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Abstract: Single-layer transition-metal dichalcogenides provide an unique intrinsic entanglement
between the spin/valley/orbital degrees of freedom and the polarization of scattered photons. This
scenario gives rise to the well-assessed optical dichroism observed by using both steady and time-
resolved probes. In this paper, we provide compact analytical modeling of the onset of a finite
Faraday/Kerr optical rotation upon shining with circularly polarized light. We identify different
optical features displaying optical rotation at different characteristic energies, and we describe in
an analytical framework the time-dependence of their intensities as a consequence of the main
spin-conserving and spin-flip processes.

Keywords: transition-metal dichalcogenides; magneto-optical properties; time-resolved nonequilibrium
spectroscopy; quantum entanglement; Faraday/Kerr rotation

1. Introduction

The family of semiconducting transition-metal dichalcogenides (TMDs) MX2 (M = Mo,
W; X = S, Se) appears as one of the most promising platforms for future technological ap-
plications [1–4]. These materials are indeed characterized by the presence of many degrees
of freedom (charge, spin, valley, layer, lattice, . . . ), strongly entangling each other [5–11],
opening the possibility of tuning the electronic/optical/magnetic/transport properties
in a controlled, flexible, and reversible way by external magnetic or electric fields. When
isolated at the single-layer level, these compounds present a direct bandgap at the high-
symmetry points K, K′ of the Brillouin zone, the valleys, as shown by photoluminescence
probes [5,7,12–15]. As in graphene, the honeycomb lattice structure is reflected in peculiar
optical selection rules, which induce selectively interband optical transitions in a given
valley upon circularly polarized light. This scenario prompts the concept of “valleytronics”,
i.e., the possibility of manipulating the quantum degrees of freedom selectively in a single
valley [13,14]. Such optical sensitivity in TMDs has been widely explored in single-layer
compounds [2,4,8,16–30]. A common tool is the observation of an optical dichroism, i.e., a
different optical response upon left-hand or right-hand circularly polarized photons. One
striking difference of these compounds with respect to graphene is the presence of a strong
spin–orbit coupling, which provides a sizable spin-splitting of the valence band. Within
this context, circularly polarized light is selectively coupled not only with a given valley,
but also with a given spin, yielding spin-polarized charges in the conduction band along
with opposite-spin charges in the valence band [4,8,16–23,26,27,29,31–36].

The entanglement between light polarization and spin population can be conveniently
investigated by means of the observation of a finite Kerr or Faraday rotation [37–39]. These
effects signalize the presence of an intrinsic magnetic field in the sample, and in single-layer
TMDs they can be naturally triggered as a result of circularly polarized pumping [40],
which gives rise, as discussed above, to valley-selective and spin-selective particle–hole
excitations [4,19–23,29,35,36,41,42].
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The aim of the present paper is to provide a compact and microscopical investigation
of the onset of Kerr/Faraday rotation in a wide energy spectrum of single-layer TMDs.
A key point is the identification of the orbital character of the particle–hole excitations at
different energies allowed by the optical selection rules, and how it is reflected in the sign
and strength of the optical Kerr/Faraday rotation. In order to address this issue in the
clearest and controlled way, we introduce a proper generalization of a k · p expansion in
a three-band framework. The optical response is computed at the non-interacting level
within a fully quantum Kubo approach, where Kerr/Faraday effects are related to the
appearing of off-diagonal components of the optical tensor. Different optical features are
identified as associated with different particle–hole excitations, and their time evolution
in out-of-equilibrium dynamics is discussed. While the exact energies of such optical
features should be considered as unrenormalized by exciton binding effects (not considered
here), the present work provides an analytical insight into the microscopic onset of the
different optical features whose strengths can be conveniently modeled in terms of a
unique parameter.

