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Abstract: Aptitude test scores are typically interpreted similarly for examinees with the same overall
score. However, research has found evidence of examinee differences in strategies, as well as in
the continued application of appropriate procedures during testing. Such differences can impact
the correlates of test scores, making similar interpretations for equivalent scores questionable. This
study presents some item response theory (IRT) models that are relevant to identifying examinee
differences in strategies and understanding of test-taking procedures. First, mixture IRT models that
identify latent classes of examinees with different patterns of item responses are considered; these
models have long been available but unfortunately are not routinely applied. Strategy differences
between the classes can then be studied separately by modeling the response patterns with cognitive
complexity variables within each class. Secondly, novel psychometric approaches that leverage
response time information (in particular, response time residuals) in order to identify both inter and
intraindividual variability in response processes are considered. In doing so, a general method for
evaluating threats to validity is proposed. The utility of the approach, in terms of providing more
interpretable performance estimates and improving the administration of psychological measurement
instruments, is then demonstrated with an empirical example.

Keywords: test-taking strategies; psychometric modeling; score interpretability

1. Introduction

Response process heterogeneity can represent a critical threat to one or more aspects
of the validity of performance claims made from psychological measurement instruments
(see Eignor 2014). While sources of item cognitive complexity may vary systematically at
different difficulty levels, the majority of scoring protocols for psychological measures as-
sume that equal scores imply the same response processes. However, evidence suggests that
it is not uncommon for examinees to adopt a range of different strategies and approaches.

Apart from concerns regarding fundamentally different solution strategies (Bethell-
Fox and Shepard 1988; Embretson 2007; Gluck and Fitting 2003; Mislevy and Verhelst 1990;
Schultz 1991), response processes also may be influenced by other construct-irrelevant
factors like fatigue (Kingston and Dorans 1982; Davis and Ferdous 2005; Albano 2013),
attentional lapses (e.g., Smallwood et al. 2003, 2004; Unsworth et al. 2021), shifts in speed–
accuracy tradeoff, or initial unfamiliarity with task demands (e.g., a ‘warmup effect’).
When these processes are not adequately addressed either by modifying administration
procedures (see Goldhammer 2015) or applying flexible measurement models, the estimates
of ability will be obfuscated by these non-optimal response processes, mitigating their
utility towards predicting performance in other contexts.

Thus, both between- and within-person differences in solution strategies can affect
performance levels and produce ability estimates whose interpretive value is compromised.
Fortunately, as noted below, there are models available to identify these differences.
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1.1. Between-Person Differences in Strategies

Background. Although much work remains to implement methods to mitigate these
threats to validity in practice, the psychometric literature has provided some modeling
techniques to account for these issues. For example, mixture distribution models (Bolt et al.
2002; Rost and von Davier 1995; von Davier 2009) based on item response theory (IRT)
have been developed to identify latent classes of examinees who differ in item response
strategies. Mixture models have also been extended to continuous variables (Zopluglu
2020). These models are based on the fit of individual examinee responses to the IRT model
used to estimate trait level and item difficulty. Examinees with responses that do not fit
will be part of additional latent classes with different patterns of item difficulty.

Several studies have found that the latent classes obtained from mixture models differ
not only in cognitive processes, as determined by the relationships of item difficulty with
various item cognitive complexity features and response time, but also in the correlations
of trait level with external variables. For example, Embretson (2023) found four classes
with varying patterns of item difficulty on a test of spatial ability. Modeling the item
difficulty patterns from item cognitive complexity variables revealed differences in spatial
task processing strategies between classes, which was further supported by the varying
external correlations of trait levels with other types of aptitude tests. Thus, the results
suggested that individuals in only one class used a primarily spatial visualization strategy.
The other classes apparently adopted either verbal solution strategies or guessing behavior.
Thus, the practical meaning of performance estimates (i.e., validity) may be specific to
each class.

Goals for Study 1. In Study 1, the impact of multiple latent classes identified using
mixture models on the aspects of validity is examined for a non-verbal intelligence test. A
mixture model that identifies patterns of item difficulty is applied to analytic reasoning
consisting of matrix items. Both person and item correlations are examined in the separate
latent classes to indicate the nature of strategy differences.

1.2. Within-Person Changes in Strategies

Of course, these mixture distribution models do not specifically allow for intra-
individual variability in response processes during testing. One of the earliest efforts
to free this constraint was proposed by Yamamoto and Everson (1997); they proposed a
change-point model that attempted to identify at what time point a respondent shifted from
a construct-driven response style to a disengaged, guessing approach. This represented
a time series extension of the earlier HYBRID model (Yamamoto 1989). Fundamental
to Yamamoto’s approach is the notion that engaged, construct-driven response behavior
should be captured by a traditional measurement model (i.e., producing variance in both
item difficulties and person ability estimates), while disengaged responding would show
poor fit to such a measurement model and be classified into a distinct latent class. The
change-point approach of Yamamoto and Everson still carries influence; Goegebeur et al.
(2008) offered a similar model to identify gradual shifts in response style. However, these
approaches were limited in that they did not allow for multiple change points or regressions
to previous states.

Response time analysis. More recently in the psychometric literature, response time
information has been considered as an additional source of information to assist in the
identification of disengaged responding, assuming its direct relation to speed-accuracy
tradeoff, fatigue, attentional lapses, the warmup effect, and guessing. Furthermore, the
inclusion of the richer, continuous response time data allows for more complex transition
patterns to be evaluated and also improves the precision with which examinee response
styles can be identified.

