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Abstract: Three widths of manufacturing S-ribs carbon-fiber filaments acting as turbulence promoters
were implemented into the flow channel of direct contact membrane distillation (DCMD) modules
to augment the permeate flux improvement in the present study. Attempts to reduce the disad-
vantageous temperature polarization effect were made by inserting S-ribs turbulence promoters in
improving pure water productivity, in which both heat- and mass-transfer boundary layers were
diminished due to creating vortices in the flow pattern and increasing turbulence intensity. The
temperature polarization coefficient ttemp was studied and found to enhance device performance
(less thermal resistance) under inserting various S-ribs carbon-fiber thicknesses and operating both
cocurrent- and countercurrent-flow patterns. The permeate fluxes in the DCMD modules with in-
serted S-ribs carbon-fiber turbulence promoters were investigated theoretically by developing the
mathematical modeling equations and were conducted experimentally with various design and
operating parameters. The theoretical predictions and experimental results exhibited a great potential
to considerably achieve permeate flux enhancement in the new design of the DCMD system. The
DCMD module with inserted S-ribs carbon-fiber turbulence promoters in the flow channel could
provide a relative permeate flux enhancement up to 37.77% under countercurrent-flow operations
in comparisons with the module of using the empty channel. An economic consideration on both
permeate flux enhancement and power consumption increment for the module with inserted S-ribs
carbon-fiber filaments was also delineated.

Keywords: DCMD module; permeate flux; S-ribs filament; turbulence promoter; flow pattern

1. Introduction

Membrane distillation (MD) has gained significant attraction in both industrial and
academic settings in recent years due to its technical feasibility. The advancements in
separation and water purification techniques have focused on high permeate flux and low
energy consumption, particularly in the areas of membrane materials, module fabrication,
transport phenomena, and fouling mitigation. MD [1,2] has gained attractive attention due
to the existing thermal gradients built up by both microporous hydrophobic membrane sur-
faces, which are always in contact with both hot and cold bulk solutions at their saturation
points to allow the passage of vapors only [3,4]. The MD process involving both heat and
mass transfer undergoes temperature and concentration polarization effects [5] near the
membrane surface, which diminish the device performance. A higher temperature causes
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a larger impact on the temperature polarization effect [6], while a higher feed composition
induces a more pronounced influence on the concentration polarization effect [7]. The
significant thermal resistance across the membrane with a considerable removal of the
latent heat associated to water evaporation occurs on the thermal boundary layer due to the
vapor pressure gradient across the hydrophobic membrane, which causes the feed temper-
ature decrement, called as the temperature polarization effect [8], and consequently, the net
thermal driving force between the bulk temperature and membrane surface temperature to
transport the permeate flux thus declines [9].

Augmentation of the temperature driving-force gradient by implementing turbulence
promoters to suppress the boundary layer between the bulk and membrane surface results
in the increment of transmembrane permeate flux by alleviating the temperature polar-
ization effect [10]. Incorporating suitable flow amendment configurations of turbulence
promoters to amplify the hydrodynamic conditions has proven to be beneficial for the
simultaneous mass and heat transfer in MD in the boundary layer, such as eddy promot-
ers [11,12] and flow deflectors [13–15]. Moreover, the development of advanced composite
membranes [16,17] meets the requirements of an ideal membrane with a lower conductive
heat loss and a higher mass-transfer rate. Many previous studies focused on the eddies
and wakes owing to vortices and secondary flows [18] as the hot stream passes through the
spacer strands and proposed the mathematical model to predict heat- and mass-transfer en-
hancements in the MD desalination system with respect to traditional membrane modules
without inserting turbulence promoters [19]. The mathematical heat and mass transport
modeling approaches applied in membrane distillation were reviewed [20] and simulated
using computational fluid dynamics (CFD) [12,21].

Various approaches, such as the use of spacers [22], filaments [23], and roughened
surfaces [24], have been proposed to improve the hydrodynamic conditions by suppressing
the thermal boundary layer, thereby enhancing the heat- and mass-transfer rates. The
influence affects both heat-transfer rates and heat-transfer coefficients [25,26] which were
recognized to identify the relative significance of each heat-transfer mechanism. All of the
spacers, filaments, and roughened surfaces play an important role as a turbulence promoter
in both heat and mass transport, and thus, heat-transfer improvement is achieved. In MD
modules, permeate is transported with simultaneous heat transfer, resulting in complex
heat-transfer mechanisms by the temperature difference between the hot and cold feed
streams. The resulting turbulence reduces the temperature polarization effect, leading
to improved heat and mass-transfer rates [10]. However, the heat- and mass-transfer
rate enhancement are at the expense of the pressure drops with power consumption
increments due to the augmented turbulent intensity induced by the turbulence promoters.
To assess the economic and technical viability, the ratio of transfer rate enhancement to
energy consumption increment was evaluated [27]. A recent study has demonstrated the
effectiveness of a segment design involving the machining of a carbon-fiber sheet with
various geometric shapes to increase turbulent intensity and alleviate the temperature
polarization effect in the flow channel of DCMD modules. This disruption of the thermal
boundary layer has been shown to significantly increase the convective heat-transfer
coefficient by introducing carbon-fiber turbulence promoters into the hot feed stream,
thereby changing the flow direction from the curved-shape grid to the grid, as compared to
modules with feed channels lacking carbon-fiber filaments. However, the benefits of using
turbulence promoters in DCMD are weighed down by their disadvantages associated with
the increment of the pressure drop in the feed stream [28].

