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Abstract: The increasing rate of adoption of innovative technological achievements along with the
penetration of the Next Generation Internet (NGI) technologies and Artificial Intelligence (AI) in
the water sector are leading to a shift to a Water-Smart Society. New challenges have emerged in
terms of data interoperability, sharing, and trustworthiness due to the rapidly increasing volume
of heterogeneous data generated by multiple technologies. Hence, there is a need for efficient
harmonization and smart modeling of the data to foster advanced AI analytical processes, which will
lead to efficient water data management. The main objective of this work is to propose two Smart
Data Models focusing on the modeling of the satellite imagery data and the flood risk assessment
processes. The utilization of those models reinforces the fusion and homogenization of diverse
information and data, facilitating the adoption of AI technologies for flood mapping and monitoring.
Furthermore, a holistic framework is developed and evaluated via qualitative and quantitative
performance indicators revealing the efficacy of the proposed models concerning the usage of the
models in real cases. The framework is based on the well-known and compatible technologies
on NGSI-LD standards which are customized and applicable easily to support the water data
management processes effectively.

Keywords: smart data models; remote sensing; satellite imagery; flood monitoring and mapping;
flood risk assessment; data sharing; interoperability; water data management

1. Introduction

The water sector is undergoing the so-called fourth revolution, which encounters
the Industry 4.0 digital revolution. Hence, the water utilities have started to establish
water conservation strategies and transition toward digital transformation [1]. The digital
advancements, driven by the Next Generation Internet (NGI) technologies (e.g., Internet
of Things (IoT) and blockchain), Artificial Intelligence (AI), remote sensing (RS), data
modeling and semantic representation and reasoning approaches, etc., are being adopted,
causing the movement from Hydraulic Modeling 1.0 to 2.0 [2]. Recent advances in data
management and analysis have adopted several state-of-the-art technologies such as ef-
ficient and modular Context Brokers, data integration, and the creation of appropriate
data models. Context Brokers allow managing the entire lifecycle of context information
including updates, queries, registrations, and subscriptions [3,4].
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The intertwining of AI with affordable sensors, high-resolution remote sensing, and
communication technologies has contributed to the proliferation of big data in the water sec-
tor, driving the need for effective data-driven discovery, management, and processing [1,5].
Efficient and reliable water management decisions are obtained after the harmonization
and analysis of the massive volumes of data by utilizing innovative prescriptive analytics
and AI techniques [5]. Hence, long-term resilience against unexpected disruptive events
such as floods, droughts, etc., can be achieved.

Specifically, satellite remote sensing provides significant information for the moni-
toring of natural disasters [6]. Flood hazards are a constant threat to local communities
and infrastructures. The recent increase in the number of natural disasters has become
a global issue because of the damages to the hydrological and ecological environment
and human-made infrastructure, and the threat to human lives. Satellite remote-sensing
techniques provide valuable support for monitoring these disasters and for post-event
crisis management [7]. Due to flood hazards’ negative consequences on societies and
economic aspects, it is critical to monitor and map those flood risks [8,9]. Improvements in
satellite technology along with an increasingly long historical period of Earth Observation
(EO) data available are resulting in the extended use of EO for flood risk assessment and
monitoring [10].

In 2017, the UN Office for Disaster Risk Reduction (UNISDR) proposed an updated
definition of disaster risk, incorporating the Sendai Framework for Disaster Risk Reduction
2015–2030 [11,12]. Therefore, disaster risk indicates the potential loss of life, injury, or
damage to assets that could affect a system, society, or community in a specific temporal
period. To calculate the disaster risk, we must take into account the factors of hazard,
exposure, vulnerability, and capacity. Regarding natural hazards, disaster risk can be
calculated and overall assessed by utilizing hazard, vulnerability, and exposure. Hazard
refers to the adverse event responsible for losses. It indicates the probability and intensity
within a specific area and time interval of a physical event. Hazard is estimated considering
the characteristics of the risk source, the corresponding location, and the intensity of the
physical process [11–13]. Exposure encompasses the condition of individuals, livelihoods,
housing, infrastructure, production capacities, economic, social, cultural assets, and other
substantial human assets that are located in hazard-prone areas and are vulnerable to
potential adverse impacts [11,12,14]. Vulnerability refers to the susceptibility of individuals,
communities, assets, or systems when confronted with hazardous physical events. It
encompasses the qualities of a person or group and their situation, which influence their
ability to anticipate, cope with, resist, respond to, and recover from the impacts of a physical
event [11,12,14].

Despite the progress made, the digitalization of the water sector is yet characterized
by certain gaps and challenges including technological, socioeconomic, environmental, and
regulatory aspects [15]. The lack of industry-wide standardization and regulatory policies
due to the fragmented, tailor-made solutions in the water sector, along with the issues
of interoperability, data sharing and trustworthiness, are considered the main barriers
to the digital transition of the sector [15]. Particularly, data integration is one of the
core responsibilities of data management and interoperability [16]. One challenge is the
incompatibility of data models, i.e., different software systems use specific or proprietary
terminology, data structures, data formats, and semantics. Data need to be interchanged
between software systems, and often, complex data conversions or transformations are
necessary. Data integration involves combining data from several disparate/heterogeneous
sources, which are stored using various technologies and it provides a unified view of the
data [16,17]. The complexity of data integration depends on various factors, such as data
models, data formats, and data precision; however, in most cases, it is non-trivial, so a
systematic and well-defined approach is necessary [16,17].

