate chromatin states is essential to develop next-generation biomark-
ers and therapeutics. The chromatin landscape is defined by the localization of histone
post-translational modifications (PTMs), chromatin-associated proteins and RNAs, and
the four-dimensional organization of genomic regions [3,4]. Together, these features form
a complex molecular language to govern genome transactions [5]. Indeed, gene expres-
sion patterns are controlled by the interplay of distinct genomic features (e.g., promoters,
enhancers, or heterochromatin) marked by histone PTMs and engaged by chromatin regu-
latory complexes (e.g., nucleosome remodelers and modifiers) which, in turn, modulate
local genome accessibility [5–8] (Figure 1).

Nucleosomes are the basic repeating unit of chromatin, comprising ~147 bp of DNA
wrapped around a histone octamer [9]. ‘Accessible’ or ‘open’ chromatin is conceptually
defined as a genomic region containing stretches of free DNA longer than the average linker
length between adjacent nucleosomes (~40 bp in human cells) [10–12]. These open chro-
matin regions are commonly referred to as nucleosome-depleted/free regions (NDR/NFR;
hereafter NDRs), reflecting dynamic nucleosome turnover and the spectrum of accessi-
bility in population-based assays [13–15]. Characterized NDRs contain relatively long
free DNA stretches (~120–200 bp), are over-represented in enhancers/promoters, of-
ten bound by transcription factors (TFs), and positively correlate with transcriptional
activity [16,17].

Epigenomes 2024, 8, 20. https://doi.org/10.3390/epigenomes8020020 https://www.mdpi.com/journal/epigenomes

https://doi.org/10.3390/epigenomes8020020
https://doi.org/10.3390/epigenomes8020020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/epigenomes
https://www.mdpi.com
https://orcid.org/0000-0001-5112-1011
https://orcid.org/0000-0002-4607-0587
https://orcid.org/0009-0003-3817-5551
https://orcid.org/0000-0002-3362-1677
https://orcid.org/0000-0002-2219-8623
https://orcid.org/0000-0003-1710-0588
https://doi.org/10.3390/epigenomes8020020
https://www.mdpi.com/journal/epigenomes
https://www.mdpi.com/article/10.3390/epigenomes8020020?type=check_update&version=2


Epigenomes 2024, 8, 20 2 of 14

Epigenomes 2024, 8, 20 2 of 15 

often bound by transcription factors (TFs), and positively correlate with transcriptional 

activity [16,17]. 

Figure 1. Local features that define ‘open’ and ‘closed’ chromatin. Chromatin states (e.g., active tran-

scriptional enhancers or repressed heterochromatin) can be functionally defined by integrating a 

range of data elements, including nucleosome-depleted regions (NDRs; mapped by one of the meth-

ods discussed in this review), DNA methylation (DNAme (primarily 5-methylcytosine); mapped by 

bisulfite sequencing or EM-seq [18,19]), transcription factors (TFs) and histone post-translational 

modifications (PTMs, such as H3K27ac, H3K4me3, H3K36me3, H3K27me3, and H3K9me3) mapped 

by ChIP-seq, or newer approaches like CUT&RUN or CUT&Tag [20,21]. The figure was adapted 

from [22]. The extended stretch of nucleosome-free DNA at an active promoter represents an NDR. 

A variety of experimental strategies have been developed to map accessible chroma-

tin at the genome scale. Historically, the nuclease DNAse I treatment of chromatin fol-

lowed by primer extension identified hypersensitive cleavage sites [23,24] representing 

the NDRs (reviewed in [25–27]). Since their commercial release, massively high-through-

put sequencing technologies (also known as next-generation sequencing (NGS); in 2005, 

Roche 454 pyrosequencing; in 2006, Illumina (formerly Solexa) reversible terminators) 

have revolutionized genome-scale studies by delivering ever-increasing amounts of data 

at ever-decreasing cost. The first assay to take advantage of NGS for open chromatin map-

ping was DNase-seq in human CD4+ T cells [28], and shortly thereafter, MNase-seq was 

used to map nucleosome positioning (an indirect approach: see below) in budding yeast 

[29] (Figure 2A,D). The year 2013 saw the first report of ATAC (Assay for Transposase-