The present study actually extends the existing study except for inserting S-ribs carved-
shape carbon-fiber filaments instead of using straight-line carbon-fiber filaments [29] to
accomplish the augmented turbulent intensity due to changing the flow direction by the
hydrodynamic angle. This work is based on the principle of the introduction of S-ribs
carbon-fiber turbulence promoters (1 mm thickness) with various widths (3 mm, 4 mm,
and 5 mm) as feed channel filaments into the DCMD module, which would suppress the
boundary layer between the bulk and membrane surface to achieve a smooth transition for



Membranes 2024, 14, 98 3 of 21

the turbulent flow near the membrane surface of fluid flow due to the increased turbulence
intensity and decreased thermal boundary layer resistance. Two strata of microscopic and
plug-flow descriptions are used to represent the real processes by mathematics, which
evolve from transport phenomena principles. These two descriptions are depicted to be
related to the complexity of the heat-transfer mechanism in the present DCMD system and
conjugated with the dusty-gas model to describe the essential membrane coefficient models,
which can estimate the permeate flux across the microporous hydrophobic membrane. In
this study, we develop a theoretical model for the DCMD module to estimate the module’s
permeate fluxes and analyze its trade-off considerations for energy consumption. The
primary objective is to fabricate S-ribs turbulence promoters and insert them into the hot
stream channel to mitigate its temperature polarization effect, ultimately leading to an
increase in vapor permeate flux. Additionally, we refine and validate a regression equation
for the heat-transfer enhancement factor through experimental verification.

2. Experimental Setup and Materials

The carbon fiber used in this study was chosen concerning its lower cost, mechanical
strength to preventing membrane vibration, and easy fabrication of the various geometric
shapes of the filaments. In addition, incorporating the mesh design (say S-ribs carbon fiber)
into the DCMD module was proposed so as to act as turbulence promoters and amplify
the hydrodynamic conditions. The fabrication details of S-ribs carbon-fiber filaments and
the schematic configuration are depicted in Figure 1. Figure 2 showcases a photograph of
the flat-plate DCMD experimental setup, featuring acrylic plates as external walls within a
parallel-plate channel. S-ribs carbon-fiber sheets, cut in an S-shape with a 1 mm thickness,
serve as turbulence promoters inserted into the hot saline feed stream to induce eddy
motion. The S-ribs carbon-fiber filaments adhered to the membrane surface in the hot
feed side were inserted in parallel vertically into a parallel-plate channel to conduct a
two-stream operation. Meanwhile, the cold feed side was constructed using a 0.1 mm
nylon fiber wound as a supportive grid to prevent membrane vibration and wrinkling.
Both supporting materials provide mechanical strength to prevent membrane vibration
and act as turbulence promoters.
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Figure 2. A photo of the experimental setup of three widths of S-ribs carbon-fiber filaments.

The experimental setup involves two parallel-plate parallel channels (L = 0.21 m,
W = 0.29 m, d = 2 mm), separated by a hydrophobic composite membrane made of PTFE/PP
(polytetrafluoroethylene and polypropylene, J020A330R, ADVANTEC Toyo Roshi Kaisha,
Ltd., Tokyo, Japan) with a thermal conductivity of 5.0 × 10−4 cal/cm s ◦C (All-Fluoro
Co., Ltd. Taoyuan, Taiwan) and a water vapor permeability resistance of 4 s/m [30]. The
membrane possesses a nominal pore size of 0.2 µm, a porosity of 0.72, and a thickness of
130 µm, serving as the permeating porous medium in this study. A 2 mm-thick silicon
rubber was affixed to the acrylic plate to prevent leakage and create two spacer conduits of
2 mm for each channel, respectively. Figure 2 illustrates the top views of S-ribs carbon-fiber
filaments with various widths (3 mm, 4 mm, and 5 mm) as a design parameter. These
S-ribs carbon-fiber filaments provide mechanical strength to prevent membrane vibration
and act as turbulence promoters. The effective permeate areas were partially obstructed
by these three widths of S-ribs carbon-fiber filaments, covering approximately 13% of the
hydrophobic membrane, a factor considered in the calculation procedure.

The artificial saline water, consisting of 3.5 wt% NaCl, was prepared by adding
inorganic salts (NaCl) to both distilled water and pure water, respectively. This saline
solution was pumped (51K40RA-A, ASTK, New Taipei, Taiwan) from the thermostat
(G-50 and D650, DENG YNG, New Taipei, Taiwan) at specified temperatures (45 ◦C,
50 ◦C, 55 ◦C, and 60 ◦C). Inlet and outlet temperatures were measured using thermometer
probes (TM-946, Lutron, New Taipei, Taiwan) connected to both sides of the flat-plate
membrane modules. The operational conditions of saline feed streams, with various flow
rates (0.3, 0.5, 0.7, and 0.9 L/min), were adjusted using flow meters (FE-091312-D, Fong-Jei,
Hsinchu, Taiwan) and a controller (N12031501PC-540, Protec, Brooks Instrument, Hatfield,
PA, USA), while maintaining the temperature at 25 ◦C for the cold stream (FN-0423112-F,
Fong-Jei, Hsinchu, Taiwan). The conductance of the permeate flux was collected and
measured, being less than 1.5 µs/cm. Comparisons were made of permeate fluxes under
various operation conditions to assess the device performance between two modules with
and without inserting S-ribs carbon-fiber turbulence promoters. The experimental run of
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the permeate flux was collected and weighed using an electronic balance (XS 4250C, Precisa
Gravimetrics AG, Dietikon, Switzerland) for measurement and recording on the PC.