According to our knowledge, there are no data models relevant to satellite imagery
to support flood risk assessment analysis. Thus, in this work, two data models, namely,
the Satellite Imagery (https://github.com/smart-data-models/dataModel.SatelliteImagery

https://github.com/smart-data-models/dataModel.SatelliteImagery
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accessed on 2 April 2024) data model and the Risk Management (https://github.com/
smart-data-models/dataModel.RiskManagement accessed on 2 April 2024) data model,
are designed and implemented adopting the FIWARE NGSI-LD standard. The aim is
to empower data sharing and interoperability by harmonizing heterogeneous data from
multiple sources (i.e., EO data, GIS-based data). The proposed data models facilitate
the data exchange, data-sharing trustworthiness and transparency among various legacy
systems, and different groups of stakeholders in the water sector. Also, they adopt a
coherent terminology and common semantic representation of data combining terms
of the fields of remote sensing and Risk Management. With these models, advanced
Machine Learning and AI technologies can be applied, easily focusing on various EO
and crisis management applications. In particular, in [18], a methodological framework
is proposed that enables flood monitoring and mapping by assessing the flood hazard
and risk, dynamically fusing optical remote sensing (Sentinel-1) and GIS-based data. The
aforementioned data models are utilized to populate the necessary data into the Machine
Learning models and also to store the results of the analysis.

Beyond these data models, a second aim of this work is to propose a general framework
that those models can be applied to and with which they can interoperably interact with
other components. Hence, a multi-layered architecture is proposed, which consists of layers
for data collection, data harmonization, interoperability, and storage as well as a layer for
advanced analytical processing of the data to visualize the results at the business layer. The
proposed framework is applied and evaluated in real case scenarios in the context of the
H2020 aqua3S (https://aqua3s.eu/ accessed on 2 April 2024) project.

The core contributions of this work can be summarized as follows:

• Establish two Smart Data Models, Satellite Imagery and Risk Management, based on
the FIWARE NGSI-LD standard to foster data management processes.

• Assist in the set-up of a unified terminology and semantic representation of data gener-
ated by remote sensing and flood risk assessment processes to facilitate interoperability
and data sharing.

• Propose and evaluate in real case scenarios a broader framework for seamless interac-
tion with other components, featuring a multi-layered architecture.

• Relying on the proposed SDMs, the integration of advanced Machine Learning and
AI technologies for a wide range of EO and flood crisis management applications can
be adopted.

2. Background

In [19], a systematic review of data models for the big data problem is presented,
concluding, among others, that a data model is required to define the data structure
and storage as a way to meet the challenges of big data. Also, the article depicts the
significance of data models even in databases that lack static data models and flexible
schemas. Although there are a variety of data models with various purposes, there must be
a logical structure or format for data storage even at the program level. This is evidence
of the need for more focus and research on this issue [19]. In [20] the authors cover the
evaluation of six open-source and eleven proprietary database modeling tools using a new
and tailored approach. Based on [21], a data model is aimed to make data meaningful and
data communication possible for information needs while in [22], the data model includes
three concepts:

• A data model is a set of data structures that mainly describes data types, properties,
and relationships. The data structure is the basic part on which operations and
constraints are structured.

• A data model is a set of operators and inference rules that mainly describe types and
methods of operation in a particular data structure.

• A data model is a set of comprehensive constraints that can be used to describe
syntax, dependencies, and constraints of data to ensure its accuracy, validity, and
compatibility.

https://github.com/smart-data-models/dataModel.RiskManagement
https://github.com/smart-data-models/dataModel.RiskManagement
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On the other hand, due to the growing awareness of the Internet of Things (IoT), IoT
platforms were raised, such as FIWARE (https://www.fiware.org/ accessed on 2 April
2024), which is a standard platform for developing Smart applications. It was launched
by the European Commission and aims to develop the core future technologies in the
IoT paradigm [23,24]. However, its use seems to be successfully adopted by a variety of
other applications. In [25], a data integration, harmonization and provision toolkit for
water resource management and prediction support is designed to adopt the FIWARE
NGSI-LD standard [27]. The NGSI-LD standard [26,27] is a well-established standard
(the first version was created in 2017) and provides a general-purpose API specification.
The specification, and some implementations, are open licensed. It is evolved by ETSI, a
technical standardization body (https://www.etsi.org/ accessed on 2 April 2024). Some
features of NGSI-LD, like the time series and geo-querying of the information retrieved
from heterogeneous sources, make it particularly suitable for the aim of this research.
Besides this, it also allows the federation between different instances of the servers using
the standard (brokers), which empowers the users to use very different configurations and
allows horizontal scalability. From the semantic point of view, this standard manages any
type of data model structure, which helps to use very different types of data, geographical,
environmental, or simply any other type of indicator. In [28], a novel air quality monitoring
unit is implemented using clouding and FIWARE technologies, while in [29], an industrial
data space architecture implementation using FIWARE is carried out. The authors of [30]
describe a reference implementation for providing data analytic capabilities to context-
aware smart environments. Their implementation relies on FIWARE Generic Enablers
(GEs) and commonly uses open source technologies, a combination that has proven useful
for building other types of smart solutions such as digital twins [31], data usage [32,33]
controlled sharing environments, and enhanced authentication systems [34].

Smart Data Models by FIWARE

The Smart Data Models (https://smartdatamodels.org accessed on 2 April 2024) is
a collaborative initiative to compile and curate data models in very different domains.
The data models have two major sources: on the one hand, directly from actual use cases,
and on the other hand, from open and adopted standards or regulations. Four non-profit
organizations are the board members, and more than one hundred organizations are
currently collaborating. Although the FIWARE Foundation is one of the board members,
the data models compiled are independent of the FIWARE platform (which uses NGSI-
LD standard) and can be used elsewhere. The models are open-licensed, allowing the
free use, free modification, or customization to local needs, and the free sharing of the
modifications only with the credit to the authors. One single source of truth for every
data model allows the automatic generation of the documentation (seven languages) and
export in several technical formats. The structure is also available in YAML and SQL, and
the examples are available in json json-ld, csv, geojson features, and DTDL. This initiative
pioneered the use of the agile standardization paradigm to compile data models (see
the Manifesto for agile standardization (https://github.com/smart-data-models/data-
models/blob/master/MANIFESTO.md accessed on 2 April 2024)). There are more than
1000 data models publicly available in github (https://github.com/smart-data-models
accessed on 2 April 2024) and include domains for environmental information (https:
//github.com/smart-data-models/dataModel.Environment accessed on 2 April 2024)
and for geographic imaging (https://github.com/smart-data-models/dataModel, https:
//github.com/smart-data-models/dataModel.SatelliteImagery accessed on 2 April 2024)
among others.