Accessible Chromatin)-seq, a Tn5-based assay that was rapidly adopted as the most fre-

quently used chromatin profiling assay (Figure 2B,D).
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Figure 1. Local features that define ‘open’ and ‘closed’ chromatin. Chromatin states (e.g., active
transcriptional enhancers or repressed heterochromatin) can be functionally defined by integrat-
ing a range of data elements, including nucleosome-depleted regions (NDRs; mapped by one of
the methods discussed in this review), DNA methylation (DNAme (primarily 5-methylcytosine);
mapped by bisulfite sequencing or EM-seq [18,19]), transcription factors (TFs) and histone post-
translational modifications (PTMs, such as H3K27ac, H3K4me3, H3K36me3, H3K27me3, and
H3K9me3) mapped by ChIP-seq, or newer approaches like CUT&RUN or CUT&Tag [20,21]. The
figure was adapted from [22]. The extended stretch of nucleosome-free DNA at an active promoter
represents an NDR.

A variety of experimental strategies have been developed to map accessible chromatin
at the genome scale. Historically, the nuclease DNAse I treatment of chromatin followed by
primer extension identified hypersensitive cleavage sites [23,24] representing the NDRs (re-
viewed in [25–27]). Since their commercial release, massively high-throughput sequencing
technologies (also known as next-generation sequencing (NGS); in 2005, Roche 454 pyrose-
quencing; in 2006, Illumina (formerly Solexa) reversible terminators) have revolutionized
genome-scale studies by delivering ever-increasing amounts of data at ever-decreasing cost.
The first assay to take advantage of NGS for open chromatin mapping was DNase-seq in
human CD4+ T cells [28], and shortly thereafter, MNase-seq was used to map nucleosome
positioning (an indirect approach: see below) in budding yeast [29] (Figure 2A,D). The year
2013 saw the first report of ATAC (Assay for Transposase-Accessible Chromatin)-seq, a
Tn5-based assay that was rapidly adopted as the most frequently used chromatin profiling
assay (Figure 2B,D).

Whole genome-scale chromatin accessibility assays have delivered breakthrough
insights in diverse fields [7,30–32]. However, their ability to fully advance clinical research
has been hampered by incompatibility with formalin-fixed paraffin-embedded (FFPE)
tissue. FFPE is a routine method to preserve clinical samples, with >20 million samples
banked each year in the United States alone [33]. This material can be stored for decades
at ambient temperatures with minimal degradation of cytoarchitecture and proteomic
content [34], making it a potential goldmine for clinical research, especially for rare diseases
and longitudinal studies. The first FFPE specimen was reported nearly 130 years ago [35],
transforming the face of clinical research and enabling retrospective studies long after initial



Epigenomes 2024, 8, 20 3 of 14

tissue preservation [36]. Compared to the analysis of native cells, genomic mapping in FFPE
tissue presents a number of unique challenges requiring specific protocol modifications and
considerations [37]. As an example, sample processing protocols must extract biological
material from the paraffin matrix and expose cross-linked chromatin epitopes. However,
the primary challenge is genome quality, since FFPE processing induces significant DNA
adducts and fragmentation [38]. Further, DNA continues to degrade while in storage,
increasing the challenge when analyzing older specimens.
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Figure 2. Publication trends. (A,B) The publication frequency of chromatin accessibility approaches
using PubMed search terms “DNase-seq”, “MNase-seq”, “FAIRE-seq”, “NicE-seq”, and “ATAC-seq”
(last is the focus of (B) to accommodate its overwhelming field adoption rate). (C) The publication
frequency of PubMed search term “FFPE”. (D) Accumulated publications/the first incidence of each
search term on PubMed.
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In recent years, there has been increasing interest in chromatin accessibility studies
of FFPE tissue, thus mining this potentially rich data seam (Figure 2C,D). The goal of this
review is to discuss the most common approaches to map NDRs (Figure 3), their suitability
for profiling FFPE samples, and computational strategies to analyze the resulting data
(Figure 4).
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2. Genome-Wide Profiling of Open Chromatin

The most common approaches to map NDRs leverage nucleases, a transposase, a nick-
ase, or the biochemical fractionation of chromatin (Figure 3). For enzyme-based methods,
their catalytic properties, molecular size, and potential steric hinderances influence the
resulting open chromatin maps.

