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Abstract: This study presents a machine learning-based approach to predict blockage in multiphase
flow with cohesive particles. The aim is to predict blockage based on parameters like Reynolds and
capillary numbers using a random forest classifier trained on experimental and simulation data.
Experimental observations come from a lab-scale flow loop with ice slurry in the decane. The plugging
simulation is based on coupled Computational Fluid Dynamics with Discrete Element Method
(CFD-DEM). The resulting classifier demonstrated high accuracy, validated by precision, recall, and
F1-score metrics, providing precise blockage prediction under specific flow conditions. Additionally,
sensitivity analyses highlighted the model’s adaptability to cohesion variations. Equipped with
the trained classifier, we generated a detailed machine-learning-based flow map and compared it
with earlier literature, simulations, and experimental data results. This graphical representation
clarifies the blockage boundaries under given conditions. The methodology’s success demonstrates
the potential for advanced predictive modelling in diverse flow systems, contributing to improved
blockage prediction and prevention.

Keywords: multiphase flow; blockage prediction; machine learning classifier; CFD-DEM simulations;
flow loop experiments

1. Introduction

The issue of pipeline blockage is relevant in multiple industries, resulting in environ-
mental concerns and financial losses. Applying machine learning methods is becoming
a promising solution in flow assurance [1]. This methodology is a potentially powerful
tool for analyzing, classifying, and predicting flow regimes, including critical aspects such
as pipeline blockage. Numerous studies exist where machine learning methods consider
challenges associated with multiphase flows and pipeline blockages.

Manikonda et al. [2] applied machine learning methods to identify vertical gas-liquid
two-phase flow regimes. The study aimed to determine the current flow regime using
data collected from over thirty articles and two experimental flow loops. They utilized
supervised and unsupervised ML classification models, including a Multi-class Support
Vector Machine, K-nearest neighbour Classifier, K-means clustering, and hierarchical clus-
tering to separate different flow regions. The study found that the K-Nearest Neigh-
bor Classifier achieved a 98% classification accuracy and matched the flow regime maps
from Hasan et al. [3].

Similarly, Alhashem [4] employed a machine learning model using a Stanford Multi-
phase Flow Data dataset to classify multiphase flow regimes in a horizontal pipe. Fluid
flow and pipe configuration descriptions were used as input variables, while the output
corresponded to the flow regime type. The authors used the F-1 accuracy score as the per-
formance metric to compare five machine learning methods. After evaluating five methods,
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including decision tree, random forest, logistic regression, support vector machine, and
neural network (multi-layer perceptron), the authors observed that the Decision Tree and
Random Forest achieved the highest accuracy rates with 86% and 89%, respectively, with
minimal training times less than 0.005 s.

While these studies have primarily focused on horizontal flows, Chaari et al. [5]
introduces an Artificial Neural Network (ANN) model for steady-state liquid holdup es-
timation in two-phase gas-liquid flow, designed to be unifying and applicable across all
pipe inclinations and flow patterns. Utilizing the ANN model, this study incorporates
16 dimensionless groups to effectively account for the inertial, viscous, and gravitational
effects experienced by both the liquid and gas phases, based on a Stanford Multiphase Flow
Database dataset. The proposed model outperformed two established models, showing im-
proved coefficients of determination and significantly lower average absolute relative errors,
with improvements of up to 57% in inclination ranges and 66% in various flow patterns.

In addition to the aforementioned non-particle-based studies, certain works show that
machine learning methods have great potential for the future of hydrate management and
studies of plugging in multiphase flows. It is relevant to evaluate these ML-models using
three main criteria defining their industrial applicability: accuracy, size of the datasets, and
scalability of the model parameters. Qin et al. [6] considered two machine learning methods:
the support vector classifier (SVC) and the regression neural network (NN). The models
were trained using 4500 experimental cases, which was the largest dataset of those used
in plugging studies. The authors applied the ML-methods to analyze hydrate risks and
construct field risk maps using an experimental flow loop and field databases. The accuracy
of the SVC was about 0.99, while the NN method was ∼ 96%. Their study demonstrates
that a coupled regression and classification learning model can simultaneously predict
hydrate volume fraction and plugging risk using process variables. These variables include
water cut, gas-oil ratio, liquid velocity, operating time within the hydrate domain, oil
properties, and the inter-particle cohesive force of hydrates. However, these variables were
not made dimensionless using the standard π-theorem analysis [7] so that the ML-models
could be hardly scaled for applications other than hydrates.