3. Methodology
3.1. General Considerations

The backbone of a FIWARE-compatible architecture is the NGSI-compatible Broker.
An NGSI compatible broker, unlike a messaging broker like RabbitMQ (https://www.

https://www.fiware.org/
https://www.etsi.org/
https://smartdatamodels.org
https://github.com/smart-data-models/data-models/blob/master/MANIFESTO.md
https://github.com/smart-data-models/data-models/blob/master/MANIFESTO.md
https://github.com/smart-data-models
https://github.com/smart-data-models/dataModel.Environment
https://github.com/smart-data-models/dataModel.Environment
https://github.com/smart-data-models/dataModel
https://github.com/smart-data-models/dataModel.SatelliteImagery
https://github.com/smart-data-models/dataModel.SatelliteImagery
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rabbitmq.com/ accessed on 2 April 2024) or a stateless event streaming service like Apache
Kafka (https://kafka.apache.org/ accessed on 2 April 2024), is meant to hold the current
state of a physical system in the form of digital twins. Instead of handling messages or
message streams of information in the publication/subscriber context, the NGSI-compatible
broker holds an entity corresponding to the physical component, which comprises several
values. Values can be updated by a client, and other clients can actively query the current
state of the entity. Clients can also subscribe to notifications generated when specific
attributes of one or more entities change.

An entity in this context is an expanded data model, including static (e.g., an entity’s
id), dynamic (e.g., an entity’s status), or even timestamped attributes that can be used to
generate time series (e.g., measurements produced by a sensor).

In our case of Earth Observations in the form of satellite imagery, the usual situation
is that the observations are available, along with the corresponding metadata in a data
hub (e.g., the Sentinel Hub), and they can be ingested, analyzed and combined with other
data to produce certain analysis results. This process requires the combination and often
harmonization to certain requirements of several heterogeneous types of data for their
ingestion by AI models, including static, dynamic, and time variable attributes.

These requirements led us to the selection of a digital twin approach, where an
Earth Observation and the accompanying metadata can be modeled as NGSI entities
including the Earth Observation, the instrument involved along with its configuration, the
satellite platform that carries it, the corresponding data hub, etc. This allows for the easier
integration of this information with other types of data (sensor measurements, citizen data,
OGS data, etc.) that have been modeled within the same context. Any resulting processing
as well as the final analysis results are also represented as entities in the same data model.

In our implementation, we opted for a linked data approach, using entities encoded in
JSON-LD format. In the context of linked data, every entity has a unique ID in the form
of a URI. Linked entities have relationship attributes that take the URI ID of other entities
as values. This allows for the conceptualization of higher-level interlinked structures. In
this way, the entire process is easily integrable, transparent, and intuitive as well as easily
expandable to new data types.

3.2. Framework

In the figure below (Figure 1), the logical multi-layered architecture of the proposed
framework is illustrated. It consists of layers that allow acquiring data and information
from various external data sources (Data Collection layer), the transformation of those
data into the harmonized FIWARE-compatible data models (Interoperability layer), and the
storage, processing, and forwarding the data (Data layer) into the business layer. The latter
is responsible for the further advanced analytical processing of the data as well as the
visualization of the results to the operators.

Specifically, in this work, the data collection layer refers to the process of gather-
ing EO (Sentinel) data from the Copernicus API as well as the geospatial data through
legacy systems (GIS layers). The latter can be considered an external resource, and it
is mentioned as the GIS data model (Appendix A.3). The interoperability layer utilizes
the Visual Content Acquisition module to process the Sentinel and GIS data. The data
collection and interoperability layer is part of the Satellite Imagery data model described in
Appendix A.2 below.

Subsequently, in the data layer, data processed from the Visual Content Acquisition
module are stored using technologies such as OGC Web Services–Geoserver, Orion Context
Broker, and widespread techniques of Data Repositories. GeoServer is the reference im-
plementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) and
Web Coverage Service (WCS) standards, as well as a high-performance certified compliant
Web Map Service (WMS). GeoServer forms a core component of the Geospatial Web. Orion
Context Broker (https://aws.amazon.com/blogs/publicsector/how-to-build-smart-cities-
with-fiware-orion-context-broker-and-cygnus-on-aws/ accessed on 2 April 2024), which

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://kafka.apache.org/
https://aws.amazon.com/blogs/publicsector/how-to-build-smart-cities-with-fiware-orion-context-broker-and-cygnus-on-aws/
https://aws.amazon.com/blogs/publicsector/how-to-build-smart-cities-with-fiware-orion-context-broker-and-cygnus-on-aws/
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is an NGSI-LD compatible broker, gathers context information from diverse sources and
manages the lifecycle of this context information, from registrations, updates, queries, and
subscriptions (Appendix A.1).

Finally, in the business layer, the Crisis Classification and Decision Support Module is
developed and evaluated relying on the analysis of information obtained in the previous
layers by employing AI algorithms. The outcome of this process is the assessment of the
risk in a potential crisis or extremely hazardous event caused by natural or human-made
reasons. This module is based on the deployment of the Risk Management data model as
will be described in Appendix A.4.

Figure 1. The logical architecture of the proposed framework.