Part of the recent emphasis on response time is borne out of a move to digital ad-
ministration of tests, allowing for the easy collection of precise response time information.
Another part of the emphasis has also been due to the influential response time model
of van der Linden (2006), which established a framework for deriving both person-level
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speed factors and item-level time intensity factors. The formulation by van der Linden
can be considered a response time analog of a traditional measurement model, in that it
established an additive relation between person- and item-level effects to produce observed
response times. Generalizations of the van der Linden model have included both inter and
intra-examinee variance in response processes. For example, Zhu et al. (2023) integrated a
multiple change-point model within van der Linden’s model to identify abrupt shifts in
the person speed factor during testing. The approach was motivated by the notion that
each examinee might shift from a slow process at the onset of testing (while in the midst of
identifying an appropriate strategy), to a moderately paced process during the middle of a
test, to a rapid (guessing) process during the latter stages of a test. Molenaar et al. (2016)
similarly used van der Linden’s parameterization to identify different response time states,
and then modeled the transition between these states according to a Markov process.

As a somewhat alternative approach, van der Linden and Guo (2008) proposed adopt-
ing the van der Linden model but shifting focus towards the residuals of the model as indices
of the response process. From this perspective, the distinction is between engaged versus
erratic response processes, with larger residual terms (in absolute value) implying a more
erratic response process. Such an approach provides a more general method of identifying
responses potentially tarnished by construct-irrelevant processes since it simultaneously
identifies both uncharacteristically rapid responses and uncharacteristically protracted
responses. Thus, rapid guessing behavior, warm-up processes, attentional lapses, and
fatigue-contaminated responses are all simultaneously classified into a singular, erratic
response state.

Goals for Study 2. The generalized approaches to the van der Linden model, as
described above, have not been formally considered from an applied perspective that
addresses two important questions:

(1) Can the transition patterns be directly modeled and hence used to inform future test
administration practice?

(2) Can information from these transition patterns be used to adjust the ability estimates
in an effort to improve the underlying validity of the measure?

To our knowledge, previous work has not evaluated the utility of a residual-based
approach in direct relation to improvements in a validity coefficient (i.e., improving external
relationships with performance on theoretically related measures).

In Study 2, a modeling protocol that jointly considers accuracy and response time data
is proposed, with an emphasis on response time residuals, to address the two questions
posed above. Study 2 intends to extend Study 1 by offering a more refined, diagnostic
evaluation of validity at the person level by directly leveraging different response time
patterns. The impact of this approach on the external validity of the aptitude test as a
whole is considered, and differences from mixture psychometric approaches (e.g., Study 1
methods) are discussed.

2. Study 1: Mixture Models to Identify Strategy Differences
2.1. Background: Mixture Models

As noted above, mixture models are used in item response theory (IRT) to identify
individual differences in item response strategies. Mixture Rasch models, e.g., (Rost and
von Davier 1995) identify latent classes of examinees based on fit statistics using the Rasch
model to predict item responses. For example, the Rasch model gives the probability that
person j solves item i as follows:

p(Xij = 1|θj, βi) =
exp

(
θj − βi

)
1 + exp

(
θj − βi

) (1)

where θj = trait level of person j and βi = difficulty of item i.
Fit statistics in mixture model software, such as winMIRA2001 (von Davier 2001) and

mdltm (von Davier 2005), identify misfitting persons to form new latent classes. Misfit
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is obtained when a person’s response accuracies are not well predicted from their trait
estimate and item difficulties within a class. Thus, the misfitting person has a different
pattern of item difficulty than others in the same class. Hence, misfitting persons form a
new latent class, and item difficulty is computed separately for that new class. The overall
fit of the data to the multiclass model is then evaluated and a new class is determined for
misfitting persons.

The mixture IRT model for binary data is presented as follows:

p
(

Xij = 1
∣∣∣θjg , βig

)
= ∑g πg

exp
(

θjg − βig

)
1 + exp

(
θjg − βig

) (2)

where θjg represents the trait level of person j in group g, βig represents the difficulty of item
i in group g, and πg reflects the probability for group g. Notice that the group subscript for
item difficulty supports different patterns of values between groups.

In Study 1, the mixture model specified in Equation (2) is used to identify potential
strategy differences between persons taking the Abstract Reasoning Test (ART), a test of
analytic reasoning. Compared to the spatial test used by Embretson (2023) to examine
varying cognitive strategies, ART measures a more general aspect of intelligence (i.e.,
non-verbal reasoning). The number of classes needed to provide adequate fit is assessed
by evaluating the improvements in fit by adding successive new classes. The winMIRA
software is used to identify the classes, as the authors have found it to produce interpretable
class differences (e.g., Embretson 2023). But it should be noted that many other software
packages are available (e.g., psychomix; Frick et al. 2012; Frick 2022). Additional analysis
of individual differences between classes and their correlates, as well as the relationships of
item difficulty to other variables, is examined to determine the nature of the classes. That
is, after latent classes with different patterns of item difficulty are identified, mathematical
modeling will be used to examine potential strategy differences. As indicated by Busemeyer
and Diederich (2010), mathematical modeling of responses and response times has been
the most prevalent method in cognitive psychology to study strategies.

2.2. Method

Test. ART was used to examine strategy differences among examinees. ART consists
of 3 × 3 matrices with a missing element for which inclusion depends on finding the
relationships between the elements. ART includes eight response options for the missing
element. Five different types of relationships and/or their combination may be involved.
The relationships, ordered for cognitive complexity, are (1) constant in a row, (2) pairwise
progressions, (3) figure addition/subtraction, (4) distribution of three, and (5) distribution
of two. The ART item in Figure 1 involves two relationships (the answer is #1); that is,
constant in a row (i.e., circle outline thickness) and distribution of three (each of three
interior objects appear once in each row and column). Other items may involve just one
or as many as three separate relationships of varying types between the elements in the
matrix. The version of ART used in the current study consists of 30 items.