2. Single-Particle Hamiltonian

Single-layer TMDs contain a plane of M-atoms in a triangular lattice, sandwiched
between two layers of chalcogen atoms, X. The resulting lattice, from a top view, appears as
a bipartite hexagonal structure. Many theoretical approaches have been proposed to capture
the relevant physics of these materials. As a general rule, effective low-energy models
(like k · p expansions) retain only the relevant conduction and valence bands, mapping
the complex band structure onto an effective two-band gapped Dirac model [7,43–45]. On
the other hand, tight-binding (TB) models have emphasized the role of the d-orbitals of
the metal atoms, in particular the d3z2−r2 , dxy, and dx2−y2 ones, which provide the main
orbital content of both the valence and conduction bands, as well as of a third higher-
energy conduction band [46–53]. From a microscopical point of view, however, the simple
triangular lattice of the M atoms cannot account for a gapped semiconducting band-
structure, and the hybridization with X atoms has been shown to play a crucial role. The
choice between a simplified, semi-analytical approach and the multiband complexity of a
fully microscopical TB model is a delicate issue that depends on the physics on which to
be focused.

An interesting balance between these two approaches has been provided by Liu et al.
in Ref. [54], where they introduced a compact three-band tight-binding model within the
reduced Hilbert space:

ϕ†
p = (d†

p,3z2−r2 , d†
p,xy, d†

p,x2−y2 , ), (1)

where the role of the hybridization of the d-orbitals of M atoms with p-orbitals of X is
modeled, using symmetry arguments, by means of effective complex hopping parameters
that break the triangular symmetry, enforcing the physics of a bipartite hexagonal lattice.
The resulting one-particle Hamiltonian can be thus written in the full Brillouin zone thus as:

Ĥσ(k) = ĤTB(k) + ĤSO,σ, (2)

where interatomic hoppings up to third-nearest-neighbor level are included in the TB part,
ĤTB,k, providing an excellent agreement with ab initio calculations for the conduction
and valence bands close to the K, K′ valleys. The spin–orbit coupling (SOC) is safely
approximated with its dominant contribution due to the local spin-diagonal term [54,55],
which in this basis reads:

ĤSO,σ = λIσ

0 0 0
0 0 i
0 −i 0

, (3)

where Iσ = δσ,↑ − δσ,↓.
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Such a three-band tight-binding model provides an accurate description of the energy
dispersion and of the orbital character of the main relevant bands for optical probes with
the advantage of a reduced Hilbert space. In the following, we focus on the optical response
that is governed by the particle–hole excitations close to the K, K′ valley points. The
above model thus also represents a suitable platform for an analytical k · p expansion that
generalizes the previous k · p approaches [7,43–45] up to the relevant three-orbital space.
To this aim, we thus expand Ĥ(k) up to the quadratic order in the relative momentum
p = k − K (p = k − K′) close to the K, K′. It is also convenient to express the resulting
Hamiltonian Ĥ(p, K), Ĥ(p, K′) in the chiral basis:

ψ†
p = (d†

p,3z2−r2 , d†
p,L, d†

p,R, ), (4)

where dp,L = (dp,x2−y2 − idp,xy)/
√

2 and dp,R = (dp,x2−y2 + idp,xy)/
√

2. On such a basis,
the spin–orbit term appears purely diagonal,

ĤSO,σ = −λIσ

0 0 0
0 1 0
0 0 −1

, (5)

and we can write:

Ĥ(p, K) =

E0 + a0 p2a2 v0/T(p+a) v0/B(p−a)
v0/T(p+a)∗ ET + aT p2a2 vT/B(p+a)
v0/B(p−a)∗ vT/B(p+a)∗ EB + aB p2a2

, (6)

Ĥ(p, K′) =

 E0 + a0 p2a2 −v0/B(p+a) −v0/T(p−a)
−v0/B(p+a)∗ EB + aB p2a2 −vT/B(p+a)
−v0/T(p−a)∗ −vT/B(p+a)∗ ET + aT p2a2