3. Theoretical Formulations
3.1. Mass and Heat Transfer

Theoretical statements combining both heat- and mass-transfer mechanisms were
formulated for the DCMD system with microscopic and plug-flow descriptions, as shown in
Figure 3a,b, respectively. Figure 3a,b are two models that evolve from transport phenomena
principles. Two levels of microscopic and plug-flow descriptions used to represent real
processes by mathematics. These two levels are depicted to be related to the complexity of
the heat-transfer mechanism in the present DCMD system. The microscopic description
involves a phenomenological approach, representing the system as a continuum, while the
plug-flow description deals with only the largest component of the gradient in the balance
equation by the bulk flow, neglecting all diffusion terms. A mass-transfer model, coupled
with heat-transfer behavior, was developed to illustrate the concentration gradient of the hot
saline feedwater, leading to the vapor diffusing exclusively through the porous hydrophobic
membrane and condensing in the cold stream, completing the distillation process. This
occurs due to the temperature gradients at both membrane surfaces. The theoretical analysis
of the DCMD aims to elucidate how the saline water is initially vaporized and eventually
condensed at the pore entrances of both membrane surfaces. This is achieved through the
permeate/water equilibrium governed by vapor diffusion and enthalpy flow conservation
through heat conduction, as detailed below.
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The membrane permeation coefficient (cm) and the trans-membrane saturation vapor
pressure difference (∆P) were evaluated to determine the permeate flux for membrane
distillation processes [31,32].

N′′ = cm∆P = cm
[
Psat

1 (T1)− Psat
2 (T2)

]
= cm

dP
dT

∣∣∣
Tm
(T1 − T2) = cm

PmλMw
RT2

m
(T1 − T2)

(1)
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The dusty-gas model was used to describe three essential membrane coefficient models
based on a comparison between the mean free path of vapor molecules and the membrane
pore sizes, which can estimate the mass flux across the microporous hydrophobic mem-
brane. The influence of the Poiseuille flow can be neglected [33] when the pore size of the
membrane is relatively small. Considering that a membrane of 0.2 µm is used in the present
study, we may conclude that the addition of the Knudsen and molecular diffusion models
is appropriate to estimate the permeate flux through the membrane. The combination of the
Knudsen diffusion model (due to the smaller mean free path of vapor molecules than the
membrane pore size) and the molecular diffusion model (due to the concentration gradient
across the membrane) was investigated [34] to dominate the mass-transfer mechanism and
presented by an equation of the membrane permeation coefficient for deaerated microp-
orous membranes to predict the permeate flux through the membrane. The membrane
permeation coefficient is the combination of the Knudsen diffusion model and molecular
diffusion model as follows:

cm =

(
1
cK

+
1

cM

)−1
=


[

2
√

8π

3
ε r

τδm

(
Mw

RTm

)1/2
]−1

+

[
|Ym|ln

Dmε

δmτ

Mw

RTm

]−1


−1

(2)

The temperature differences between the streams near the membrane surfaces and
those of the bulk feed streams are utilized to estimate the temperature polarization coeffi-
cient. Predictions are made regarding the temperature gradients of membrane surfaces on
both the feed stream and permeate side across the entire module, influencing heat transfer.
Consequently, the permeate flux is calculated using the mass-transfer modeling equation
presented in Equation (1). The saturation vapor pressure (Psat

1 ) of the hot saline feed side is
estimated using the water activity coefficient (aw), determined through a correlation [1]:

Psat
1 = xwawPsat

w (3)

aw = 1 − 0.5xNaCl − 10x2
NaCl (4)

and the tortuosity (τ) can be estimated using the porosity of the membrane [35]

τ = 1/ε (5)

According to the macroscopic description of the temperature gradient of the DCMD
module in Figure 3a, the heat balances of enthalpy flow conservation in the non-isothermal
process were made within each heat-transfer region in the DCMD module as follows:
(a) the hot saline water stream; (b) the hydrophobic composite membrane; and (c) the
cooling water stream. Vapor flux permeating through the hot feed stream, microporous
hydrophobic membrane and cold stream for the modules with/without inserted S-ribs
carbon-fiber turbulence promoters was expressed in terms of heat-transfer resistances in
series due to the temperature gradient, as shown in Figure 4.
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The energy balance equations may be derived by balancing energy under the steady-state
operation in both feed channels to and from the membrane surfaces. Equating the amount of
heat flux by the conservation law among three regions, one may obtain the following:

q′′
h = hh(Th − T1) the hot saline water feed region (6)

q′′
m = N′′λ +

km

δm
(T1 − T2) the membrane region (7)

q′′
c = hc(T2 − Tc) the cooling water region (8)

where N′′λ is categorized as the latent heat of vaporization and km/δm = hh(T1 − T2) is
the heat conduction, and the thermal conductivity of the membrane km can be determined
by the thermal conductivities of vapor in the membrane pore kg and the solid membrane
material ks by Warner [36] as

km = ε kg + (1 − ε)ks (9)

Equation (7) can be rewritten by using Equation (1) in terms of the overall heat-transfer
coefficient of the membrane Hm including the latent heat across the membrane, which is
implicitly related to the temperature polarization coefficient as follows:

q′′
m = N′′λ + km

δm
(T1 − T2)