Test administration. ART was administered to a group of young adults in a labo-
ratory with multiple computers and monitored by a test administrator. The instructions
provided examples of the various relationships. Both item responses and response time
were available.

Examinees. The examinees were 301 military recruits who took ART and other tests
on a voluntary basis. Background variables were available, including the Armed Forces
Qualification Test (AFQT) score. AFQT is a measure of general intelligence that has high
stakes for examinees; that is, it determines enlistment eligibility for the military. Also, the
external relationships aspect of validity is well established for the AFQT scores.

Estimation. The winMIRA software was used to identify the classes. In winMIRA,
item parameters for the Rasch model within each latent class were estimated by conditional
maximum likelihood with the item mean set to zero. The overall fit indices include the
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log-likelihood of the data, chi square tests between successive numbers of classes, and an
AIC index. Individual examinee fit indices are also given. Finally, because the natural
floor effect of response time data generally results in a positively skewed distribution,
a log transform (lnRT) is applied to the response time data to produce more normally
distributed values.
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2.3. Results

Table 1 presents the statistics on mixture models with varying numbers of classes.
The chi square test shows significant improvement in fit by estimating two classes versus
one class, and by estimating three classes versus two classes. The three-class solution was
significant at the .05 level. However, the smallest class size (.23) had 70 examinees. Due to
the decreasing significance levels and class sizes, a four-class solution was not attempted.
Thus, the three-class solution was retained for further analysis.

Table 1. Mixture model statistics for ART.

Classes Class Sizes -2lnL Number Parameters AIC X2

One class 1.00 9664.96 31 9727.69 ---
Two class .61, .39 9564.86 63 9690.85 100.10 **

Three class .46, .31, .23 9506.48 95 9696.49 58.38 *
Note: ** p < .01, * p < .05.

Table 2 presents descriptive statistics and correlations of the examinee trait estimates in
the three classes. The classes differ significantly (F(2, 298) = 142.552, p < .001) in mean trait
levels. Class 1, the largest class, has a trait level (θ) slightly below the mean item difficulty
of zero, which yields a mean item-solving probability of .442 (obtained by applying the
Rasch model formula in Equation (1) to responses in this class).

Class 2, on the other hand, has a much higher mean trait level, which corresponds to a
mean item-solving probability of .844. The trait level for Class 3 falls between the other
two classes, with a trait level that corresponds to a mean item-solving probability of .678.

The classes also differed significantly in mean lnRT per item (F(2, 298) = 21.131,
p < .001), with Class 1 having the lowest value (equivalent to an RT of 20.860 s) and
Class 2 having the highest value (equivalent to an RT of 31.375 s). Class 3 spent the
equivalent of 25.790 s per item. Finally, the classes also differed significantly in AFQT
scores (F(2, 298) = 27.912, p < .001), with the same pattern of differences between the classes
as for trait level scores.

The correlations of trait level with persons’ mean lnRT and AFQT scores also varied
between classes. For example, the correlation between mean lnRT and trait level was
moderately high in Class 1 and somewhat lower in Class 3. However, trait level was
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not significantly correlated with trait level in Class 2. For trait-level correlations with
AFQT scores, Class 2 and Class 3 had similar moderate correlations, while Class 1 had a
substantially lower correlation.

Table 2. Descriptive statistics and correlations for persons within classes.

Class Variable Mean SD Correlations MnlnRT AFQT

1 N = 135
Trait −.235 .889 .656 ** .231 *

Mn lnRT 3.038 .611 1.000 .143
AFQT 214.510 15.440 .143 1.000

2 N = 98
Trait 1.689 .819 .109 .511 **

Mn lnRT 3.446 .289 1.000 .119
AFQT 230.121 15.485 .119 1.000

3 N = 68
Trait .746 .866 .515 ** .509 **

Mn lnRT 3.251 .362 1.000 .239
AFQT 223.064 16.880 .239 1.000

Note: * p < .05, ** p < .01.

Table 3 presents descriptive statistics and regression results for the items within the
three classes. As shown in Table 3, as typical in mixture models, the mean item difficulty is
set to zero within each class. However, the standard deviation (SD) of item difficulties varied
between classes. Class 1, with the lowest mean trait level, had the smallest item difficulty
SD, while Class 2, with the highest mean trait level, had the largest item difficulty SD. Item
response times showed similar patterns between classes. Class 1 had the lowest lnRT and
smallest SD while Class 2 had the highest lnRT and largest SD. Thus, Class 1 has the least
variability in item difficulty and response time while Class 2 has the most variability.

Table 3. Descriptive statistics and correlations for items within classes.

Regression: Cognitive Modeling

Variable Class Mean SD rlnRT R Memory Load β1 Unique Elements β2 Position Added R

Item Difficulty
1 .000 1.201 .444 * .613 ** .469 ** .302 + .717 **
2 .000 1.890 .754 ** .607 ** .534 ** .190 .645 **
3 .000 1.548 .642 ** .613 ** .512 ** .240 .629 **

Response Time
1 3.038 .215 1.000 .128 .038 .114 .130
2 3.445 .470 1.000 .659 ** .607 ** .153 .765 **
3 3.250 .342 1.000 .631 ** .583 ** .142 .697 *

Note: + p < .10, * p < .05, ** p < .01.