, (7)

where p± = px ± ipy and a is the in-plane M-M distance. The full expression of the band
parameters in Equations (6) and (7) in terms of the original tight-binding parameters is
provided in Appendix A. The total spin-full Hamiltonians at the K and K′

Ĥσ(p, ν) = Ĥ(p, ν) + ĤSO,σ, (8)

(where ν = K, K′) contain all the relevant entanglements between spin, valleys, and chirality.
Equation (8) defines the energy levels at the K point for each spin family. We have explicitly:

ϵT,σ(0) = ET − λIσ, (9)

ϵ0,σ(0) = E0, (10)

ϵB,σ(0) = EB + λIσ. (11)

At the K point, the energy level E0 corresponds to the conduction band edge, which
results here in spin-degeneracy since we neglect the weak spin–orbit coupling of the X
chalcogen atoms. The valence band at K is associated with the R-chiral state with spin-split
energies EB ± λ, for up and down spin, respectively. The ET ± λ levels correspond to
higher energy states, characterized by a L-chiral symmetry [47]. A similar energy spectrum
is found at the K′ point, but with chiral content exchanged between the valence and the
high-energy levels.

The optical selection rules are encoded in the multiband matrix structure of the current
operators, which can be straightforwardly computed as derivatives of the single-particle
Hamiltonian, Ĵi(p, ν) = dH(p, ν)/dpi, where i = x, y and ν = K, K′. At the high-symmetry
points (p = 0) we obtain:
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Ĵx(K) =

 0 v0/Ta v0/Ba
v0/Ta 0 vT/Ba
v0/Ba vT/Ba 0

, (12)

Ĵy(K) =

 0 iv0/Ta −iv0/Ba
−iv0/Ta 0 ivT/Ba
iv0/Ba −ivT/Ba 0

, (13)

Ĵx(K′) = −

 0 v0/Ba v0/Ta
v0/Ba 0 vT/Ba
v0/Ta vT/Ba 0

, (14)

Ĵy(K′) =

 0 −iv0/Ba iv0/Ta
iv0/Ba 0 −ivT/Ba
−iv0/Ta ivT/Ba 0

. (15)

In similar way, one can derive the chiral current operators Ĵ±(ν) = Ĵx(ν)± i Ĵx(ν):

Ĵ+(K) =

 0 0 2v0/Ba
2v0/Ta 0 0

0 2vT/B 0

, (16)

Ĵ−(K) =

 0 2v0/Ta 0
0 0 2vT/B

v0/Ba 0 0

, (17)

Ĵ+(K′) =

 0 0 −2v0/Ta
−v0/Ba 0 0

0 −vT/Ba 0

, (18)

Ĵ−(K′) =

 0 −2v0/Ba 0
0a 0 −2vT/Ba

−2v0/Ta 0a 0

. (19)

In order to evaluate the optical response, Equation (8) can be numerically diagonalized
for finite momentum p to obtain eigenvalues (the band dispersion) and eigenvectors of the
resulting eigenstates. This task, however, can be further simplified within a k · p framework
where the band dispersion, at the quadratic order we are interested in, is simply provided
by the diagonal terms of Equations (6) and (7) corrected by the second-order corrections
resulting from the off-diagonal elements. We thus obtain:

Ĥσ(p, ν) ≈ Êσ(p, ν), (20)

where

Êσ(p, K) =

 ϵ0,σ(p) 0 0
0 ϵT,σ(p) 0
0 0 ϵB,σ(p)

, (21)

Êσ(p, K′) =

 ϵ0,−σ(p) 0 0
0 ϵB,−σ 0
0 0 ϵT,−σ(p)

, (22)

and where

ϵT,σ(p) = ET − λIσ + āT,σ p2a2, (23)

ϵ0,σ(p) = E0 + ā0,σ p2a2, (24)

ϵB,σ(p) = EB + λIσ + āB,σ p2a2. (25)
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The numerical expression of the k · p band parameters in Equations (23)–(25) is also
provided in Appendix A.