=

{
cm

[(1−xNaCl)(1−0.5xNaCl−10x2
NaCl)P2+P1]λ2 Mw

2RT2
m

+ km
δm

}
(T1 − T2)

= Hm(T1 − T2)

(10)

3.2. Temperature Polarization Coefficient

The temperature polarization coefficient τtemp is an indicator to reveal the extent of the
thermal boundary-layer resistance between both the hot saline and cooling feed streams,
as indicated in Figure 5a,b, which controls the permeate flux through the membrane, and
τtemp is commonly defined as follows:

τtemp = (T1 − T2)/(Th − Tc) (11)
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Actually, inserting the S-ribs carbon-fiber filament in the hot saline water compartment
would increase hh (for the module without promoter insertion) to hp

h (for the module with
promoter insertion) but hc does not change. According to Equations (6)~(8) and (10), all
heat-transfer regions of the microscopic description under steady-state operations with
assuming q′′ = q′′

h = q′′
m = q′′

c were developed and illustrated by the schematic diagram in
Figure 3a.

q′′ = hh(Th − T1 ) =Hm (T1 − T2) = hc(T2 − Tc) (12)

or

q′′ =
(Th − Tc)

1
hh

+ 1
Hm

+ 1
hc

= hc(T2 − Tc ) = q′′
c (13)

Equation (13) can be rewritten as

T2 − Tc =
(Th − Tc)

hc
hh

+ hc
Hm

+ 1
(14)

Similarly, we have the increased value of the temperature gradient (say Tp
2 − Tc) by

using the same performed procedure of Equation (14) in the cold feed region for hp
h > hh

due to inserting the turbulence promoter, as shown in Figure 5b.

(Th − Tc)
hc
hp

h
+ hc

Hm
+ 1

= Tp
2 − Tc >T2 − Tc (15)

Meanwhile, the temperature polarization coefficient of Equation (11) increases with
the promoter insertion, i.e.,

(Th − Tc)
Hm
hp

h
+ 1 + Hm

hc

= Tp
1 − Tp

2 = ∆Tp > ∆T = T1 − T2 =
(Th − Tc)

Hm
hh

+ 1 + Hm
hc

(16)

The temperature polarization effect was reduced, as demonstrated in Figure 5b, due
to the DCMD module with inserted S-ribs carbon-fiber turbulence promoters, which
resulted in the temperature difference enlargement of both membrane surface temperatures
∆Tp(T p

1 − Tp
2

)
> ∆T(T 1 − T2). The gradient of ∆T increases to a higher driving force ∆Tp

with inserted S-ribs carbon-fiber turbulence promoters, and thus, the vapor flux is increased,
as shown in Figure 5b. The S-ribs carbon-fiber filaments have been validated to disrupt
the laminar boundary layer and intensify vortices or secondary flow characteristics on the
membrane surface, responding to changing hydrodynamic conditions. This disruption
plays a crucial role in mitigating the temperature polarization effect and enhancing a higher
permeate flux.

The alternative expression of Equation (11) was obtained by equating the energy
conservation of heat fluxes in each region, say Equations (6) and (10) (q′′

h = q′′
m) and

Equations (8) and (10) (q′′
m = q′′

c ), respectively, to replace both membrane surface tempera-
tures (T1 and T2) in terms of the heat-transfer coefficients (hh, hc and Hm) as follows:

Th = T1 +
Hm

hh
(T1 − T2) (17)

Tc = T2 −
Hm

hc
(T1 − T2) (18)

Then, a more simplified form of τtemp in Equation (11) can be rewritten in terms of the
heat-transfer coefficient as

τtemp =
hhhc

hhhc + hh Hm + hcHm
(19)



Membranes 2024, 14, 98 9 of 21

The procedure for calculating theoretical predictions of the mass-transfer coefficient
was performed by continuously iterating T1 and T2 from Equations (17) and (18) within the
convergence tolerance. The calculated convective heat-transfer coefficients were calculated
from Equation (1) and validated by the experimental results, delivered to predict theo-
retically not only in the hot/cold bulk flows (Th and Tc) but also those on the membrane
surfaces (T1 and T2) of both hot and cold feed streams, respectively.

3.3. Governing Equations by Macroscopic Modeling

Both temperature variations in both hot saline and cooling feed streams along the
flow direction were developed, as illustrated in Figure 6, by energy conservation in one-
dimensional governing equations according to the macroscopic modeling to solve the
temperature distributions of both streams in terms of the temperature polarization coeffi-
cient τtemp as

dTh
dz

=
−q′′ W

Qh ρhCp,h
=

−W
Qh ρhCp,h

Hmτtemp(Th − Tc) (20)

dTc

dz
=

q′′ W
Qc ρcCp,c

=
W

Qc ρcCp,c
Hmτtemp(Th − Tc) Cocurrent-flow operations (21)

dTc

dz
=

−q′′ W
Qc ρcCp,c

=
−W

Qc ρcCp,c
Hmτtemp(Th − Tc) Countercurrent-flow operations (22)
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Temperature fields of both hot and cold feed streams were solved with the use of two
simultaneous ordinary differential equations of Equations (20) and (21) for cocurrent-flow
operations (or Equations (20) and (22) for countercurrent-flow operations) by marching the
4th Runge-Kutta method along the length of the module, which can quantify the enhanced
permeate flux by the turbulence intensity augmentation with inserted S-ribs carbon-fiber
turbulence promoters.
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3.4. Hydraulic Consumption Increment