Table 3 also shows the differences between classes in the correlates of item difficulty.
The correlation of item difficulty with lnRT was lowest for Class 1. Class 2 had the highest
correlation and Class 3 had a somewhat lower correlation. The regression analysis for
cognitive modeling shows a similar multiple correlation between classes as modeled from
memory load and unique elements. Adding test position to the model increased the
multiple correlation for all classes; however, the change was significant for Class 1 only.
Further, notice that the beta value for the impact of memory load is somewhat smaller for
Class 1 and unique elements had a borderline weight. Overall, the regression results for
modeling item difficulty were very similar between Class 2 and Class 3.

Response time, on the other hand, had a different pattern of relationship between
classes. First, response time was only marginally correlated with item difficulty in Class
1, while in the other two classes, it is a strong predictor (although somewhat lower in
Class 3 than in Class 2). Second, the regression analysis for cognitive modeling of response
time was not significant for Class 1; and adding test position did not increase the multiple
correlation. However, Class 2 and Class 3 showed strong prediction in response times from
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the cognitive variables, with memory load being a significant and strong predictor. Also,
adding the test position improved the response time prediction for both Class 2 and 3.

Figure 2 shows the relationship of lnRT with test position for the three classes. It can
be seen that after the 16th item, Class 1 shows reduced variability and magnitude of lnRT
compared to the other two classes. Also, Class 3 shows somewhat reduced variability and
magnitude in lnRT, relative to Class 2.
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To summarize, for all classes, item difficulty increased as cognitive complexity in-
creased, especially as memory load increased. However, test position significantly increased
the prediction of item difficulty from cognitive complexity variables only for Class 1. The
prediction of item response time from the cognitive complexity variables varied substan-
tially between classes. Response times were not significantly predicted from the cognitive
variables for Class 1, and adding test position to the model did not significantly improve
prediction. For Class 2 and 3, on the other hand, cognitive complexity showed substantial
predictive value for the response time, and adding test position significantly increased
this prediction.

2.4. Discussion

The latent classes differ in two aspects of validity: response processes and external
relationships. Persons in Class 1 do not appear to be using an optimal strategy. Overall, the
mean trait level is lower in this class relative to the other two classes, as is the mean item
response time. Further, item difficulty is less related to item response time and the cognitive
complexity variable of memory load than in the other classes. However, item difficulty is
somewhat more highly related to test position for Class 1, indicating faltering performance
toward the end of the test. Also, item response time is not significantly related to item
memory load and test position for Class 1 as in the other two classes. Further, trait level in
Class 1 is more highly related to mean item response time. Thus, examinees in Class 1 do
not allocate the optimal amount of time for the more difficult items, particularly toward
the end of the test. Finally, trait level is less correlated with the higher stakes external
test (AFQT) than in the other two classes. These findings suggest that trait level has been
lowered in Class 1 by not applying the optimal strategy for item solution throughout the
test, but especially at the end of the test.
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The other two latent classes were high-performing. Class 2 trait levels were associated
with an extremely high probability of item solving (e.g., .844). Further, this class had the
highest mean response time, with little variance between persons within the class. Class 3,
although high-performing, had a lower mean trait level and mean response time. Further,
persons varied more in mean response times within Class 3 than persons within Class 2,
and response time was significantly correlated with trait level in Class 3. Also, persons in
Class 3 had somewhat decreased response times toward the end of the test. The two classes
had similar predictions of item difficulty and item response times from item cognitive
complexity. Finally, for both classes, trait level had a moderate correlation with AFQT.

Overall, it appears that examinees in Class 1 needed some sort of modification in test
procedures, monitoring, and/or instructions to ensure that their performance was more
optimal throughout the test. Thus, the subsequent test use should consider altering the test
administration conditions. For the current examinees, differential score interpretations by
class are possible (i.e., performance level being optimal or not and differential performance
correlations with external measures). Another possibility is to change the scoring method
based on strategy shifts within the test. Study 2 explores this possibility.

3. Study 2: Intra-Individual Variability in Response Process
3.1. Background

As mentioned in the introduction, an approach to identifying within-person differences
in shifts to construct-irrelevant responses is grounded upon the notion that both rapid
and protracted response times are important indicators of alternative and noisy response
processes. In contrast to the traditional notion of distinguishing strategy-driven response
behavior from guessing behavior, the modeling in Study 2 uses a more general distinction
between strategy-driven response behavior and noisy/erratic response behavior. While
unexpectedly short response times may be indicative of disengaged, guessing behavior,
unexpectedly long response times may be indicative of early processes in identifying and
settling into an appropriate response strategy. For example, if an insufficient number of
test items are presented for practice, some examinees may still be becoming familiar with
the nature of the task and searching for the appropriate strategy when administering test
items. Such a search procedure would be expected to produce exceedingly long response
times for those items, as well as responses that are less informative to making claims
about the construct of interest. Alternatively, as the duration of testing increases, fatigue
and attentional lapses may have a greater influence over the response process, thereby
producing extended response times and ability estimates which are less informative toward
the construct of interest. The modeling approach in Study 2 can account for any number
of transition processes, without making any strong a priori assumptions. Given these
general principles, a formal presentation of our modeling approach is presented in the
following sections.

Accuracy Model. As in Study 1, modeling accuracy data and deriving the latent ability
estimates for the hypothetical construct, a Rasch modeling framework is used. The Rasch
model adheres to the foundational measurement property of specific objectivity: person
ability estimates may be estimated independent of the distribution of item difficulties, and
therefore remain invariant across different item sets within the construct. For any given
person and item, the probability of a correct response is a function of a simple additive
relation between the person’s ability and the item’s difficulty:

p(Xij = 1
∣∣θj, βi) = f

(
θj − βi

)
(3)

where pji represents the probability of a correct response on item i for person j; θj represents
the latent ability of person j, and ηi is the item difficulty of item i. For dichotomously scored
items, responses are Bernoulli distributed and the logistic function is a common choice for f
as shown in Equation (1).
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However, if transitions occur between construct-driven and erratic response styles,
then a measurement model that accounts for a mixture of response styles must be adopted:

p(Xij = 1
∣∣θj, βi) = f

(
θjs − βis

)
(4)

Note that an additional subscript, s, has been affixed to the parameters of the model.
This s subscript indicates that the different response styles will be represented by distinct
parameter values. In this approach, s may take on two values (1, 2), corresponding to
construct-driven and erratic response styles.