The comparison between the full TB dispersion in the Brillouin zone, from Ref. [54],
and our analytical three-band model expanded around the K, K′ points is displayed in
Figure 1, showing an excellent agreement.

Figure 1. (a) Comparison between the three-band TB model from Ref. [54] and our analytical three-
band k · p model for single-layer MoS2 along the path described in panel (b). Blue and red solid
lines represent the TB band-dispersion for spin-up and spin-down electrons, respectively. Green,
orange, and gray lines show the band-dispersions for the eigenstates with orbital character dR, dL,
and d3z2−r2 , respectively. The vertical arrows represent the optical interband transitions allowed at
the K, K′ points by a left-circularly polarized photon.

Note that, within the same k · p expansion, the leading order to the current operators
is not affected and Equations (16)–(19) are still valid also in the k · p context. As mentioned,
the different matrix structure of Equations (16)–(19) enforces the different optical selection
rules at the K and K′ points. It is useful to recall that right-circularly polarized (RCP)
light couples with the L-chiral current J−, whereas LCP couples with J+, according to
the relation Ax Jx + Ay Jy = [A+ J− + A− J+]/2. Equations (16)–(19) dictate for instance
how, under external pumping conditions, absorption of a left-circularly polarized (LCP)
photon can induce particle–hole optical excitations at the K point only between the valence
band with dR character and the conduction band with d3z2−r2 character, or (in the case
of electron-doped samples) between the conduction band with d3z2−r2 character and the
high-level conduction band with dL character. On the other hand, the same absorption of a
LCP photon can effectively create particle–hole optical excitations at the K′ point between
the valence band with dR character and the high-level conduction band with dL character.
The selection rules for right-circularly polarized light, coupled with the chiral current J+,
are graphically obtained by reversing the arrow of each particle–hole excitation.

Similar selection rules govern also the virtual processes involved in the optical linear
response, whose analytical computation will be addressed in the next section.

3. Optical Response

Equipped with the theoretical tools outlined in Section 2, we can now compute in
the useful chiral basis all the elements of the optical tensor of single-layer transition-
metal dichalcogenides through the evaluation of the frequency-dependent current–current
response function. In the Matsubara space we have:

πij(ih̄ωm, ν) =
e2T

4π2h̄2 ∑
σ,n

∫
d2pTr

[
Ĵi(ν)Ĝσ(p, iωn + iωm, ν) Ĵ†

j (K)Ĝσ(p, iωn, ν)
]
, (26)

where i, j = x, y, ν =K, K′,
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Ĝσ(p, z, ν) =
1

(z + µ) Î − Êσ(p, ν)
, (27)

and where µ is the chemical potential. Here, h̄ωn = πT(2n + 1) are the internal fermionic
frequencies, h̄ωm = 2πTm is the external bosonic frequency, and T is the temperature.

The generic elements of the optical conductivity tensor are thus obtained as:

σij(ω, ν) = −
πij(h̄ω, ν)

iω
, (28)

where

πij(h̄ω, ν) = πij(ih̄ωm, ν)|iωm→ω. (29)

Given the three-band structure of our model, the total optical response can be divided
(leaving aside the Drude-like intraband terms at low frequencies, which are not relevant in
the present analysis) in three interband contributions:

σij(ω, ν) = σ0,T
ij (ω, ν) + σ0,B

ij (ω, ν) + σT,B
ij (ω, ν). (30)

The term σ0,B
ij describes optical transitions between the (spin-split) valence band and

the lowest energy conduction bands. Due to the spin-splitting of the valence band, this
term accounts for the A and B exciton resonances. The term σT,B

ij conveys information about
optical transitions between the valence band (with dR or dL character) and the high-energy
conduction band with opposite dR/dL character, which has been discussed in detail in
Refs. [26,27]. Finally, the term σ0,T

ij describes optical transitions between the lowest-energy
and high-energy conductions bands. In the undoped semiconducting regime, due to
the Pauli blocking, this term is usually irrelevant, but it plays a role in photo-induced
doping [26,27].