4. Validation of the Smart Data Models

The proposed framework (Figure 1) that integrates those data models in a multi-
layered approach for the assessment of the flood risk is evaluated. The assessment of
the presented data models is carried out in a user-centered indirect manner, through the
verification of user satisfaction with the aqua3S modules that rely on these particular
models. It focuses on the user’s needs and revolves around the concept of establishing a
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practical scenario for the user, referred to as a simulated work task situation. The proposed
data models are evaluated in terms of their ability to adequately represent the necessary
information and populate data in a compatible NGSI-LD Context Broker. Unfortunately,
since these models were developed recently, there is no other similar system using them,
and thus we cannot directly compare our results with another platform. In the following
subsections, the descriptions of the real case scenarios that took place in the context of the
aqua3S project as well as the qualitative results are illustrated.

4.1. Scenaria Description

The scenario takes place in the city of Trieste (Figure 2), including the area nearby
(the city of Muggia and part of the Isonzo River Plain). In the region of Friuli Venezia
Giulia, the city of Trieste is the most populated one with approximately 410,000 inhabitants
in the metropolitan area, and it is located near the borders between Italy and Slovenia.
The city’s water supply system has always been unique since it presents some critical
challenges. Since Karst topography does not include any water sources close to the city, the
system relies on groundwater near the Isonzo River in San Pier d’Isonzo. To overcome this
limitation and connect the water distribution network to the main sources in the Isonzo
River Plain, two water mains are established. The first one runs along the coastline for
approximately 23 km, and the second one extends 18km under the sea. Water is then
pumped through a series of plants all over the city, up to the Karst area.

Figure 2. Region of interest including the municipalities of Trieste, Muggia and Monfalcone.

The study area covers numerous flood risk areas identified with the Flood Risk Man-
agement Plan (FRMP) of the Eastern Alps River Basin District (Decree of the Italian Pres-
ident of Ministry on 1 December 2023), redacted by the Water Authority of the Oriental
Alps River District (AAWA) under Directive 2007/60/EU. Due to their low ground eleva-
tion above sea level, certain investigated locations such as Muggia and the harbor area of
Trieste are vulnerable to flooding from high tides in the Adriatic Sea. These tides can be
exacerbated by meteorological factors such as rainfall and southern winds. Additionally,
the Isonzo River Plain, including San Pier d’Isonzo, where the main wells of the water
supply system are located, is at risk of flood caused by the Isonzo River, a significant
transboundary water body for the Eastern Alps River Basin District. Considering the flood
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risk in Trieste’s water distribution and supply system, one specific operational scenario was
simulated using satellite data coming from a storm that affected the area in November 2019.
This scenario is divided into two sub-scenarios: the first one affects the supply network
of Trieste, particularly the wells in the Isonzo River Plain, and the other affects the city’s
distribution network in the harbor area. This scenario involves the use of Risk Management,
GIS, and Satellite Imagery data models.

Scenario A—Blackout in the wells due to the high level of the Isonzo river: The intense
rainfall in the region has led to a significant rise in the water level of the Isonzo River in
San Pier D’Isonzo. The result is a blackout and disruption in the electrical equipment of
the wells responsible for supplying water to the city of Trieste, given their proximity to
the river.

Scenario A unfolds as follows: All operators log in to the platform according to
their designated roles. Initially, the Water Utility operator receives a warning from the
aqua3S platform, and then he/she calls from the call center, confirming the issue. With
the collaboration of the Water Authority and Water Utility operators, they explore the
possibility of the problem being linked to the flood of Isonzo River because the area falls
within the flood risk area as per the FRMP and displayed in the GIS interface of the system.
The Water Authority Operator checks the platform for available satellite images of the area.
Later on, the operator examines the platform analysis output and particularly focuses on
the water body mask and the water depth and velocity maps, generated through the GIS
and Satellite Imagery data models. Additionally, the operator checks out the flood hazard
and flood risk maps produced by the Risk Management data model. From these maps, the
operator understands that the level of the Isonzo River is notably high, particularly in the
area near the wells. Subsequently, the responsible staff at the Water Utility takes action by
utilizing the internal threat management procedure, evaluating potential threat levels, and
characterizing the location and possible response measures. The operator also checks the
Risk Management tool for crisis scenarios related to the current situation. As the crisis is
de-escalated, the issue is resolved, and the color of the sensor on the map reverts to green.

Scenario B—Damage to the pipes in Trieste due to high tide: during the same storm
event responsible for the high water level of the Isonzo River and supply network issues in
San Pier d’Isonzo, the weather conditions also cause an exceptional tide in the Adriatic Sea.
The high tide results in flooding the city area near the harbor and causing damage to the
pipes of the water distribution network in that area.

Scenario B unfolds as follows: Following the resolution of the previous malfunction,
the operators continue to monitor the platform for potential anomalies triggered by the
meteorological situation. The Water Supply operator identifies the damaged pipe(s) in the
static GIS layer of the water distribution network. This situation forces the operator to
understand that there is an unavailability issue, as the broken pipe does not allow water
supply to a specific area of the city, affecting a part of the citizens. The Water Authority
Operator examines the satellite data from the last few days to detect any possible flood
areas that could be causing the anomaly, and the Satellite Imagery data model generates
a flood mask for the Trieste and Muggia region. The Water Authority Operator observes
that the Risk Management data model algorithm has identified flooded areas in Trieste and
Muggia due to the tide. By comparing the generated FRMP maps of hazard, risk, water
velocity, and water depth with the static GIS Layer of the Trieste network on the map,
the operator confirms that the damaged section of the network matches with the detected
hazard and risk map.

An overview of the above scenarios, including information concerning the processes
and the data models that were involved as well as the inputs, outcomes, actors (operators),
and actions to be taken by them from the decision-making perspective, is illustrated in
Table A1 and Table A2 respectively in the Appendix A.6.
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4.2. Quantitative Results

Following the paradigm of [35], who introduced the term “usability” encompassing
the concept of user-centered evaluation, this work adopts usability for assessing user
satisfaction. The term usability encompasses the examination of user engagement and
interaction. Furthermore, as per the ISO 9241-11 standard [37] usability is defined as the
product’s capacity to enable specified users to achieve defined goals with effectiveness (to
which level the user can achieve his/her goals), efficiency (to which level of effort the user
has to invest over the achieved accuracy), and satisfaction within a specific context of use.
Thus, effectiveness, efficiency, and satisfaction define usability (the level of comfort and
acceptability of use).