The hydraulic consumption increment is expected and required due to inserting S-ribs
carbon-fiber filaments into the hot saline stream, which may be determined using the
Fanning friction factor ( fF) [37], considering only the friction losses to walls of both hot and
cold streams as

H = Hh + Hc = Qhρhℓw f ,h + Qcρcℓw f ,c (23)

ℓw f ,i =
2 fF,ivi

2L
Dh,i

, i = h, c (24)

in which
vh =

Qh
(dW − D1W1N1)

, vc =
Qc

A
(25)

Deh,h =
4(dW − D1W1N1)

2(d + W + D1N1)
,Deh,c =

4dW
2(d + W)

(26)

The hydraulic equivalent diameter Dh,h of modules with embedding S-ribs carbon-
fiber turbulence promoters was calculated by the wetted area A and wetted perimeter P as
the average carbon-fiber width of S-ribs carbon-fiber turbulence promoters, say 4A/P, as
shown in Figure 7, which were evaluated by averaging various sections of the S-rib shape.
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The Fanning friction factor can be estimated using a correlation based on the aspect
ratio of the channel (α = d/W) [38]:

fF,h =
C

Reh
, fF,c =

C
Rec

(27)

C = 24
(

1 − 1.3553α + 1.9467α2 − 1.7012α3 + 0.9564α4 − 0.2537α5
)

(28)

The relative extent of the hydraulic consumption increment IP was illustrated by cal-
culating the percentage increment in the module with inserted S-ribs carbon-fiber filaments,
which was based on the module of using empty channels as

Ip =
Hpromoter − Hempty

Hempty
× 100% (29)

3.5. Heat-Transfer Enhancement Factor

S-ribs carbon-fiber turbulence promoters were incorporated into the open conduit of
the hot saline feed stream, replacing the device of an empty channel. The correlation of
heat-transfer coefficients [39] for the module using filament-filled channels was proposed
through multiple linear regressions. The heat-transfer enhancement factor αp was intro-
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duced [11] to calculate augmented convective heat-transfer coefficients in DCMD modules
with inserted S-ribs carbon-fiber filaments, employing an iterative procedure:

αp = Nup/Nulam (30)

where the heat-transfer equivalent diameter Deh
h,h was defined [40] as follows:

Deh
h,h =

4(dW − D1W1N1)

W − D1N1
(31)

Nulam = 4.36 +
0.036RePr

(
Deh

h,h/L
)

1 + 0.011
(

RePr
(

Deh
h,h/L

))0.8 Empty channel module (32)

Nup =
hhDeh

h,h

k
S-ribs carbon-fiber-filled module (33)

The S-ribs carbon-fiber filaments, acting as eddy promoters within the flow channel,
play a vital role and offer a comprehensive interpretation of both heat- and mass-transfer
behaviors. This interpretation is based on dimensional analysis using Buckingham’s π

theorem, relating to the Nusselt number as:

Nup = f

(
W1

Deh
h,h

, Re, Pr

)
(34)

where W1 and Deh
h,h are the carbon-fiber width and heat-transfer equivalent diameter of

channels with S-ribs carbon-fiber filaments, respectively.

4. Results and Discussions
4.1. Lessening Temperature Polarization Effect by Inserting Carbon-Fiber Filaments

Both bulk temperature distributions of hot saline and cold feed streams as well as
membrane surface temperatures in DCMD modules were solved numerically using the
one-dimensional theoretical model, as presented in Figure 8, along the axial coordinate
with the carbon-fiber width as a parameter under both cocurrent- and countercurrent-flow
operations, respectively.
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In cocurrent-flow operations, theoretical predictions indicate a tapering of the membrane-
surface and bulk temperatures along the flowing direction, leading to a reduction in driving-
force temperature gradients. Conversely, countercurrent-flow operations maintain a relatively
higher average value of the driving-force temperature gradients, resulting in a greater en-
hancement of permeate flux. The analysis reveals that temperature gradients across both
membrane surfaces are higher in flow channels with inserted S-ribs carbon-fiber turbulence
promoters compared to those in the empty channel. These increased temperature gradients
facilitate greater vapor transport through the membrane, consequently leading to a higher
amount of permeate flux condensed in the cooling stream.

Furthermore, theoretical predictions of temperature polarization coefficients τtemp
were determined according to Equation (19) and are presented in Figure 9. The analysis
considered the inlet saline temperature and carbon-fiber widths as parameters. The τtemp
increased with decreasing both the carbon-fiber width and the inlet saline temperature for
both cocurrent- and countercurrent-flow operations. The descending permeate flux along
the flowing channel for cocurrent-flow operations is thus expected in contrast to the almost
constant temperature gradient of the countercurrent-flow operations. The larger inlet
saline temperature associated with the higher vapor pressure creates the greater permeate
flux passing through the membrane and results in the lower temperature difference (say
Tp

1 − Tp
2

)
across the membrane surfaces; therefore, a lower value of τtemp is achieved. This

is because the greater permeate flux transferring through the membrane results in reducing
the saturation pressure as well as the water activity coefficient of the hot saline stream.
However, comparisons of τtemp were made on operating the module with inserted S-ribs
carbon-fiber filaments of 3 mm and 5 mm with that of the empty channel, as shown in
Figure 9. A larger τtemp was accomplished substantially when the module included inserted
S-ribs carbon-fiber filaments due to disturbing the thermal boundary layer on the membrane
surface with a smaller thermal resistance. Suppressing the temperature polarization effect
results from inserting S-ribs carbon-fiber filaments in the hot saline feed stream to diminish
the thermal boundary layer thickness on the membrane surface. Meanwhile, the effect
reduction in τtemp is more significant in countercurrent-flow operations, and thus, a higher
τtemp value is achieved in the countercurrent-flow operation, as demonstrated in Figure 9.
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4.2. Permeate Flux Enhancement by Inserting S-Ribs Carbon-Fiber Turbulence Promoters