All the terms present a similar functional structure, where the relevant role is played
by the band population. For sake of simplicity, we focus thus for the moment on the first
term, σ0,B

ij . Since the system is block-diagonal in the spin-index, one can also formally
compute separately the optical response σij,σ(ω, ν) for each spin and each valley, ν. We
have for instance:

σ0,B
xx,σ(ω, K) ≈ − e2

4π2h̄2
(v0/Ba)2

ω

∫
d2p

[
f [ϵ0,σ(p)]− f [ϵB,σ(p)]

ϵ0,σ(p)− ϵB,σ(p)− ω − iδ

+
f [ϵ0,σ(p)]− f [ϵB,σ(p)]

ϵ0,σ(p)− ϵB,σ(p) + ω + iδ

]
, (31)

where f [E] is the occupation factor for a given momentum and band, where, under equilib-
rium conditions, f [E] = 1/{exp[(E − µ)/T] + 1}. At T = 0, in the semiconducting state
µ = 0, one obtains f [ϵ0,σ(p)] = 0, f [ϵB,σ(p)] = 1, and, for ω > 0:

Reσ0,B
xx,↑(ω, K) = σ0

v2
0/B

cAh̄ω
θ(h̄ω − ∆A), (32)

Reσ0,B
xx,↓(ω, K) = σ0

v2
0/B

cBh̄ω
θ(h̄ω − ∆B), (33)
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where σ0 = e2/4h̄ is the universal two-dimensional conductivity, ∆A, ∆B and the excitation
edges for the A and B excitons, respectively,

∆A = E0 − EB − λ, (34)

∆B = E0 − EB + λ, (35)

and

cA = ā0,↑ − āB,↑, (36)

cB = ā0,↓ − āB,↓. (37)

Using the tight-binding parameters of Ref. [54], we obtain for MoS2 ∆A = 1.584 eV,
∆B = 1.730 eV, v0/B = −1.545, cA = 1.598 eV, and cB = 1.616 eV. For symmetry, we have also
σxx,σ(ω, ν) = σyy,σ(ω, ν).

In a similar way, one obtains:

σ0,B
xy,σ(ω, K) = i

e2

4π2h̄2
(v0/Ba)2

ω ∑
p

[
f [ϵ0,σ(p)]− f [ϵB,σ(p)]

ϵ0,σ(p)− ϵB,σ(p)− ω − iδ

− f [ϵ0,σ(p)]− f [ϵB,σ(p)]
ϵ0,σ(p)− ϵB,σ(p) + ω + iδ

]
, (38)

and, for T, µ = 0, and ω > 0:

Imσ0,B
xy,↑(ω, K) = −σ0

v2
0/B

cAh̄ω
θ(h̄ω − ∆A), (39)

Imσ0,B
xy,↓(ω, K) = −σ0

v2
0/B

cBh̄ω
θ(h̄ω − ∆B). (40)

The real parts of σxy,σ(ω, K) and the imaginary parts of σxx,σ(ω, K) can be thus easily
obtained using the Kramers–Kronig relations. Furthermore, using the symmetry relations
encoded in the different matrix structures at different valleys, one can recognize that
at equilibrium:

σ0,B
xx,σ(ω, K′) = σ0,B

xx,−σ(ω, K), (41)

σ0,B
xy,σ(ω, K′) = −σ0,B

xy,−σ(ω, K), (42)

(−σ being here the reversed σ spin), so that, under such equilibrium conditions, the
contributions of different valleys sum up for the diagonal terms of the optical tensor,
whereas they cancel out for the off-diagonal ones, in accordance with the time-reversal
symmetry. The net result for the whole optical tensor is summarized in Figure 2a. Similar
expressions can be derived for the σ0,T

xy,σ(ω, ν) and σT,B
xy,σ(ω, ν) terms.
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Figure 2. Plot of the different contributions to the diagonal, σxx, and off-diagonal, σxy, parts of the
optical conductivity of single-layer TMDs (e.g., MoS2 here) resolved for different valleys and different
spins. Panel (a) represents the semiconducting equilibrium case and panel (b) the non-equilibrium
case induced by a left-circularly polarized pumping tuned at the ω = ∆A frequency, which acts only
on the top valence band at the K point. Blue and red lines represent contributions from spin-up and
spin-down, respectively, whereas black lines represent the total optical conductivity summed up over
spin and valleys.