The participants involved in the evaluation were 29 professionals with diverse back-
grounds and significant work experience (i.e., over 5 years). Specifically, as depicted in
Figure 3, the majority of participants (41%) were technical partners from several companies,
while a significant proportion of the attendees held positions associated with water quality
and served as First Responders (24%).

Figure 3. Professional background statistics.

Regarding the participants’ professional backgrounds, the majority (59%) possessed
substantial experience, defined as over 5 years of experience as depicted in Figure 4. It is
worth mentioning that there was a good gender balance among the participants, with 59%
being male and 41% female.

Concerning the development and the usability of the platform, a questionnaire was
carefully designed that involves a series of questions including questions concerning
the modules related to satellite data usage and risk assessment. Hence, the participants
were tasked with assessing their level of usability along the following criteria Effectiveness,
Efficiency, and Satisfaction of each module. The responses were assigned weighted values
(ranging from 5 to 1, indicating strong agreement to strong disagreement) based on the
three aforementioned criteria. It is important to highlight that the questionnaire underwent
validation and approval from every consortium member. Furthermore, particular care was
taken to address any ethical concerns associated with the questionnaire’s formulation.

The findings of the research exhibit a positive level of responders’ satisfaction after the
usage of both data models. Particularly, approximately 96.4% of participants are satisfied
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(strongly agree or agree) with the easy use of the Satellite Imagery data model. Moreover,
they believe that it is useful for storing and exchanging information generated from the
analysis of satellite imagery (Figure 5). Similarly, 89.3% of the responders consider that the
Satellite Imagery data model is an efficient tool (agree or strongly agree) concerning perfor-
mance and time needed for completing their tasks with adequate accuracy. Significantly
higher is the percentage of responders who consider that the particular data model can
assist them in completing their task accurately compared with those who are neutral or
disagree (85.7% against 14.3%).

Figure 4. Professional experience statistics.

Figure 5. Satellite Imagery data model questionnaire statistics in percentages.

Similar findings can be drawn concerning the usability of the Flood Risk Management
data model (Figure 6). In total, 89.3% of responders are satisfied after the usage of the
particular model (strongly agree or agree). Additionally, they believe that it can effectively
aid them in completing their tasks reliably (level of effectiveness is around 89.3%). Slightly
different are the results in terms of the efficiency of the Flood Risk Management data model,
where the percentage of participants who agree that this DM is efficient reaches 82.1%
against those who are neutral (17.9%). One potential reason is that the creation of Flood
Risk Maps depends on data models (i.e., Satellite Imagery) and other processes that may
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insert a slight delay in the visualization of the flood hazard and risk maps. This can be
translated as an inefficiency of the DM by a few responders.

Figure 6. Flood Risk Management data model questionnaire statistics in percentages.

It’s worth noting that none of the responders expressed strong disagreement regarding
the usability of both Smart Data Models. As a result, the category indicating strong dis-
agreement (represented by red color) does not appear in the above figures (Figures 5 and 6).

5. Conclusions

Water is the lifeblood of many other sectors, such as energy, agriculture, industry, etc.,
by supporting their processes. Hence, the digitalization of the water sector through the
deployment of digital solutions fosters the Twin Transition (digital and green transition) as
well as water security, sustainability, and resilience. The emerging technologies for water
data acquisition, smart processing, and sharing provide positive reinforcement for the
processes of data management in the water sector. Facilitating a faster adoption of the
data representations by defining common standard-wise Smart Data Models enhances the
data-sharing trustworthiness and promotes interoperability.

In this context, this work proposes two Smart Data Models which are FIWARE com-
patible and facilitate the modeling processes of the satellite imagery as well as the flood
risk assessment. Additionally, a general multi-layered architecture has been described to
adequately incorporate those data models in a workflow, exhibiting their efficiency and
applicability. Through the real-case scenarios, the proposed approach has been evaluated
using qualitative and quantitative key performance indicators.

In process-oriented organizations, the evaluation of the data models in real-case
flooding events can be challenging. The early-stage achievements and progress achieved
can be assessed through early-stage validation via pilots and proof-of-concept efforts. Since
the assessment of the data models is indirect, there is no direct connection between end
users and SDMs. Thus, the proposed models are part of the general process that has been
applied in real scenarios. The end users evaluate them through surveys using a meticulous
questionnaire that was designed and approved by the consortium members, taking into
account the ethical considerations and matters. To this extent, comparisons among similar
platforms are impossible to occur due to the limitation of data and lack of interoperability
of the modules of different systems.

The conclusions from the qualitative research that took place in the content of the
aqua3S framework reveal a high level of participants’ satisfaction regarding the usability
of the Satellite Imagery data model and the Flood Risk Management data model. Users
find the Satellite Imagery data model easy to use and valuable for storing and exchanging
information coming from the satellite imagery analysis. Similarly, the Flood Risk Manage-
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ment data model has received positive feedback in terms of satisfaction and effectiveness in
completing tasks. However, some respondents note possible weaknesses in the Flood Risk
Management data model due to dependencies on processes like satellite imagery, which
could lead to slight delays in visualizing flood hazard and risk maps.
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Appendix A

Appendix A.1. NGSI-LD Context Broker

The role of the Context Broker is to hold the current state of the system (in contrast with
stateless, data-streaming applications like Apache Kafka, where the client is responsible for
knowing their offset). In the simplified NGSI-LD broker architectural schema (Figure A1),
the Clients (Producers or Consumers) can update specific attributes of entities and query
the current state of the system or subscribe to notifications. Notifications can be set up to
monitor specific attributes on specific entities and contain logical functions (e.g., to only
send notifications when a value exceeds a specific threshold).