Furthermore, Wang et al. [8] applied ML to assess the risk of hydrate formation
and blockage in a pure water system. The multi-layer perceptron (MLP) model and the
logistic regression (LR) model were used in this work. Although the models achieved
99% accuracy, the training dataset’s size was dramatically limited as six cases were fed
into the model. The researchers used data from experiments conducted in a high-pressure,
entirely visual flow loop for the training. The input variables for these models included
time, temperature, pressure drop, gas consumption, remaining water, and the water-cut
ratio at each data point. The output of the models aimed to determine the risk of blockage
and was based on defining three regions and two critical transition points in the hydrate
formation process, namely the “action point” and the “blockage point”. The input data was
non-dimensionalized using the statistical parameters with StandardScaler [9]. However,
the nondimensionalization did not follow the principles of π-theorem [7].

In recent years, scientists have started using machine learning techniques to predict
and reduce wax deposits in petroleum pipelines, offering fresh approaches to address this
common issue in the oil sector.

For instance, Kim et al. [10] integrated Artificial Intelligence (AI) through the Stacked
Auto-Encoder (SAE) model, using an OLGA simulator to generate learning data and em-
ploying the RRR (Ryg, Rydahl, and Ronningen) model to describe the molecular diffusion
and shear dispersion aspects of wax deposition. It demonstrates impressive accuracy in
predicting the location and maximum volume of wax accumulation with over 90% accuracy.
However, there may be discrepancies between the predicted wax thickness and actual data,
possibly due to the limited initial dataset. Despite this, the model performs effectively at
the early detection of wax deposition and accurately predicts the location and amount of
wax buildup, showing potential in maintaining a continuous flow of petroleum pipelines.
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Additionally, Amar et al. [11] proposed a multilayer perceptron model (MLP) for
predicting the weight percent of deposited wax under different production conditions
using experimental measurements. After utilizing the Levenberg-Marquardt algorithm
(MLP-LMA) and Bayesian Regularization algorithm (MLP-BR) during the MLP’s learning
phase, it became evident that MLP-LMA outperformed MLP-BR with an overall root mean
square error of 0.2198. Furthermore, its potential for digital implementation makes it more
useful in controlling wax deposition in oil and gas pipelines.

Ahmadi [12] proposed a novel approach: combining fuzzy logic and genetic algorithm
(GA) to create an efficient method for predicting wax deposition. The model considers im-
portant input variables such as oil composition, temperature, pressure, and oil-specific grav-
ity. Parameters like mean square error and relative deviation are quantitative benchmarks,
highlighting the model’s accuracy and reliability. The developed model demonstrates high
performance and reliability compared to other methods in determining wax deposition
values, with the key advantage of rapid calculations and cost-effectiveness. However, like
other modelling methods, the proposed machine learning models have limitations related
to the range of input and output values. They can only be applied to oil samples and
conditions similar to the available data.

After reviewing the aforementioned research, it becomes evident that the application
of machine learning methods represents a potent tool for flow assurance issues, particularly
for predicting multiphase flow regimes. Collectively, these studies contribute to the ongoing
efforts to improve predictive methods for flow patterns, providing valuable insights into
potential challenges such as pipeline blockages.

In previous studies, our group focused on understanding how particles can clog up
flowing systems. In the work by Struchalin et al. [13], we expanded upon the experimental
approach of Hirochi et al. [14] by conducting flow loop experiments employing a decane-
oil slurry. These experiments involved controlling particle concentration and size and
carefully regulating temperature to affect particle cohesion. Our work led to an improved
understanding of the plugging process with the given experimental conditions. These
findings act as a reference point for validating numerical models of plugging. In the second
study by Saparbayeva and Balakin [15], we applied a CFD-DEM to better understand
plug formation in a multiphase system with a cohesive dispersed phase. The process
parameters were dimensionless according to the π-theorem principles [13]. Many models
from the literature lacked validation against actual plugging experiments. To address
these limitations, we introduced a CFD-DEM model validated against the well-defined
experimental benchmark for plugging. Notably, our prior work by Saparbayeva et al. [16]
laid the foundation for this model by investigating ice-ice cohesive collisions, offering
valuable insights into successful application in understanding the entire flow process.