2.1. DNase I Hypersensitivity Mapping Paved the Way for Genome-Wide Open
Chromatin Profiling

Deoxyribonuclease I (DNase I) endonuclease (31 kilodaltons, kDa) specifically de-
grades double- and single-stranded DNA to 5′-phosphate and 3′-hydroxyl [39] and pref-
erentially cleaves accessible chromatin in situ at eponymous DNase I hypersensitive sites
(DHSs). In a typical DNase-seq experiment (Figure 3A and Table 1), several million cells
are digested to yield DHS subnucleosomal fragments, subsequently identified by library
preparation and NGS data analysis [25]. DNase I has proven an excellent tool to study
chromatin structure, most notably by the ENCODE consortium [16,27]. In a pioneering
study, ~14,000 DHSs were mapped in primary CD4+ T cells, and ~90% were shown to
be shared across multiple cell types [28]. Although originally thought to lack intrinsic
sequence bias, a recent systematic study showed that DNAse I exhibits a C/G preference
at the DHS 5′ end [40,41], and several DNase-seq data analysis pipelines have now been
corrected for this prejudice [38–41]. In an effort to map DHSs in FFPE tissue, a more sensi-
tive DNase-seq strategy was developed using a circular carrier DNA-mediated sequencing
method (Pico-Seq) [42,43]. However, despite a proof-of-concept study in human follicular
thyroid carcinoma, the field has not adopted DNase-seq approaches for FFPE samples (a
Pubmed search for “DNAse AND FFPE” only returned two related entries).
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Table 1. Commonly used approaches for chromatin accessibility profiling.

DNase-Seq MNase-Seq FAIRE-Seq ATAC-Seq NicE-Seq

Type of input cells/tissue

Fresh/formaldehyde
cross-linked/FFPE

(Formalin-Fixed
Paraffin-Embedded)

Fresh/formaldehyde cross-linked Formaldehyde cross-linked Fresh/formaldehyde cross-linked
(less efficient in fixed)

Formaldehyde
cross-linked/FFPE

Application to FFPE (PubMed) 1 0 1 2 2

Number of input cells 106–107 103–107 103–107 1 cell—5 × 104 25 cells—105

Fragment size (i.e., resolution) ~200 bp ~200 bp ~300 bp ~100–200 bp ~300 bp

Key features DNase I (endonuclease) cuts
unprotected DNA

MNase (endo-exonuclease)
digests unprotected DNA

Sonicate unprotected DNA in
cross-linked material

Tn5 transposase tagments open
region with DNA adapters

Nt-CviPII nickase cuts/labels
CCD sites in unprotected DNA

Sequencing type Single/paired end Single/paired end Single/paired end Single/paired end Single/paired end

Target region NDR Linker DNA between
Nucleosomes NDR NDR NDR

Sequencing depth (human
genome; ~3 billion bp) 20–50 million mapped reads 150–200 million mapped reads 20–50 million mapped reads 25–30 million mapped reads

(non-mitochondrial) 20–30 million mapped reads

Cleavage bias Yes Yes No Yes Yes

Advantages
/

disadvantages

No prior knowledge of the
sequence or binding protein

is required
/

time consuming, requires
laborious enzyme titrations and

calibrations, requires high
sequencing depth

Nucleosome positioning can
be inferred

/
requires laborious enzyme
titrations and calibrations,

requires high sequencing depth,
indirect profiling of open regions

No enzymes optimization or
titration required

/
low signal-to-noise ratio,

relatively complex computational
data analysis and interpretation,

results are highly
fixation-dependent

Simple, fast, and sensitive
approach; high

signal-to-noise ratio
/

High mitochondrial DNA counts
(unless nuclei isolated), requires
two independent tagmentation
events in opposite orientation,

Tn5 sequence bias and
promoter-enrichment bias

Simple enzymatic approach, <5%
mitochondrial DNA counts,

optimal in fixed or FFPE samples,
can be used in clinical settings,

efficiently profiles promoters and
enhancers

/
AT-rich sequences may

be underrepresented

References [26,28] [12–14,44,45] [46] [47,48] [49–51]
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2.2. Micrococcal Nuclease (MNase) Digestion to Decipher Nucleosome Positioning

Staphylococcus aureus MNase has been used to study chromatin for almost five decades [52],
and has been employed in the NGS era to map genome-wide nucleosome positioning for
multiple eukaryotes (e.g., yeast, worm, fly, mouse, and human) [11–13,45,46]. The enzyme
is a small (17 kDa), highly processive endo-exonuclease that degrades most types and forms
of nucleic acids (e.g., supercoiled, linear, and circular single- and double-stranded DNA
and RNA) [39]. These properties enable it to thoroughly digest chromatin until protected by
nucleosome structure, cleaving both NDRs and linker DNA. As such, MNase-Seq is distinct
from other NDR mapping approaches since it enriches protected DNA (i.e., nucleosome
occupancy and position), and open chromatin is then inferred from low-signal regions
(Figure 3B and Table 1). MNase shows a strong sequence bias for A/T-rich sequences, and a
correction factor is thus built into many data analysis pipelines [44,53]. Recent efforts using
MNase to map chromatin accessibility focus on limiting enzymatic digestion [45,54,55],
though these titration-based variants have been largely superseded by competing direct
NDR mapping methods (Figure 3 and Table 1). Applying MNase-seq to FFPE tissue sections
has yielded minimal success, with a Pubmed search for “MNase AND FFPE” returning
zero entries.