Figure A1. Simplified architecture around an NGSI-LD broker.

Entities within the broker need to be identified by a unique ID in the form of a URI
(linked entities use this identifier to point to this entity) as well as by the Type attribute that
identifies the entity with the corresponding data model (see Appendix A.5 below).

Entities are connected to related “context” that can be accessed online or stored
locally and hold the schema of the specific entities. Relationship attributes handle the
interconnections between entities, allowing for easier indexing of entities and the mapping
of conceptual entity networks.

Data that are time critical are marked by a timestamp (see Appendix A.5 below).
A connected historical service that can either be part of the broker or set up to receive
notifications is responsible for capturing older values when they are replaced by newer
ones in the broker and retaining time series of past values. Values that are to be monitored
need to be marked with a timestamp when created.

NGSI-LD brokers expose a REST API that can be accessed by client applications to
create, update and query entities through HTTP(s) requests. Data are stored and exchanged
in JSON-LD format.

In the mapping of a physical system in this context, the entities represent digital twins
of real system components. In our case of Earth Observations, this is the case for some
entities (instruments or satellite platforms), while other entities are conceptual (like analysis
results). In some cases, the entities correspond to other types of files (such as geo-referenced
images); in this case, the corresponding entities will hold all relevant data and metadata of
the specific file as well as an index of the actual file’s location in a data store. This simplifies
the location and indexing of files, and the integration of various heterogeneous data types
but also improves the conceptualization of the entire process that processes various data
types to produce results in various formats, holding a central mapping of the process and
its components and reference data at all stages of the process.
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Several NGSI-LD brokers are available as open-source software, offering a robust
ecosystem of components that can be used in research or production implementations.
Such brokers include the Stellio and Orion NGSI-LD brokers.

Appendix A.2. Satellite Imagery Data Model

The FIWARE model for Satellite Data is designed to be adaptable, covering a wide
range of use cases and allowing for future expansions. The model facilitates the repre-
sentation of satellite imagery analysis (Figure A2), supporting vital information about the
corresponding instrument and satellite platform, data hub, and the generated image results.
The goal is the development of a flexible and well-defined model that could retrieve diverse
Earth Observation (EO) analysis products from any satellite data repository and platform.
While its main compatibility lies with Copernicus Open Access Hub, the model aims to
adapt as much as possible to other satellite data providers, enabling the representation of
data from these repositories using the proposed FIWARE model. This extends to alternative
Copernicus Data Hubs and Copernicus Data and Information Access Services (DIAS) cloud
environments (e.g., ONDA DIAS), which may be utilized by others, including commercial
data providers.

Figure A2. Visualization of the Satellite Imagery data model schema.

Appendix A.2.1. Design of the Satellite Imagery Model

The development of the data model was driven by the need to record geo-referenced
satellite data, accessible from online data hubs like the Copernicus open-source hub. Geo-
referenced information from Sentinel satellites is collected from open-source hubs and
put through analysis using specialized analytical modules within the FIWARE model.
The analysis process relies on the main available data hubs such as Copernicus, ONAS
DIAS, Sentinel Hub, and Planet. The attributes present in the file metadata are mapped to
corresponding attributes within the data model.

Appendix A.2.2. Description of the Satellite Imagery Data Model

The Satellite Imagery model encompasses six classes: EOAnalysis, EODataHub, EO-
GeoDataLayer, EOInstrument, EOSatellitePlatform, and EOProduct.

The EOAnalysis entity offers a match description of a generic analysis performed in
the satellite imagery domain, and its primary focus is on analyzing Earth Observation ap-
plications. Key properties of this entity include the location, represented as bounding box
coordinates in the GeoJSON format, which denotes the analyzed area. Moreover, properties
such as analyzedAt indicate the completion time of the analysis, provider identifies the algo-
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rithm provider, resultDescription describes the analysis outcome, analysisType specifies the
type of analysis applied, and isAnalysisOf refers to the ID of the product used in the analysis.

EODataHub serves as a generic data hub entity within the satellite imagery, and
its primary purpose is to facilitate data hub functionalities related to Earth Observation
Analysis applications. EODataHub encompasses two properties, the dataHubName, which
declares the name of the utilized data hub, and dataHubURL, which provides the URL of
the data hub.

The EOInstrument entity is mainly connected to satellite instruments used in Earth
Observation Analysis applications. This entity exploits properties such as instrumentID and
instrumentName, which respectively represent the ID and name of the instrument payload.
The property operationalMode describes the supported sensor modes, the polarizationMode
specifies available polarization modes, and the swathID represents the swath ID. Addition-
ally, the carriedOn property corresponds to the ID of the satellite platform on which the
instrument takes place.

EOGeoDataLayer provides a generic description of output data layers associated with
Earth Observation Analysis applications. This entity uses properties such as location, which
refers to the geographic coordinates, localServerPath indicates the server path where the
output data are being stored, storageFormat stands for the storage format, and GeoMetadata
specifies the metadata file if available. Furthermore, the property contentInformation de-
scribes the type of information for each layer or entity name (e.g., categorical or numerical)
and also includes an array containing explanations for depicted values (e.g., [1:oil, 0:no
oil]). Finally, the property isOutputOf, which represents the ID of the analysis performed to
extract the specific data layer.

The EOProduct entity provides a generic description of Earth Observation products
within the satellite imagery domain. It primarily focuses on satellite products associated
with Earth Observation Analysis applications. This entity encompasses numerous proper-
ties essential for its functioning. The entity includes numerous properties such as productID
as a unique identifier, productURL for the download link, productType indicating the product
type, productFormat specifying the product format, processingLevel representing the process-
ing level, Timeliness representing the timeliness of the product, hostedOn referring to the
ID of the data hub hosting the product, and observedBy indicating the ID of the instrument
responsible for observing the product. Another set of properties that refer to the date time
includes ingestionDate, representing the time when the data became available in the online
archive, sensingDate indicating the time of image capture by the sensor, sensingStartedAt
denoting the time of the satellite’s first line acquisition in the product, and sensingStoppedAt
representing the time of the satellite’s last line acquisition in the product. Finally, there is the
cloudCoverage property, representing the percentage of cloud coverage, and orbitDirection,
which refers to the orientation of the satellite’s orbit pass.