The novelty of this paper is highlighted by its ability to predict blockage without the
need for model execution or experimental trials. This is achieved by integrating a machine
learning model that utilizes experimental and CFD-DEM model datasets as inputs. In
contrast to the previously discussed studies in machine learning application, our research
introduces the application of a machine learning classification model to predict blockages
in multiphase systems with unique characteristics, specifically the presence of ice particles
in a decane-oil slurry. The presence of ice particles introduces an extra layer of complexity.
In our case, this involves utilizing a more precise CFD-DEM model.

2. Methodology

The dataset used for the classifier’s training consists of two parts: the plugging
data collected in the flow loop experiments and the database of CFD-DEM simulations
expanding the experimental dataset.

2.1. Experiments

The flow experiments were carried out using a lab-scale multiphase flow loop. A
cohesive slurry of ice in decane circulated in the loop. These materials were chosen due
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to the known cohesive surface energy for different temperatures below the ice formation
point [17]. The ice particles were produced outside the flow loop by crushing ice blocks.
The size of the particles was in the interval 200–400 µm. The particle size distribution
was log-normal. The maximum volume fraction of particles used in experiments was 15%.
The maximum Reynolds number Re = ρvd/µ ∼25,000, where ρ, µ are the density and the
viscosity of decane, v is the mean flow velocity, and d is the diameter of the pipe. The flow
loop consisted of a centrifugal pump, a temperature-controlled stirred tank, and a steel
test section (ID = 22 mm). Negative temperatures of −3 . . . −1 °C were set in the loop by
connecting tank coils to a chiller and thermally insulating the flow loop. Plugging occurred
in the test section, where a 9.5-mm orifice was installed. The local resistance of the orifice
and secondary wake flow in the corners of the orifice promoted the deposition and sticking
of cohesive particles.

The flow loop and its hydraulic scheme are presented in Figure 1. The experiments
were carried out by loading a controlled amount of ice in a highly agitated and pre-cooled
flow, reducing the flow rate to a set point, increasing the temperature to a given value, and
monitoring the flow using the mass flow meter. In addition, the measurement system of
the loop included a differential manometer controlling the test section and thermocouples
for temperature control. A successful plugging event was defined as a sensor-confirmed
zero flow condition following the set point without further action from the loop operator.
More details about the experiments are found in [13].

Figure 1. Hydraulic diagram of the experimental flow loop (A) with the orifice indicated by an orange
arrow and photo of the central part of the flow loop (B).

2.2. CFD-DEM Model

To complement relatively few flow loop experiments, we generated additional data
points from the CFD-DEM model developed for this study. In particular, the CFD model
allowed us to study cohesion parameters more closely. In the experiments, the cohesion
was altered by changing the temperature of the coils in the tank. However, due to the large
thermal inertia of the flow loop, the cohesion was defined with significant uncertainties.
Therefore, a multiphase CFD-DEM model of the test section was built to highlight the
influence of cohesive forces and to consider the physics of the plugging process in greater
detail. The model was based on the Eulerian-Lagrangian approach, where Navier-Stokes
equations described the flow of decane, while the particles were treated as Lagrangian
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objects following Newtonian mechanics. The phases were coupled via drag, lift, and
pressure gradient forces calculated in each computational cell of the model. The contact
interactions between the particles were resolved using the so-termed “soft-sphere” tech-
nique, accounting for their deformations upon collisions. The Hertz-Mindlin approach
was used for this purpose, considering cohesive forces acting during the collision. While
the inter-particle cohesive energy γ was known from the third-party experiments, the
particle-wall cohesion was not known in the experiments. Therefore, a ratio of the cohesive
energy of the walls to the cohesive energy of the ice cr = γwall/γice was used as a fitting
parameter to validate the model. As the model treated every particle separately, and many
particles were present in the experiments, this was required to limit the computational
costs. Therefore, as shown in Figure 2 (left), the geometry of the experiment was simplified
to a thin slice of the test section bounded by periodic boundaries. A constant pressure
drop resulting in the experimental flow rate was set at the ends of the model. The model is
described in greater detail in Saparbayeva and Balakin [15].

Figure 2. Geometry and boundary conditions of the model (left) and comparison between experimen-
tal data and CFD-DEM model: average flow velocity over time with different cohesion-to-adhesion
ratios cr = γwall/γice in comparison to the findings of Struchalin et al. [13] at Reynolds number
Re = 4996 and particle volume fraction ϕp = 6.8% (right).