RT Model. As mentioned above, these different response styles are assumed to
be strongly tied to different patterns in response times. In particular, unexpectedly long
response times or unexpectedly short response times are both associated with a response style
contaminated by the construction of irrelevant processes. However, even for principled,
construct-driven responses, there are substantial individual differences in response time
behavior. Furthermore, certain items induce longer response time behavior, depending
on the item complexity and the associated processing demands. Thus, any designation
of an ‘unexpected’ observed response time must be conditional on both person and item
effects. van der Linden (2006) proposed a response time model that accounts for both
person and item effects, and we adopt his general approach as a foundation for deriving
residual response time scores after conditioning on person and item effects. As in Study 1,
log response time (lnRT) was used; thus, in the modeling of item i and person j

ln
(

RTij
)
∼ N

(
µij, σ2

)
(5)

and the expected values of the transformed response times are an additive function of both
person speed (τj) and item time intensity (γi):

µij = τj − γi (6)

Thus, σ2 represents the residual variance in response times, after the person and item
effects have been accounted for. In the case that both construct-driven and erratic response
styles may be observed during a single testing occasion, one would anticipate some degree
of heteroscedasticity to be observed. After an examinee makes the transition to an erratic
response style, σ2 would be expected to be quite large because the person has shifted to a
response style inconsistent with their behavior during the other portions of the test. Thus,
van der Linden’s model is extended to the following mixture case:

ln
(

RTij
)
∼ N

(
τj − γi, σ2

s

)
(7)

where the states (response styles) are defined by the size of the residual variance term
(note the s subscript on σ2 now). It is worth explicating here that although the accuracy
and response time models are presented separately above, all parameters are estimated
simultaneously in a joint model.

Modeling transitions. Given this framework, one can test different hypotheses regard-
ing the pattern of transitions from one response style to another. For example, constraints
can be applied such that transitions only occur at certain time points, or that only single
transitions occur (e.g., single change-point model). Alternatively, if it is expected that
multiple transitions occur during the course of a test (e.g., examinees transition into a
construct-driven response style once task familiarity is sufficient, but then transition back
into an erratic response style once time pressures emerge), then multiple change-point
structure or Markov process might be integrated into the framework. A Markov process
makes no assumptions regarding the number of change points, so it provides a useful
exploratory technique for examining transition patterns. One simplifying assumption is
made, however, in order to ensure a tractable solution: an examinee’s state (response style)
for any given item, i, is dependent only on the state expressed for the previous item, i − 1,
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rather than the entire history of states. Put another way, a lag of only 1 is considered for
the dependency structure of states expressed over time. Formally, if ξ ji represents the state
expressed by subject j for item i, then

P(ξ ji = xji
∣∣ξ j1, ξ j2, ξ j3, . . . , ξ j,i−1) = P(ξ ji = xji

∣∣ξ j,i−1) (8)

For the empirical analysis, transitions are initially modeled according to such a Markov
process. This allows an understanding of what response style examinees exhibit at the start
of testing, whether transitions occur in a bidirectional or unidirectional manner, and the
expected distribution of states if the test were to continue indefinitely. As will be discussed
in more detail in the Section 3.4, a change-point process is also considered, based on the
results of the Markov process analysis.

3.2. Method

Test and examinees. The same test and examinees as described in Study 1 above were
used to examine the change-point model.

Estimation. All item and transition parameters were estimated via a fully Bayesian
approach with MCMC methods and Gibbs sampling from the posterior with the JAGS:
4.3 software package. Normal priors were used for all item parameters, and a gamma prior
was used for the response time residual variance terms. For initial state classifications at
time 1 for subject j (ξ j1), values were drawn from a categorical distribution according to a
pair of initial event probabilities:

ξ j1 ∼ cat(p1,state=1, p1,state=2) (9)

And the event probabilities (initial state probabilities) were set to a Dirichlet prior with
concentration parameters fixed to 1:

(p1,state=1, p1,state=2) ∼ Dirichlet(1, 1) (10)

And for state classifications at all remaining time points,

ξ jt ̸=1 ∼ cat(pt,state=1, pt,state=2
∣∣pt−1,state=1, pt−1,state=2) (11)

such that transitions follow a Markov process. These event probabilities (transition proba-
bilities) are drawn again from a Dirichlet prior with concentration parameters fixed to 1:

(pt,state=1, pt,state=2|pt−1,state=1, pt−1,state=2) ∼ Dirichlet(1, 1) (12)

For the change-point analysis, a fully Bayesian approach with Gibbs sampling from
the posterior was also implemented. Each subject’s vector of state classifications across
items (ξ j) is constrained to the following parameterization:

ξ j =

{
1 i f i ≤ k j
2 i f i > k j

(13)

where k j is an estimated parameter indicating the time point where a given examinee’s
response style transition occurs. The k j values were then assumed to be drawn from a
uniform prior distribution. In all cases, 10,000 samples were taken from the posterior after a
period of 10,000 ‘burn-in’ iterations. Inspection of convergence plots, autocorrelation plots,
and the Gelman-Rubin statistic ensured an appropriate burn-in and sampling interval.