The EOSatellitePlatform entity pertains to a generic satellite platform within the satel-
lite imagery domain and is primarily associated with Earth Observation Analysis applica-
tions. The entity includes the properties of platformID, which signifies the unique identifier
of the platform, platformName, denoting the name of the platform, and platformNSSDCA,
declaring the unique mission ID of the National Space Science Data Center Archive.

Appendix A.3. GIS Data Model

The GIS data model (Figure A3) class provides a complete description of generic
GISData formed for the Risk Management domain. This class can be defined by three
fundamental properties. Firstly, the location property represents a GeoJSON item in the
form of a bounding box polygon, specifying the area where the analysis takes place.
Secondly, the analyzedAt property denotes the timestamp when the analysis is completed.
Lastly, the provider property is a string that identifies the provider of the harmonized data
entity. In addition, the GISData class utilizes two relationships. The identifiesVulnerability
relationship sends the ID of the Vulnerability entity that is associated with this data to
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the vulnerability class. The isMappedBy relationship refers to an array of URIs of the
GeoDataLayers selected by this GISData Entity.

Figure A3. Visualization of the GIS data model schema.

Appendix A.4. Risk Management Data Model

The FIWARE proposed model for Risk Management aims to evaluate risks coming
from both cyber attacks (human-made threats) and physical threats caused by natural
disasters. It includes entities designed to store data for (a) representing hazard identifica-
tion through the Hazard entity, (b) fully monitoring natural disasters and their outcome,
including the Vulnerability and Exposure entities, along with the Risk entity for risk assess-
ment, and (c) facilitating mitigation and the implementation of necessary countermeasures
through the Mitigation and Measure entities.

In this work, we are focusing on the analysis of the Risk Management data model that
exclusively addresses the risk associated with physical threats, particularly floods. The Flood
Risk Management data model focuses on the preparedness (pre-crisis) and response (during
crisis) phases within the Crisis Management process for Water Critical Infrastructures. The
entities within the Flood Risk Management data model interact with external models such
as the GIS data model (Figure A3) and the Satellite Imagery data model (Figure A2). These
interactions trigger events and deliver crucial information regarding the risk assessment
processes. In the case of natural hazards, the output is stored in GeoData Layers as colored
maps, indicating the hazard, vulnerability, exposure, and risk for specific extreme incidents.
The main objectives of the Flood Risk Management data model focus on flexibility and
compatibility, allowing the representation of various human-made and natural disasters in
a well-defined and unambiguous manner.

Appendix A.4.1. Design of the Flood Risk Management Data Model

The Risk Management data model consolidates the disaster risk factors (Hazard,
Exposure, and Vulnerability) in classes aiming to facilitate the processes of the assessment
of the severity level and the risk of an ongoing crisis resulting from natural and/or human-
made threats in general. Upon this data model, advanced analytical processes from the AI
field can be applied, aiding in the effective response of a crisis event. Thus, the proposed
Flood Risk Management data model encompasses various classes designed to store data
that are essential to estimate the Hazard, Vulnerability, Exposure, and Risk associated
with flood events. This conceptual data model materializes the methodological framework
presented in [18] for flood monitoring and mapping. The design and development of flood
risk maps play a crucial role since these maps provide an additional level of knowledge
as an effective decision-making method [8]. The outcome of the Flood Risk Management
data model relies on the fusion of satellite imagery output and GIS data with Explainable
Machine Learning techniques to dynamically estimate flood hazard and risk, ultimately
generating flood crisis maps. Utilizing Machine Learning techniques in flood management
is very important since they have the ability to enhance both the accuracy and timeliness of
flood predictions [36].
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In order to conduct accurate assessments of flood Hazard, Vulnerability, Exposure,
and Risk, it is essential to gather appropriate inputs from various sources exploiting the
FIWARE data models. To delve deeper, the Satellite Imagery data model (Appendix A.2)
provides the satellite image analyses, and the GIS data model (Appendix A.3) feeds the
model with geo-morphological information specific to the region of interest for flood hazard
estimation. Similarly, to estimate flood vulnerability and exposure, the output of the GIS
data model is required. Lastly, to evaluate the risk level of a flood event, it is necessary
to utilize and fuse the data derived from the Hazard, Vulnerability, and Exposure classes.
Each of the outcomes of these estimations can be represented as a colored map, indicating
the hazard and severity level, vulnerability, and exposure of the elements that are at risk
within the region of interest.

Appendix A.4.2. Description of the Flood Risk Management Data Model

As described, the Flood Risk Management data model incorporates four classes:
Hazard, Vulnerability, Exposure, and Risk. These classes include a range of properties
and relationships that define their characteristics as presented in (Figure A4). The Hazard,
Vulnerability, and Exposure entities share several common properties, which we describe
in this section. A guideline for visualization is contentInformation property, which describes
the color assigned to illustrate the severity level of each pixel. To track the timeline of map
generation, two properties are included: analyzedAt gives us the timestamp when the map
was analyzed, and sensingDate indicates the date when satellite images were selected for
assessing the area of interest. To obtain the type of the analysis, we use the analysisType
property, while the location property represents the delineated area where the analysis
took place with the help of a bounding box polygon. Furthermore, the Vulnerability class
features a distinctive property called vulnerabilityValues, which is an array describing the
color for each severity class.

Figure A4. Visualization of the Risk Management data model schema.