2.3. Machine Learning

We employ the random forest classifier as our machine-learning tool to analyze block-
age in the considered multiphase flow. This choice is driven by the classifier’s adaptability
and robustness when dealing with multidimensional datasets, making the classifier a
well-suited approach for our case with multiple parameters and features [18,19]. The
random forest classifier offers the advantage of feature importance analysis, enabling the
identification of the critical factors of the process [20]. Additionally, this classifier type can
handle non-linear data and overfits at a lower rate than similar ML techniques.

We implemented this method using the scikit-learn library, a standard Python tool for
machine learning tasks [21]. Scikit-learn offers a user-friendly interface for methods like
the random forest and supports various models and data processing techniques. Adjusting
model parameters and evaluating performance allows for a comprehensive analysis of the
classifier’s usage.

The flowchart of the constructed ML technique is presented in Figure 3. We used
input data from two primary sources to train our model: experimental flow loop data and
CFD-DEM simulations. Each entry in the input file contains four key parameters: Reynolds
number, concentration, capillary number, and the fourth parameter, a binary classifier
indicating whether blockages are present or absent in the system. The Reynolds number is
a dimensionless parameter used to evaluate the significance of inertial forces compared to
viscous forces in a fluid motion, while the capillary number indicates the balance between
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viscous forces and surface tension forces in a system. To evaluate the model’s performance
and ensure its stability, we employed a cross-validation method with a parameter k = 5.
This means the treated multidimensional datasets were divided into five folds (subsets) for
training and testing. Each model was trained on four folds. 80% of data and tested on the
remaining 20% of the data. The cross-validation procedure was repeated five times with
different fold combinations. The outcome is the model performance verification. In total,
150 cases were used for the training.

Figure 3. Schematic description of the developed ML model.

In the machine learning model, we adjusted several key parameters to optimize the
model’s performance. We selected a fixed random seed value of 42 and set the random
forest classifier with 100 estimators while limiting the maximum depth of each decision
tree to 10. These parameters were selected to establish a well-balanced model combining
accuracy and adaptability across various parameter conditions. Other parameters are
configured with their default values. After selecting the best hyperparameters, we train a
final Random Forest classifier on 100% of data to produce the most accurate flow map.

3. Results
3.1. Machine Learning
Dataset

Using the classifier, we predicted the presence of blockages across a range of parameter
conditions. In this figure, we present an array of process conditions at which the classifier
forecasts plugging events. The contrast between the plugging and non-plugging conditions
defines boundaries where blockages occur, as depicted in Figure 4. At lower concentrations,
up to about 15%, the boundary appears around a Reynolds number of 10,000. Later, as
concentrations increase, this boundary reduces. Figure 4 shows that the model predicted
blockades at high Re and low particle concentrations. This happens because the imported
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dataset contains several specific experimental data points with high Reynolds numbers
that indicate the cases when the pump of the flow loop experienced blockage.

Figure 4. ML-predicted process conditions resulted with plugging. Intermediate result produced
from the original dataset.

3.2. Experiments and CFD-DEM Model

An example of the experimental log is presented in Figure 2 (right) in terms of the
history of flow velocity. The plot shows that the velocity gradually reduced until the
plugging condition. There were several significant steps of the velocity reduction. This is
related to the propagation of particulate slugs, which were formed due to the accumulation
of particles in quiescent zones of the flow loop. Depending on the set point, the duration
of the plugging process in different experiments was in the interval 50 . . . 1000 s. The
experimental results for various flow conditions are summarized in Figure 5, where the
flow map of plugging is presented in terms of flow Reynolds number and the concentration
of particles. A referent flow map from similar experiments of Hirochi et al. [14] is shown
in the figure. As follows from the map, plugging happened when the concentration of
particles was above 14%, and the Reynolds number below 10,000. These values differ
from Hirochi et al. [14] as ice particles in decane are more cohesive than ice particles in an
aqueous media, as considered in the referent study. There were also untypical cases where
the plugging was registered at low concentrations and high Re. These plugging events,
labelled separately in the figure, are attributed to the blockage of clearances in the pump.