Once all item parameters and state classifications were obtained, EAP estimates were
derived for abilities, treating the item parameters and state classifications as fixed. Two
ability estimates were obtained for each examinee; one for construct-driven states and one
for erratic response states. Since only the ability estimates for construct-driven states were
retained for further analysis, this effectively trimmed erratic responses from the data.
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3.3. Alternative Trims

In order to evaluate the relative utility of emphasizing both positive and negative
response time residuals in identifying threats to validity, we consider a few additional
trims based on alternative criteria. First, we consider a test trim based on only negative
residuals. If simple rapid guessing processes can fully account for any threats to validity,
then eliminating only highly negative residuals should produce ability estimates with
improved relationships using external measures. To explore this possibility, we evaluate
the correlation between ability estimates and the AFQT scores across several different
trims based on the magnitude of negative residuals (<−6 SD, <−5 SD, <−3.5 SD, <−3 SD,
<−2.5 SD, <−2 SD, <−1.5 SD, <−1 SD, <−.5 SD, and < 0 SD).

Second, in order to rule out the possibility that disengaged responding may be cap-
tured by individual mean shifts in response time over the course of a test (rather than a
shift towards erratic responding in either direction), we consider a change-point model
based on individual shifts in the person speed parameter, τj:

ln
(

RTij
)
∼ N

(
τjs − γi, σ2

)
(14)

which is similar to our proposed model in Equation (7), except with the states defined
with respect to the person speediness parameter rather than the residual parameter. This
change-point model is similar to what Zhu et al. proposed in (Zhu et al. 2023).

3.4. Results

Can the transition patterns be directly modeled and hence used to inform future
test administration practice? An initial analysis using a Markov process transition model
indicated that the vast majority of examinees began the test with a construct-driven response
style, and then transitioned towards a more erratic response style (see Table 4 for the
estimated initial and stationary distribution of response style states). At the onset of testing,
nearly 95% of examinees were responding to ART items in a seemingly consistent and
principled fashion (log-transformed residual variance, σ2

1 = .206). However, if continued to
test indefinitely, then this proportion is expected to drop to 70%.

Table 4. Initial and stationary distributions for construct-driven and erratic States.

Initial State Distribution Stationary Distribution

State 1: Construct-driven .948 .700
State 2: Erratic response .052 .300

Figure 3 displays the increase in the proportion of examinees engaged in erratic
response styles over the course of the testing window. Figure 2 shows somewhat of an
elbow; the proportion of erratic response styles remains low and unchanged for the first
half of the test, and then begins to precipitously increase after item 16, after which there
is a sharp rise in erratic responding. Further, 20% of individuals have transitioned to the
erratic response state by the final item in the test.

Together, these results support a potential change-point process, such that virtually all
examinees begin responding to items in a seemingly consistent and principled way, and
then transition into more erratic response styles as the test proceeds (perhaps as fatigue,
attentional lapses, and guessing behavior influence the response process). Therefore, we
re-examine the pattern of response style states and transitions using a change-point model.

Figure 4 shows the distribution of the estimated change points based on changes in
log-transformed residual response time variances. Note that these indicate change points
in transitioning from a construct-driven response style to an erratic response style. The vast
majority of change points occur late in the testing window, indicating testing fatigue may
play a prominent role in affecting the response process.
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Table 5 shows that after the transition, the magnitude of the log-transformed residual
variance increases by a factor of almost 9, suggesting that towards the end of the test,
examinees demonstrate dramatically inconsistent patterns of responding. Furthermore, the
probability of a correct response post-change-point decreases to .26 from the pre-change-
point value of .65, further underscoring the notion that the pattern of transition is from
optimal to non-optimal. Note that Figure 5 shows the distribution of residual values after
the change point. While the distribution is negatively skewed (indicating the presence of
some extremely unexpected short response times; perhaps characteristic of rapid guessing
behavior), there also exists a substantial number of positive values, indicating that a singular
mean shift in response speed is unable to account for the unexpected response times.
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Table 5. State-specific RT residual variance and accuracy estimates.

State σ2 p(Xij = 1)

Construct-driven 0.187 .67
Erratic 1.647 .26

Note. σ2 represents the EAP estimate from the posterior.
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Can information from these transition patterns be used to adjust the ability estimates
in an effort to improve the underlying validity of the measure? Having established the
pattern and direction of these transitions, the next logical question is whether or not this
information can be used to isolate the construct-driven responses and improve the validity
coefficient of the test. The second column of Table 6 displays the correlation coefficient
between the corrected ability estimates (i.e., after erratic responses have been trimmed
according to the change-point model) and the AFQT general score. Note that the table
displays the correlation coefficient after it has been adjusted to account for the degree
of unreliability in the ART test post-trim (see Appendix A for more information). The
corrected ability estimates account for almost 40% of the variance in AFQT general scores,
a full 8% gain in variance accounted for over and above ability estimates derived from the
non-trimmed ART test. Additionally, this gain was statistically significant at p < .05 (see
Appendix A for a description of the bootstrapping method used to construct the associated
null distribution for the significance test). Also, note that the corrected ability estimates
here demonstrate an improved relationship with the AFQT scores, relative to the cluster
ability estimates from Study 1 (see Table 2).