Hazard, Vulnerability, and Exposure classes communicate with other classes using
their respective relationships. For all three classes, the createLayers relationship connects
them with the EOGeoDataLayer class to share an array of URIs representing the layers
created by each class. The communication between the Hazard class and GISData class
can be achieved with the isAffectedByGIS relationship and to the EOAnalysis class through
the isAffectedByEO relationship; both relationships transfer the corresponding class IDs to
identify the hazard. The Exposure class utilizes the createLayers and isAffectedBy relationship
to establish a connection with the SMAnalysis class.

The Risk class represents the effect of uncertainty on objectives, where an effect denotes
a positive or negative deviation from the expected outcome. Objectives can include various
features, such as financial, health, safety, and environmental goals, which can be applicable



Information 2024, 15, 257 18 of 21

at different levels, including strategic, organization-wide, project, product, and process
levels. It should be mentioned that Risk refers to potential events and consequences, or a
combination thereof. It is also very commonly expressed by considering both the potential
consequences of an event, including any changes in circumstances, and the likelihood of its
occurrence. Uncertainty, on the other hand, refers to a state of deficiency of information,
understanding, or knowledge about an event, its consequences, or its likelihood, even
if only partially. Technically speaking, the Risk class consists of six properties and is
associated with five relationships as detailed in the next paragraph.

The Risk class incorporates several properties that align with those discussed in the
previous paragraph. These properties include the location property, which specifies the area
of interest, and the consequence property, which denotes the potential outcome resulting
from the materialization of a risk. Moreover, the description property, which provides a
textual description of the risk in natural language, the event, which captures the occurrence
or alteration of specific circumstances, the threat, which provides additional knowledge
about the potential cause of an incident, and the severity, which indicates the severity class of
the risk. To forward the output data by the Risk class, various relationships are utilized. The
isOutputOf relationship is used for the transfer of an array of URIs representing different
Geospatial Data Layers within the GeoDataLayer class. The source relationship indicates
the original source of the entity data in the form of a URL, received by the GISData class.
Furthermore, the affects relationship refers to an array of URIs linked to the geographic
areas that risk could affect. Lastly, the isAssessedBy relationship enables the Risk class to
access the Hazard, Vulnerability, and Exposure data, enabling the assessment of the risk
severity class for each specific case.

Appendix A.5

Examples of the entities within the NGSI-LD Context Broker are provided below
through the following figures (Figures A5 and A6)

Figure A5. Sample Entity: the ID in the form of a URI and Type are the only necessary fields to initiate
an Entity.
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Figure A6. Sample of a dynamic attribute. The observedAt sub-attribute marks the attribute for the
retention of a time series.

Appendix A.6

Table A1. Overview of Scenario A.

Available Information and
Inputs for the Models Model and Process Actor(s) Involved Result of the Process Action/Informed Decision Taken by

the Actors

Sensor abruptly stopped

Sensor detection:
• Anomaly detection from

sensor data
• Displaying anomaly

status on a GIS map
• Sending warning due

to anomaly

Water Supply
Operator (WSO)
who is monitoring
the sensors’ status.

GIS map interface:
• Receive a warning
• Observe anomaly via

checking the status of
the sensor

WSO:

• Calls the company call center to
confirm the issue;

• Discusses with the Water Authority
Operator (WAO) about potential
connection with the current bad
weather situation.

• Anomaly status of
the sensor

• Flood risk maps

GIS interface:
• Showing and comparing

layers of sensors
• Visualizing FRMP maps

Water Authority
Operator (WAO)

GIS analysis highlights wells in
flood risk area mapped
by FRMP

WAO understands that the issue may be
linked to the flood of the Isonzo river
WAO decides to check for satellite data to
confirm the result

Satellite data Flood detection WAO

Production of the
following layers:
• Water body mask
• Water depth
• Water velocity maps

WAO:
• Receives confirmation

that the ongoing storm
event is impacting the
well area

• Communicates the
information to the
Water Utility
Operator (WUO).

Satellite data Flood Risk Management
Data Model WAO

Production of the following
layers:
• Flood hazard map
• Floor Risk map

Ongoing crisis Flood Risk Management
Data Model WAO

Crisis scenarios:
• Potential threat level
• Threat assessment
• Response measures

WUO takes action following the internal
company procedure to fix the issue.

Sensors measures return to
normal Sensor’s status WSO, WAO All the sensors on the map show

green color.
The issue is resolved and the crisis
de-escalated.

Table A2. Overview of Scenario B.

Available Information and
Inputs for the Models Model and Process Actor(s)

Involved Result of the Process Action/informed Decision Taken by
the Actors

Receiving information of:
• Real-time sensor

measurements
• Monitoring the

distribution network

Hydraulic model WUO

Visualization of:
• Hydraulic model output
• Pressure sensor anomalies

WUO:

• By studying the results of the model,
WUO realizes that there is an
unavailability problem. There is a
broken pipe near the harbor which
permits the water distribution to the
citizens.

• Discussion with the WAO about the
potential cascading effect of the current
storm event.

Satellite data Satellite Imagery data model WAO

Production of the
following layers:

• Water body mask
• Water depth maps
• Water velocity maps

WAO after the estimation of:

• The extension of the
impacted areas

• The spatial value of the
main hydraulic variables

• Flood hazard and
risk levels

Understands that there are
flooding areas in Trieste due to
the high tide of the Adriatic Sea.

Satellite Imagery data
model output

Flood Risk Management data
model WAO

Production of the
following layers:

• Flood hazard maps
• Flood risk maps
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Table A2. Cont.

Available Information and
Inputs for the Models Model and Process Actor(s)

Involved Result of the Process Action/informed Decision Taken by
the Actors

Social media posts (Tweets) Social media posts (TSocial
media analysis toolkitweets) WAO

Social media report on the map
regarding the flood in Trieste
near the harbor.

GIS static topography
layers of the water
distribution network.

Layers comparison WAO Pipes in the flood report
WAO communicates the information to the
WUO to allow the water supply company to
take suitable action to repair the pipe
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