2.3. FAIRE-Seq Identifies Accessible Chromatin Regions through Principles of Biochemical
Separation and Solubility

FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) identifies NDRs
by building on the observation that transcriptionally active chromatin shows differential
biochemical solubility after formaldehyde fixation [56]. In brief, cells are treated to cross-
link chromatin, sheared by sonication, and undergo phenol–chloroform extraction, where
the aqueous phase contains DNA fragments associated with NDRs (Figure 3B) [57]. While
FAIRE-seq does not have the cleavage bias of sequence-specific nucleases [40,44], it is
highly dependent on cross-linking efficiency and often undermined by a poor signal-to-
noise ratio [57,58], false positives [46], and the challenge posed by low cell numbers [59]
(Table 1). Nevertheless, FAIRE-seq has been widely applied to model systems and cell
lines [57–61], particularly as a part of ENCODE efforts to systemically identify active
regulatory elements [16]. A recent report mapping open chromatin by FAIRE-seq cleverly
circumvented the challenge Drosophila pupa cuticles present to in situ enzyme-based
methods, thus providing higher quality data than ATAC-seq [62]. Despite this, over the
past decade, ATAC-seq has clearly emerged as the preferred assay to map chromatin
accessibility, while FAIRE has declined in use (Figure 2A,B).

2.4. Tn5 Transposon Tagmentation of Accessible Chromatin (ATAC-Seq)

Tn5 transposase was first discovered in the 1970s based on the kanamycin resistance
it conferred to host bacteria [63,64]. In addition to providing a mechanistic model for
transposases, Tn5 (106 kDa active dimer) has become an invaluable molecular tool [65].
Most recently, it has been leveraged to identify NDRs via ATAC-seq and to map histone
PTMs via CUT&Tag [20,66]. ATAC-seq is currently the most widely used open chromatin
mapping assay (Figure 2B) due to its relative speed, efficiency, and sensitivity (Table 1).
The approach employs a genetically engineered hyperactive Tn5 transposase to insert
loaded DNA adapters preferentially at accessible DNA in situ (i.e., tagmentation) for direct
PCR amplification and NGS [47,66] (Figure 3D). Tn5 displays an enzymatic sequence bias
which, while more complex than that of the nucleases used for NDR mapping, can also be
compensated at data analysis [53,67]. With deep enough sequencing, TF binding footprints
may also be inferred from protected fragments within the NDRs [48,68]. Early versions
of the ATAC-seq protocol were hampered by high read duplications and contaminating
mitochondrial DNA, which, together, consumed a majority of sequencing bandwidth.
These issues were largely circumvented by the development of Omni-ATAC wherein
nuclei were isolated with a cocktail of detergents to remove contaminating mitochondria,
increasing the library complexity and signal-to-noise ratio [69,70].
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Beyond the application of ATAC to interrogate model organism and cell line
epigenomes, recent efforts have explored if the enzyme could be applied to clinical studies
on FFPE tissue sections [71–75]. Obtaining PCR amplicons from Tn5-based approaches
requires two independent tagmentation events in opposing orientation and in close prox-
imity (<~700 bp). This inherently reduces library complexity and effective yields and is
exacerbated by the highly damaged DNA in FFPE material. To address this, a recent
approach followed Tn5 tagmentation with an in vitro transcription (IVT) step, such that a
single insertion event could be amplified by T7 RNA polymerase [72–75]. While standard
ATAC-seq yielded some success in nuclei isolated from mouse FFPE liver and kidney, the
Tn5-IVT-modified approach improved the library complexity, signal-to-noise ratio, and
other key metrics. However, this approach is limited by a lengthy and complex procedure
that relies on harsh chemical, mechanical, and enzymatic methods (e.g., xylene, needle
shearing, and a collagenase/hyaluronidase cocktail) to extract nuclei from FFPE tissue.
Further, such exacting handling contributes to genome fragmentation [76,77].