The gain in the predictive quality of the trimmed ART test seems to be a function of
underestimated abilities in the original whole test analysis. Figure 6 shows a scatterplot of
corrected ability estimates from the trimmed data against the traditional, whole test ability
estimates. Note that although most points fall along the diagonal (indicating invariance
in the ability estimates), a sizable number of points fall above the diagonal, particularly
at the lower end of the original (whole test) ability distribution. By excluding potentially
erratic responses, a subset of ability estimates were boosted upward, producing stronger
correlations with the AFQT score.
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Table 6. Correlations and variance accounted for in AFQT scores by ART ability estimates from
various data trims.

r % Variance

Original Data (No Trim) .559 .312
Change-point Model (residual analysis) .628 * .394
Change-point Model (response speed shift) .566 * .320
Markov Process Model .591 * .349

Data with removal for:
All negative residuals .565 * .319

<−0.5 SD residuals .550 * .303
<−1.0 SD residuals .569 * .324
<−1.5 SD residuals .565 * .319
<−2.0 SD residuals .568 * .317
<−2.5 SD residuals .563 * .319
<−3.0 SD residuals .563 .317
<−3.5 SD residuals .562 .316
<−5.0 SD residuals .559 .312
<−6.0 SD residuals .559 .312

* p < .05.
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A critical question is whether the recommended use of response time residual variance
as an index of construct-irrelevant responding provides any utility over an approach that
simply focuses on guessing and rapid responding behavior. To evaluate whether protracted
response times are additionally informative towards identifying disengaged responding,
ART data were trimmed according to only highly negative residual response times, and the
correlation between the resulting ability estimates and AFQT general scores was evaluated.
These results are displayed in Table 6. Regardless of the threshold used to define an



J. Intell. 2024, 12, 40 15 of 19

uncharacteristically short response time, none of the resulting trims produced significant
improvements in the validity coefficient. Furthermore, a test trim informed by a change-
point model based simply on individual-level mean shifts in response speed (similar to
what (Zhu et al. 2023) proposed) produced a smaller improvement in the validity coefficient
than our trim based on the residual analysis. Only when data trims were informed by
both uncharacteristically small and uncharacteristically long response times was there a
significant improvement in the validity coefficient.

3.5. Discussion

The approach outlined above adopted contemporary concepts from the psychometric
modeling of response times and formalized these concepts into a time series measurement
model to derive corrected ability estimates with clearer interpretive value. In particular,
large residual response times, after conditioning on person and item effects, were used
as a potential indicator of erratic response styles. van der Linden and Guo (2008) had
previously suggested the use of similar residual terms as a potential indicator of aberrant
responding, and we extended the notion into a formal approach that (1) identifies how
erratic responding tendencies may unfold over time and (2) produces ability estimates that
are less contaminated by erratic response processes.

With respect to ability estimates with clearer interpretive value, an empirical analysis
with the analogical reasoning items demonstrated an improved validity coefficient once
erratic responses were removed from the analysis. Note that these corrected ability esti-
mates also demonstrated an improved validity coefficient over the cluster-specific ability
estimates derived from Study 1. Furthermore, nearly all examinees began the testing
process with a construct-driven response style, with a net gain in erratic responses over
time, implying a change-point process. This case suggests that administering additional
items may not be a useful approach to improving the psychometric qualities of the test, as
response processes were already compromised by the current length of the test.

From a broader perspective, the results speak to the importance of implementing
such a procedure in practical testing settings to guide future administrations and obtain
the construct-pure estimates of ability. It also underscores the importance of considering
both uncharacteristically short and uncharacteristically long response times as evidence
of erratic responding. Simply emphasizing guessing and rapid responding styles (as is
often the case in explorations of response styles; see (Molenaar and DeBoeck 2018; Qian
et al. 2016; Wise and DeMars 2006) for a few examples) has the potential to neglect other
types of disengaged responding, producing biased estimates of ability. Our method, in
contrast, additionally considers uncharacteristically long response times as evidence of
construct-irrelevant influences on the response process, and the utility of this approach was
established empirically.

One additional note is worth mentioning regarding the interpretation of the engaged
versus erratic states. If two states are identified with sizable differences in the response time
residual variance, one might immediately assume that the state with the larger residual
term is reflective of an erratic or non-optimal response process. However, this may not
necessarily be the case, and the inspection of additional model parameters is required
in order to develop a more valid characterization of the states. An observation with a
large residual variance term simply indicates that the recorded response time was quite
unexpected, given a subject’s general pattern of responding on all other items on the
test. For example, if a subject engages items with a principled solution strategy for most
items, but becomes fatigued towards the end of the test and responds with rapid guessing
behavior for the last few items, then these last few observed response times would produce
large residuals. In this case, it is clear that the state with a large residual variance term
is reflective of a disengaged response style. However, it is alternatively possible that an
examinee may be engaged for only the first few items, and then begin rapidly guessing
for the vast majority of items that follow. In this latter case, the longer response times for
the first few items represent the exception, and would actually produce the larger residual
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values. Thus, there is the potential for a state with increased residuals to actually reflect a
more engaged, principled response process. In order to disentangle the two possibilities, it
is helpful to examine the parameters from the accuracy model. A disengaged response style
should produce much higher rates and increased item difficulties; so, these parameters can
be evaluated to confirm the suspected nature of the two response states. In our application,
the error rates and item difficulties increased precipitously after the change point when
inflated residual values were observed, implying a general transition towards disengaged
responding for the last remaining items.

4. Discussion and Summary

Both Study 1 and Study 2 evaluated potential threats to validity when traditional
unidimensional psychometric models are applied to real test data from non-verbal ability
tests on analytic reasoning. However, each study evaluated these threats through a different
lens. Study 1 employed mixture IRT modeling, which seeks to identify between-person
classes that reflect heterogeneity in response patterns. Study 2, conversely, employed recent
developments in response time modeling which examine response and response time
vectors as time series data with potential intra-individual variability in response style.