Applying the regressed correlation approach and quantifying the enhanced permeate
flux due to inserting S-ribs carbon-fiber turbulence promoters were solved directly through
the permeate flux enhancement factor, which was established based on dimensional analysis
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of using Buckingham’s π theorem in Equation (34). The experimental runs with empty
channels and 3 mm, 4 mm, and 5 mm S-ribs carbon-fiber widths were used to determine the
correlation for the permeate enhancement factor αp, which was expressed in Equation (30)
of the Nusselt number as a measure of heat-transfer efficiency as follows:

αp =
Nup

Nulam
= 1.72(

W1

Deh
h,h

)−0.165Re−0.04Pr0.321 (35)

The Nusselt number for the empty channel is presented in Equation (32), while the cor-
rected Nusselt number for S-ribs carbon-fiber-filled channels is presented in Equation (33).
Furthermore, the correlated Sherwood number was incorporated into the mass-transfer
enhancement factor αp, as the improved heat-transfer coefficient reduces temperature po-
larization, and thus the driving force across the membrane is increased. The heat-transfer
enhancement factor was derived from the correlation via a regression analysis and ex-
pressed in Equation (35) for implementing S-ribs carbon-fiber turbulence promoters, which
results in the augmented convective heat-transfer coefficients in membrane distillation
modules and presented in Equation (35) as well as in Figure 10. A regression analysis
was set up the normal equations for the least square parameters to obtain the correlated
equation and the squared correlation coefficient (R2) is 0.94. It is concluded from Figure 10
that these corrected Nusselt numbers are more significant in the modules with inserted
S-ribs carbon-fiber filaments.
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4.3. Accuracy Deviations between Experimental and Theoretical Results

The precision analysis of experimental uncertainty for each individual measurement
from the experimental results was determined [41] as follows:

SN′′
exp

=

∑Nexp
i=1

(
N′′

exp,i − N′′
exp,i

)2

Nexp − 1


1/2

(36)

where the mean value of the resulting uncertainty of the experimental measurements was
defined by

S
N′′

exp
=

SN′′
exp√

Nexp
(37)
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The mean experimental uncertainty in Figures 11–13 ranges within 4.81× 10−3≤ S
N′′

exp

≤ 9.73 × 10−3. Meanwhile, the accuracy deviation between the experimental results and
theoretical predictions was calculated as follows:

E =
1

Nexp
∑Nexp

i=1

∣∣∣N′′
theo,i − N′′

exp,i

∣∣∣
N′′

theo,i
(38)

where Nexp, N ′′
exp,i , and N ′′

theo,i are the number of experimental data, theoretical predic-
tions, and experimental results of permeate flux, respectively. The accuracy deviation
of the experimental results from the theoretical predictions is well minimized within
1.83 × 10−2 ≤ E ≤ 9.97 × 10−2.
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Additionally, the predictive capability for permeate flux can be extended to various
geometric promoter designs by following the same regression procedure applied to the
Nusselt numbers for both modules: one with an empty channel and the others with inserted
S-ribs carbon-fiber filaments. In essence, the insertion of S-ribs carbon-fiber turbulence
promoters disrupts the thermal boundary layer on the membrane surface, thereby reducing
heat-transfer resistance and enhancing permeate flux. The results indicate that higher
inlet saline feed temperatures lead to larger Nup numbers, resulting in a higher heat-
transfer rate. Both experimental findings and theoretical predictions of permeate flux were
visually presented, utilizing inlet saline feed temperatures and feed flow rates as parameters.
This representation is outlined in Figures 11–13 for both cocurrent- and countercurrent-
flow operations, considering 3 mm, 4 mm, and 5 mm carbon-fiber widths, respectively.
The fair consistency and agreement between theoretical predictions and experimental
data are evident, providing a robust basis for evidence-based validation, as illustrated in
Figures 11–13. The order of permeate flux magnitude is observed as 3 mm > 4 mm > 5 mm.

It is noteworthy that a larger permeate flux was achieved at a higher hot saline feed
temperature of 60 ◦C compared to 50 ◦C. This can be attributed to a greater permeate flux
emerging due to a higher saturated vapor pressure gradient between both sides of the
membrane. Additionally, a higher hot saline feed flow rate results in an increased permeate
flux, facilitated by velocities and vortices that effectively mitigate heat-transfer resistance,
especially with smaller carbon-fiber widths impacting the thermal boundary layer. Moreover,
the module incorporating 3 mm S-ribs carbon-fiber turbulence promoters in the flowing
channel generates more intensive vortices and eddies than those using wider S-ribs carbon-
fiber filaments under the same total coverage area. As anticipated, countercurrent-flow
operations yield a more significant enhancement in permeate flux compared to cocurrent-
flow operations when S-ribs carbon-fiber turbulence promoters are inserted.

A relative increase in permeate flux IN was illustrated by calculating the percentage
increment in comparisons between the permeate flux of the module using the empty
channel and inserted S-ribs carbon-fiber turbulence promoters as

IN =
N′′

promoter − N′′
empty

N′′
empty

× 100% (39)
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A relative increment of permeate flux IN in the module with inserted S-ribs carbon-
fiber turbulence promoters was calculated in comparisons with the module using the empty
channel, which were evaluated in terms of the theoretical predictions of permeate flux N′′ ,
as summarized in Table 1 with carbon-fiber width, inlet saline feed temperature and feed
flow rate as parameters.