The CFD-DEM model was validated against the experimental logs; an example of
the validation plot is shown in Figure 2 (right) for different values of cr. As shown by
Saparbayeva and Balakin [15], and presented in the figure, the best match of the experiment
is found for cr = 0.88. The model does not entirely reproduce the stepwise drops of the flow
velocity as it does not replicate the entire flow loop with places where the particle slugs are
formed. After the validation, the CFD-DEM model produced new points for the flow map
(Figure 5). The model data correspond to the experimental dataset. Additional simulations
were carried out to test how the process is sensitive to variation of γice. This was done by
altering the dimensionless granular capillary number Ca = vµ/γice, where v is the mean
flow velocity, µ is the viscosity of the continuous phase, and γice is the cohesive surface
energy of the ice particles. In the simulations, the capillary number was in the range from
0.001 to 0.003.
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Figure 5. Flow map from the random forest classifier with three different cohesion values. The
datapoints in the plot represent experimental [13] and the CFD-DEM cases where the blockage was
detected. Experimental points excluded from training are labeled with star-like markers. Flow map
from Hirochi et al. [14] shown for comparison. The lines present the boundaries of the plugging
regime predicted by the ML-model and shown in Hirochi et al. [14].

3.2.1. Validation

Our accuracy evaluation analyzed key performance measures, including precision,
recall, and F1-score. The results are presented in Table 1, with accuracy scores ranging
from 0, indicating the worst, to 1, indicating the best accuracy. Precision represents the
proportion of true positive predictions among all positive predictions made by the classifier.
Recall measures the proportion of true positive predictions among all actual positive cases.
The F1-score is the harmonic mean of precision and recall, providing a balanced assessment
of the classifier’s performance. As demonstrated in Table 1, all of these measures show
notably high values for both cases, whether with or without blockage. The case without
blockage exhibited a minimum recall value of 0.80 and a maximum precision value of 1,
while the blockage case achieved a maximum recall value of 1. The F1-score for both cases
is high, indicating that the classification model performs well. These metrics collectively
demonstrate the effectiveness of the chosen method.

Table 1. Summary of random forest classifier performance.

Case Precision Recall F1-Score

No Block 1.00 0.80 0.89
Block 0.96 1.00 0.98

3.2.2. Results

Figure 5 represents a flow map by Hirochi et al. [14] in comparison with a representa-
tion of the three blockage boundaries predicted by the classifier, as well as experimental [13]
and simulation data points. The boundaries of the ML-predicted plugging regimes are
presented as in Figure 4. We have excluded an unphysical boundary showing blockage at
high Reynolds numbers for the flow map construction. Four data points from the imported
dataset discussed earlier in Figure 4 were excluded for the training of the final version of
the ML model. Furthermore, we presented three different results for machine learning lines
corresponding to changes in cohesion. As depicted in the figure, the scaling of the cohesive
surface energy by factors 0.5 and 0.8, and the respective increase of the granular capillary
number, lower the boundary predicted by the machine learning model. An interesting
observation is that the upper limit set by the machine learning classifier closely aligns with
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the line when the Reynolds number is around 104. This alignment is particularly in line
with the upper boundaries observed in CFD-DEM simulations and experimental results.
We also point out that the isolines of cohesion set horizontal at the concentrations above
15% which might not be entirely realistic as more particles might enhance plugging and
thus lift the boundary as in Hirochi et al. [14]. This artifact is related to the fact that the
training dataset was limited by 15% due to the experimental limitations and enhanced
computational costs in the CFD-DEM model.

It has to be noted that the time spent for every CFD-DEM case was about 3.0 h when
running on 30 cores AMD Ryzen Treadripper RO 3975WX (3.8 GHz), and a typical plugging
experiment was run for 2.5–4.0 h. The ML code was significantly faster, returning the entire
flow map within 10 s of physical time using an ordinary laptop (Intel Core i5-1235U).

4. Conclusions

In this study, we applied the machine-learning tool, a random forest classifier, to
predict the occurrence of blockage caused by cohesive particles in the multiphase flow
loop. Our methodology combined experimental data from flow loop experiments and CFD-
DEM simulations to train a predictive model. Evaluating the model’s performance using
precision, recall, and F1-score metrics showed its high accuracy in blockage prediction in
given conditions, demonstrating a maximum precision score of 1 for the blockage case and
0.96 for the case without.

As the important contribution of the study, we presented the flow map detailing
comparisons between the machine-learning predictions, CFD-DEM simulations, and exper-
imental data. Our multi-parameter ML model allowed us to extend traditional flow maps
to assess the blockage boundary’s sensitivity to changes in cohesion. The secondary contri-
butions include the developed ML methodology, the code, and the databases (available
upon request).

The methodology’s success highlights the potential for further advancements in pre-
dictive modelling. Exploring advanced machine learning techniques, refining datasets,
and incorporating real-time data can lead to models capable of predicting and preventing
blockages in diverse and dynamic flow systems.
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