Noting these observations, Henikoff and colleagues instead used gentle heating and
permeabilization, similar to how FFPE sections are routinely deparaffinized for histological
analysis, to prepare samples for CUT&Tag [71]. NDRs facilitate access to DNA by the
transcriptional machinery, so the CUTAC (Cleavage Under Targeted Accessible Chromatin)
protocol was developed to target Tn5 to active chromatin via RNA Pol II, and yield short
tagmentation fragments (~60 bp) to reduce the impact of DNA damaged samples. Of
note, FFPE-CUTAC yielded higher quality data than FFPE-ATAC from mouse brain [71],
suggesting the potential of innovative Tn5-based approaches to map the epigenome of
clinically relevant FFPE samples. In a subsequent study to understand hyper-transcription
in cancer, FFPE-CUTAC was successfully applied to mouse and human nuclei isolated
from FFPE scrolls or in situ from FFPE tissue sections [78]. While these recently emerging
approaches appear to hold great potential, it remains to be seen how widely they will
be adopted.

2.5. Nicking Enzyme-Assisted Accessible Chromatin Sequencing (NicE-Seq)

NicE-seq is a recent approach (Figure 2A,B) that excels at NDR profiling from heavily
fixed cells, including FFPE [50,51,79,80]. In contrast to nuclease or Tn5 transposase double-
strand cleavage (as above), Chlorella virus Nt.CviPII (63 kDa) is a nicking endonuclease
that cuts only one strand of dsDNA at CCD sites (D = A/G/T), which occur by chance
every ~21 bases [49]. In the latest version of the protocol (One-pot UniNicE-seq), Nt.CviPII
nicks at NDRs are filled in using an NTP mix containing biotinylated- and 5-methyl-
dCTP triphosphates (to, respectively, label and prevent further nicking), the genome is
enzymatically sheared, biotin-labeled DNA is captured on streptavidin beads, and libraries
are prepared on the matrix by PCR (Figure 3E). This method is a fast, simple, and robust
one-tube workflow, although it is incompatible with native cells and yields larger DNA
fragment sizes than ATAC-seq, which limits resolution. NicE-seq has now been applied to
a wide variety of mouse and human cell lines, primary tissues, and FFPE sections [50,80].
The reason why NicE-seq prefers heavily cross-linked samples over native samples is not
entirely clear, but may be due to nicking activity outside NDRs; in this regard, filling nicks
with nucleotides to label CCD sites and restrict further cleavage events provided dramatic
signal improvements as the protocol evolved [50,51,79,80]. Central to the theme of this
review, NicE-seq identified NDRs in human lung and liver FFPE samples from as few as
five thousand cells (Table 1) [50,80]. Similar to FFPE-CUTAC, NicE-seq can be performed
on permeabilized and minimally disrupted FFPE sections in situ, obviating the need for
nuclei purification by harsh methods that damage genomic DNA. As such, the approach
shows great potential for broad adoption to map open chromatin in clinical FFPE material.

3. Data Analysis

Several excellent papers describe methods to analyze data from ATAC-seq [81–83],
the most popular open chromatin profiling approach (Figure 2). Instead, this review aims
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to provide a brief overview of the key considerations and data analysis pipelines that are
broadly applicable to ATAC-seq, FAIRE-seq, and NicE-seq (Figure 4). Because of their
distinct data structures, DNase-seq and MNase-seq each require specific pipelines [81]. For
example, open chromatin from MNase-seq data is inferred from nucleosome-centric maps,
and central considerations are made to identify the nucleosome dyad, account for MNase
sequence cleavage bias, and quantify nucleosome occupancy and ‘fuzziness’ [29,45,55].

The major features of a typical ATAC-seq pipeline involve: (1) read pre-processing and
quality control (QC); (2) primary analysis (read alignment and filtering); and (3) secondary
analysis (peak-calling, visualization, reproducibility, and differential accessibility). Paired
end (PE) sequencing is highly recommended as this informs on DNA fragment length: an
important metric for assay success and interpretation. A sequencing depth of 30–50 M PE
reads is usually sufficient for good genome coverage, but this will depend on how much
bandwidth is consumed by mitochondrial DNA contamination and read duplicates.