Study 1 was able to identify between-person heterogeneity in response patterns,
implying fundamentally different response processes across classes which obfuscated the
meaning of performance estimates (and impacted the relationship between performance
estimates and external measures). Class 1, for example, exhibited fast response times
which had a diminished correlation with item complexity factors. Also, item difficulty
was not as strongly modeled by cognitive complexity. Furthermore, Class 1 showed a
marked decrement in performance, relative to the other classes. These findings might imply
that response behavior in Class 1 is often governed by a less strategy-oriented process
(e.g., fatigue and guessing), a claim that is further supported by the precipitous decline
in response times for later items in the test. In this case, the potential for ability estimates
from Class 1 to predict performance in other contexts would be compromised. In fact,
the correlation between the ability estimates and performance on a high-stakes test of
mathematical and verbal skills was quite weak for this class. Practically, the results from
such an analysis would suggest that ability estimates from the different classes should
not follow a unitary interpretation, and perhaps additional testing procedures should
be considered. For example, both instructions and test monitoring procedures might
be amplified to help ensure that construct-relevant processing is employed throughout
the test.

However, in order to provide testing recommendations and modifications tailored at
the individual level, additional psychometric modeling approaches are required that can
reliably identify both inter- and intra-individual variability in response processes. Study 2
proposed such a psychometric approach by directly leveraging response time information
and a time series perspective. While Study 1 was able to provide emerging evidence that
there may be some variability in the unfolding of non-optimal or disengaged response styles
over the course of the test, Study 2 clarified these trends at the individual level by increasing
the degree of resolution with which these processes were identified and evaluated. In
particular, Study 2 evaluated within-person changes in engaged versus erratic responding
using an analysis of response time residuals and simultaneously captured how the pattern
of these changes differed across people. Furthermore, the higher resolution approach
of Study 2 was able to produce corrected ability estimates, which showed statistically
reliable improvements in the relationship with performance estimates from a high-stakes
test of mathematical and verbal skills. Critically, this work proposed a useful time series
psychometric approach to validity evaluations and contrasted this with classic, mixture
modeling approaches that may have insufficient resolution to provide individualized
recommendations towards improving validity. It also highlighted the utility of a response
time residual-based approach in identifying how threats to validity unfold over time at the
individual level.
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By providing a more refined, detailed account of individual deviations from a singular
response process, researchers, test developers, and test administrators are in a better
position to understand how construct-irrelevant processes may affect response behavior,
and make adjustments accordingly. In some contexts, this may develop a test trim, similar
to what was achieved in Study 2, in order to obtain ability estimates that are more pure
representations of the latent trait of interest. Alternatively, if it is undesirable to adapt the
instrument to the test taker’s behavior, then this psychometric approach can still provide
valuable information regarding optimal test length and how examinees may improve
performance in subsequent administrations.
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Appendix A. Reliability Adjusted Validity Coefficient

The ultimate purpose of distinguishing between construct-driven response styles and
erratic response styles is to derive ‘uncontaminated’ estimates of ability; that is, ability
estimates that are not confounded by construct-irrelevant processes. Eliminating these items
should theoretically strengthen the observed validity coefficients. However, trimming items
may severely restrict the reliability of the test, thereby attenuating the validity coefficient. In
order to properly evaluate the validity of an instrument after a trim is made, the observed
validity coefficient must be corrected to account for the loss in reliability produced by
the trim.

Appendix A.1. Calculation

Within the realm of classical test theory, the basis for such an adjustment is relatively
straightforward: the adjusted validity coefficient is simply the raw, observed validity
coefficient divided by the root of the product of the two reliability coefficients for the
instruments being compared:

ρ∗xy =
ρxy√

ρxx ∗ ρyy

where ρ∗xy is the adjusted validity coefficient, ρxy is the observed validity coefficient (cal-
culated correlation between a measure and some criterion the measure is theoretically
associated with), and ρxx and ρyy are the reliability coefficients for the measure and crite-
rion, respectively. Additionally, note that the reliabilities are a function of the standard
errors of the instrument:

ρxx =
σ2

θ − SE2
θ

σ2
θ

where σ2
θ is the observed variance of the ability estimates, and SE2

θ is the squared standard
error of the measure. However, note that adjusting the validity coefficient is not as straight-
forward when trims are made as detailed above. Each examinee might show different
patterns of transitions between construct-driven and erratic response styles, producing
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different trimming patterns, and therefore different standard errors for each subject’s re-
sponse vector. In order to derive a broad measure of the standard error of the instrument
after individualized trims, we first calculate the squared standard error of each examinee’s
ability to estimate post-trim, and then take the mean of the squared standard errors. The
equation above is then adjusted correspondingly:

ρxx =
σ2

θ − SE2
θ

σ2
θ

Appendix A.2. Testing for Significance

In order to determine whether or not the trim informed by the model actually produces
a statistically significant improvement in the validity coefficient, we need to consider what
the expected adjusted validity coefficient is under the null condition. In this analysis, the
null condition corresponds to the case when a trim is unrelated to the response style and
is completely randomized. If the model-informed trim is performing no better than a
randomized trim, then its utility cannot be justified.

To develop a distribution of null results, we use a bootstrapping method to produce
a set of adjusted validity coefficient values from randomized trims. In particular, once
an optimal trim is identified based on residual response times, we then randomize the
assignment of these trims across persons and items to derive a new (null) adjusted validity
coefficient. The trims are randomized again to produce another (null) adjusted validity
coefficient. This is performed iteratively until a full distribution of null adjusted validity
coefficients is constructed and then used as a basis for evaluating the magnitude of the
adjusted validity coefficient from the model-informed trim.
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