Table 1. Effects of operation conditions and carbon-fiber widths on N ′′
theo and IN , Tc,in = 25 ◦C.

Th,in
(◦C)

Qh
(L/min)

Empty 3 mm 4 mm 5 mm

N”
empty×103 N”

theo×103 IN N”
theo×103 IN N”

theo×103 IN

(kg m−2 h−1) (kg m−2 h−1) (%) (kg m−2 h−1) (%) (kg m−2 h−1) (%)

50

Cocurrent-flow operations

0.3 0.75 0.85 14.06 0.84 12.58 0.83 11.37

0.5 9.00 1.06 17.46 1.04 15.68 1.03 14.35

0.7 1.05 1.27 21.14 1.25 19.24 1.23 17.37

0.9 1.10 1.39 26.00 1.35 23.10 1.33 20.55

60

0.3 1.21 1.42 17.27 1.39 14.92 1.37 13.31

0.5 1.41 1.71 21.28 1.67 18.16 1.64 16.45

0.7 1.60 2.02 26.19 1.95 21.94 1.92 19.75

0.9 1.73 2.28 31.79 2.18 25.95 2.13 23.12

50

Countercurrent-flow operations

0.3 0.87 1.00 15.44 0.99 13.82 0.98 12.73

0.5 1.01 1.22 21.09 1.20 18.81 1.19 17.52

0.7 1.12 1.42 26.34 1.39 23.84 1.38 22.77

0.9 1.17 1.55 32.48 1.52 29.49 1.50 28.03

60

0.3 1.39 1.65 18.56 1.61 15.83 1.59 14.39

0.5 1.57 1.95 24.33 1.89 20.64 1.87 19.30

0.7 1.75 2.29 30.82 2.21 26.14 2.18 24.31

0.9 1.88 2.59 37.77 2.48 32.13 2.45 30.27

The module with inserted S-ribs carbon-fiber filaments of 3 mm in width exhibits a
relative increment in permeate flux of up to 37.77% under countercurrent-flow operations
compared to the module using an empty channel. Furthermore, the analysis from Table 1
reveals that the order of device performance for permeate flux enhancement with S-ribs
carbon-fiber turbulence promoters increases with higher inlet saline feed temperatures
and feed flow rates but decreases with carbon-fiber width. Overall, the insertion of S-ribs
carbon-fiber turbulence promoters into the flow channel demonstrates significant poten-
tial for substantially augmenting permeate flux in the DCMD module by mitigating the
temperature polarization effect.

The present work extends the existing study except for inserting S-ribs carbon-fiber
turbulence promoters instead of using straight-line carbon-fiber filaments [29]. The impact
of the more dominating operational parameter of inlet temperatures was monitored in
the DCMD system and the experimental results of the permeate fluxes were collected
and weighed to evaluate the improved device performance. Therefore, both inlet and
outlet temperatures were measured using thermometer probes for each 5 min interval until
the outlet temperatures reached an unchanged steady state, and thus comparisons were
made of permeate fluxes under various operation conditions for both modules with and
without inserted S-ribs carbon-fiber turbulence promoters. The present study shows a
graphical representation of comparisons with the theoretical predictions of permeate fluxes
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obtained in the present study and straight-line carbon-fiber filaments [29], which illustrates
why there is a preference for the present design of inserting S-ribs carbon-fiber turbulence
promoters, as shown in Figure 14 for both cocurrent- and countercurrent-flow operations.
This is the value and originality of the present study with consideration of the economic
viewpoint and technical feasibility.
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4.4. Energy Consumption Increment

The enhancement of permeate flux is counterbalanced by an increase in energy con-
sumption, constituting trade-offs attributed to heightened turbulent intensity and addi-
tional friction losses resulting from the insertion of S-ribs carbon-fiber filaments into the
flow channel. An economic consideration on both permeate flux enhancement and power
consumption increment for the module with inserted S-ribs carbon-fiber filaments in the
present study was also delineated for economic and technical feasibilities, as shown in
Figure 15a,b. The impact of hot saline flow rate, inlet saline feed temperature, and carbon-
fiber width on the ratio IN/IP is illustrated in Figure 15a,b. This ratio represents the
relationship between the power consumption increment and permeate flux enhancement
in both cocurrent- and countercurrent-flow operations. An assessment of the effectiveness
of membrane turbulence promoters based on economic viewpoint and technical feasibili-
ties was conducted to determine suitable operation and design parameters that balance
desirable permeate flux enhancement with undesirable energy consumption increments.