3.1. Read Pre-Processing and Quality Control

Prior to alignment, several tools are used to assess the quality of the library and
sequencing run. FastQC reports on base calling quality and overrepresented sequences,
such as primer and adapter dimers. Low base calling scores (<20 Q-score) often indicate a
poor-quality library and/or sequencing run. Overrepresented primer and adapter dimers
are not as problematic in Tn5-based libraries as in ligation-mediated PCR libraries. If
the accessible DNA fragment length is not greater than twice the paired-end read length,
sequencing will read through to the Illumina adapter regions. Such readthrough can
negatively impact genome alignment, so read trimming tools (e.g., Trimmomatic [84]) are
used to detect and prune Illumina adapter sequences.

3.2. Primary Analysis Pipeline

Genome alignment is typically the most time-consuming and computationally in-
tensive step in the primary pipeline, spurring the development of fast, memory-efficient
aligners optimized for short paired-end reads (e.g., Bowtie2 [85]). The goal is to identify the
unique genomic location that corresponds to each read pair. However, multi-aligned reads
pairs are common and must be flagged/removed from further analysis since they introduce
ambiguity. In addition to removing multi-aligned reads using Samtools [86], other utilities
(e.g., Bedtools [87,88] and Picard (http://broadinstitute.github.io/picard [accessed 1 May
2024])) are used for read processing and filtering to remove PCR duplicates, contaminating
mitochondrial DNA, and artifactual exclusion list regions [89].

3.3. Tools for Secondary Analysis

Identifying and visualizing statistically enriched NDRs enables data interpretation
and provides biological insights. Accessible chromatin occurs in relatively narrow regions
that can be identified with peak-calling tools, such as MACS2 [90]. DeepTools2 [91] is
an excellent suite of utilities to assess data reproducibility, generate signal heatmaps,
and process alignment files for visualization in genome browsers, such as Integrative
Genomics Viewer [92]. EdgeR (originally developed for RNA-seq analysis) is widely used
to identify NDR peak locations that display a statistically significant differential signal
across two conditions (e.g., pre or post drug treatment) [93]. Additional tools can provide
further insights to open chromatin patterns but are outside the scope of this paper, and we
recommend one of the more comprehensive data analysis reviews [81–83].

4. Discussion

Identifying NDRs throughout the genome provides a window into transcriptionally
active regions in normal and disease states. Chromatin accessibility profiling has enor-
mously impacted basic and pre-clinical research and is of extreme interest for application
to clinical biopsy specimens in FFPE blocks. The goal of any useful genomics method
is to yield the maximum amount of high-quality DNA (or RNA) to QC defined metrics.

http://broadinstitute.github.io/picard
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However, major challenges associated with FFPE tissues generally slow the application of
epigenomic approaches to archived biopsy specimens.

There are three main areas of focus if users are to generate high-quality data from FFPE
tissues: (1) best practices during clinical tissue preparation and preservation; (2) improved
methods of material preparation; and (3) the optimization of genomic assays specifically
for FFPE material. The first is largely outside end-user control, though minimizing any
delay between tissue harvesting and fixation and shorter storage times improve DNA
integrity and assay yields [94]. Assessing genome integrity by DNA fragmentation or PCR
analyses can inform sample quality and suitability for chromatin accessibility profiling [95].
Tissues are generally processed by nuclei extraction or in situ permeabilization [71,73],
and improved methods should balance increased yields without further compromising
the genomic integrity. FFPE repair kits are available [96], but their impact on data quality
for open chromatin profiling remains to be determined. Finally, lessons may be learned
from efforts to develop RNA-seq and ChIP-seq for archived FFPE material [76,94,97]. For
example, the cross-linking reversal step is a major source of DNA fragmentation [94,96], but
this can be mitigated by high concentrations of Tris, which improved yields by three-fold
and resulted in longer DNA fragments [77].

Because bulk genomic studies represent cell populations, heterogeneity is a potential
caveat in data interpretation. This is particularly the case when using FFPE primary tissue
samples derived from patient biopsies. Single cell genomic methods have helped to reduce
the heterogeneity blind spot [98], though FFPE tissues continue to provide a challenge for
such approaches. However, spatial transcriptomic and epigenomic approaches with FFPE
sections are emerging, which can help to assess heterogeneity and provide valuable context
for orthogonal studies [99–102].

It is a given that the direct analysis of primary tissue provides insights to the devel-
opment of human disease. Indeed, a histopathological analysis of FFPE brain samples
has been central to characterize mechanisms of normal and pathological aging [103,104].
The ability to perform comprehensive epigenomic analyses in such samples could provide
further understanding of these processes and revolutionize clinical research.
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