A larger IN/IP value suggests that the increment in energy consumption can com-
pensate for the decrement in permeate flux, owing to the enhancement in convective
heat-transfer coefficients increasing permeate flux with the insertion of S-ribs carbon-fiber
turbulence promoters. The IN/IP ratio for the channel with wider carbon-fiber filaments
exceeds that of the channel with narrower filaments, indicating that adjusting the carbon-
fiber width appropriately can achieve more effective permeate flux at the expense of energy
consumption. The IN/IP value increases with the hot saline feed temperature and hot
saline flow rate but decreases with the S-ribs carbon-fiber width, as revealed in Figure 15a,b.
In essence, embedding S-ribs carbon-fiber turbulence promoters in the hot saline feed
channel achieves a superior permeate flux enhancement at the cost of a higher friction loss
increment under higher inlet saline temperatures. Notably, the values of IN/IP increase
with the hot feed flow rate, and larger temperature driving-force gradients in operating
countercurrent-flow systems result in a larger value of IN/IP.
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5. Conclusions

The theoretical predictions were calculated and validated by experimental results
under various hot feed flow rates, inlet saline temperatures, and various carbon-fiber
widths for both cocurrent- and countercurrent-flow operations. Thorough comparisons of
permeate flux improvement lead to the following conclusions:

1. Inserting S-ribs carbon-fiber filaments of 3 mm in width into the saline feed flow
channel results in relative increases in permeate flux up to a maximum permeate
flux improvement of 37.77% under countercurrent-flow operations compared to the
module using an empty channel.

2. The results show that permeate flux improvement decreases with the width of carbon-
fiber filaments, but the ratio of permeate flux improvement to power consumption
increment (say IN/IP) increases with the width of carbon-fiber filaments.

3. Permeate flux improvement is more pronounced in countercurrent-flow opera-
tions compared to cocurrent-flow operations due to the attainment of a larger
temperature gradient.

The correlated equation of the Nusselt number, derived from the theoretical model,
proves valuable for designing a more efficient DCMD for membrane desalination applica-
tions. While this paper specifically focuses on assessing permeate flux improvement and
energy consumption increment by inserting S-ribs carbon-fiber filaments as turbulence
promoters into the saline feed channel, further investigation is needed to explore alterna-
tive geometric shapes and array configurations of S-ribs carbon-fiber filaments for optimal
operation, taking economic feasibility into account.
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Abbreviations

A Cross-sectional area of flow channel (m2)
aw Water activity in NaCl solution
C Friction losses coefficient
CP Heat capacity (J kg−1K−1)
ck Membrane coefficient based on the Knudsen diffusion model (mol m−2Pa−1s−1)
cM Membrane coefficient based on the molecular diffusion model (mol m−2Pa−1s−1)
cm Membrane permeation coefficient (mol m−2Pa−1s−1)
d Channel height (m)
D1 Carbon-fiber thickness (m)
Dm Diffusion coefficient of air and vapor in the membrane (m2s−1)
Deh,i Hydraulic equivalent hdiameter of channel (m), i = h, c
Deh

h,h The heat-transfer equivalent diameter (m)
E Accuracy deviation of experimental results from the theoretical predictions
fF,i Fanning friction factor, i = h, c
hc Convective heat-transfer coefficient of cold feed (W m−2K−1)
hh Convective heat-transfer coefficient of hot saline feed (W m−2K−1)
hp

h Convective heat-transfer coefficient of hot saline feed with promoter insertion
(W m−2K−1)

Hi Hydraulic dissipate energy (W), i = h, c
IN Permeate flux relative factor
Ip Power consumption relative index
k Thermal conductivity of water (Js−1m−1K−1)
kg Thermal conductivity of gas (Js−1m−1K−1)
km Thermal conductivity of membrane (Js−1m−1K−1)
ks Thermal conductivity of solid membrane (Js−1m−1K−1)
L Channel length (m)
ℓw f ,j Friction loss (J kg−1), i = h, c
MW Molecular weight of water (kg mol−1)
N1 Number of carbon-fiber filaments
N ′′ Distillate flux (kg m−2s)
N ′′ Average distillate flux (kg m−2s)
Nexp Number of experimental measurements
Nup Enhanced dimensionless Nusselt number
Nulam Nusselt number for laminar flow
Pm Mean saturated pressure in membrane (Pa)
Psat Saturation vapor pressure (Pa)
Q Volumetric flow rate (m3 s−1)
q′′ Heat flux (J m−2s−1)
rp Membrane pore radius (m)
R Gas constant (8.314 J mol−1 K−1)
Re Reynolds number
SN′′

exp
Precision index of an experimental measurements of permeate flux (kg m−2 s−1)

S
N′′

exp
Mean value of SN′′

exp
(kg m−2 s−1)

T1 Membrane surface temperature in the hot saline feed region (◦C)
T2 Membrane surface temperature in the cold feed region (◦C)
Tp

1 Membrane surface temperature with promoter insertion in the hot saline feed
region (◦C)

Tp
2 Membrane surface temperature with promoter insertion in the cold feed region (◦C)

Tm Mean temperature in membrane (◦C)
v Average velocity (m s−1)
W Width of channel (m)
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W1 Carbon-fiber width (m)
xw Liquid mole fraction of water
xNaCl Mole fraction of NaCl in saline solution
Yw Vapor mole fraction of water
|Ym|ℓn Natural log mean Vapor mole fraction of water in the membrane
z Axial coordinate along the flow direction (m)
Greek letters
αp Enhancement factor
δm Thickness of membrane (µm)
ε Membrane porosity
ηv Gas viscosity (Ns m−2)
λ Latent heat of water (J kg−1)
µ Viscosity (Ns m−2)
ρ Density (kg m−3)
τ Membrane tortuosity
τtemp Temperature polarization coefficients
Subscripts
1 Membrane surface on hot fluid side
2 Membrane surface on cold fluid side
c Cold feed stream
h Hot feed stream
cor. Correlated results
empty Channel without embedding turbulence promoters
exp. Experimental results
in At the inlet
lam Laminar flow
out At the outlet
promoter Channel with embedding turbulence promoters
theo Theoretical predictions
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