4. Non-Equilibrium Optical Response

Equations (31) and (38) provide a suitable framework to model the optical response
under non-equilibrium conditions, by specifying the proper occupation factors in the
presence of photo-induced particle–hole excitations. More specifically, within such a semi-
classical approach, we can simulate the effects of an LCP laser pumping tuned at the
ω ≈ ∆A frequency by assuming an effective photo-induced charge transfer, npump, from
the valence to the conduction band. Due to the selected circular polarization, such particle–
hole excitations occur only at the K point and, due to the selected frequency in resonance
with the A exciton, only for the spin ↑. Since only one valley, with a given spin, will be
populated in both the valence and conduction band, the photo-induced charge density can
be further parametrized in terms of a characteristic momentum, p̄, for which f [ϵ0,σ(p)] = 1,
f [ϵB,σ(p)] = 0 (p ≤ p̄), obeying the relation:

npump =
p̄2

4π
. (43)

Typical values of npump can range up to npump ≲ 0.01/Vcell. For a representative case,
npump = 0.002/Vcell, we obtain for MoS2 p̄a ≈ 0.171, and, using a = 3.16 Å, p̄ ≈ 0.054 Å−1.
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Due to the selection rules, only the states at the K point with the proper chirality,
corresponding in this case to spin-up, are affected by the pumping. For |p| ≤ p̄, we have
thus a reverse Pauli blocking. The contribution of these states to the optical conductivity
reads thus:

Reσ0/B
xx,↑,pump(ω, K) = σ0

v2
0/B

cAh̄ω
[−θ(h̄ω − ∆A) + 2θ(h̄ω − ∆A − EP,A)], (44)

Imσ0/B
xy,↑,pump(ω, K) = −σ0

v2
0/B

cAh̄ω
[−θ(h̄ω − ∆A) + 2θ(h̄ω − ∆A − EP,A)], (45)

where EP,A = cA( p̄a)2 = 4πcAa2npump. In Figure 2b, we show the effect of the left-circularly
polarized pumping on the diagonal and off-diagonal parts of the optical conductivity,
σij,pump(ω) = ∑σ,ν σ′

xx,σ,pump(ω, ν). Due to the reverse Pauli blocking, the real part of the
diagonal term, Reσxx,pump(ω), shows a depletion of spectral intensity close to the A-edge
energy. In real samples, in the presence of many-body exciton binding, this depletion
appears as a reduction of the A-exciton intensity, as has been experimentally observed
many times in reflectivity probes. More striking is the result on the off-diagonal component
of the optical tensor, σxy,pump(ω), where the contributions from spin-up and spin-down
transitions and from K and K′ close to the A-resonance do not cancel out anymore, giving
rise to a finite off-diagonal term, σxy,pump(ω) ̸= 0,

Imσ0/B
xy,pump(ω) = σ0

2v2
0/B

cAh̄ω
[θ(h̄ω − ∆A)− θ(h̄ω − ∆A − EP,A)]. (46)

On the experimental ground, the onset of a finite off-diagonal component, σxy,pump(ω) ̸= 0,
is observed as a optical (Faraday or Kerr) rotation of the transmitted/reflected polarization of
the probe, which commonly signalizes the presence of a finite effective magnetic field [37–39].
In more detail, we estimate an off-diagonal spectral intensity at the A-exciton energy range:

IA =
∫

ΩA

dω Imσ0/B
xy,pump(ω) = σ0

v2
0/B

h̄cA∆A
2EP,A = 4πa2σ0

v2
0/B

h̄∆A
2npump, (47)

where the spectral off-diagonal intensity is meant to be integrated in the frequency range ΩA
close to the A-resonance. We stress here that, although we employ here a non-interacting
model to obtain an analytical insight, the physical origin of such magneto-optical rotation
depends uniquely on the selective valley-population enforced by the circularly polarized
pumping, yielding a non-equivalent optical response that does not cancel in the K and
K′ valleys. This is a quite general mechanism that will not be affected by the formation
of localized states when bound excitons form. Within this context, we expect that the
step-function spectral shape of Equation (46), also shown in Figure 2b, will evolve smoothly
in a δ-like Lorentzian peak, preserving an integrated intensity, IA, which is dictated by the
amount of the spin-polarized photo-induced charges in the conduction and valence bands,
and hence still scaling with npump. The onset of a Faraday/Kerr rotation at the A-exciton
energy is consistent with previous experimental and theoretical investigations [2,19–23,39].
It is worth underlining here that the valley-selective/spin-selective population induced by
the circularly polarized pumping is expected within our modeling to give rise to a finite
pump-driven Kerr/Faraday rotation also at two further energy scales, which we identify
with the so-called C-exciton and with another characteristic energy, which we denote as the
D-peak.

We notice a remarkably strong band-nesting between these two bands close to the K/K′

points. Such a feature has usually been disregarded in the context of TMDs, where the
analyses have focused on the nesting properties between the valence and the lowest-energy
conduction band [56–58]. We relate these transitions with the broad shoulder, commonly
denoted as the C-exciton.
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Currently, the origin of the remarkable shoulder in the optical conductivity denoted as
the C-exciton has not been fully assessed. A mainstream consensus associates this spectral
feature with the enhanced optical activity between the valence band and the lowest-energy
conduction band along the Γ-K path, where these two bands are thought to have a parallel
energy dispersion (band nesting) [56–58]. Generalizing this idea within the three-band
context, we notice a remarkably strong band-nesting at K/K′ points between the valence and
the lowest-energy conduction, governed by the nesting factor ∼ 1/|ω − ϵT,σ(p) + ϵB,σ(p)|.
Prompted by a careful analysis of the first-principle and tight-binding dispersions, we
suggest thus a slightly different perspective, where the C-exciton shoulder stems from
band-nesting close to the K (K′) point between the valence band with dR (dL) character
and the high-energy conduction band with dL (dR) character. In our modeling, neglecting
the exciton binding energy, we can expect thus ∆C = ET − EB − 2λ. Such a change
of perspective has a deep impact on the predictions about the effects of pumping with
circularly polarized light on the magneto-optical properties. In the original scenario, the
k points responsible for the band-nesting are located close to the Γ point along the path
Γ-K. These states do not have a significant chiral character, and as a consequence they have
a small spin-splitting and they are weakly entangled with circularly polarized light. On
the contrary, in the present context where band-nesting states lie close to the K, K′ points,
we can predict a strong chiral character, a different response for spin-up and spin-down
charges, a strong entanglement with the circularly polarized light, and a remarkable onset
of a off-diagonal component of the optical tensor. Such a picture is consistent with the
experimental findings observed in Refs. [26,27].

Our three-band model is naturally suited to describe this scenario, where the band-
nesting optical transitions responsible for the C-exciton shoulder are accounted for by the
σT/B

ij,pump(ω) term (see Figure 3a).
At the same time, the photo-induced charging of the conduction band triggers finite

optical transitions between the conduction band itself with d3z2−r2 and the high-energy
conduction band with dL (dR) character. The valley-population of these states is also very
sensitive to circularly polarized light, and it is expected thus to drive a finite optical rotation
at typical energy, neglecting the exciton binding energy, ∆D = ET − E0 − λ = ∆C − ∆A

(Figure 3a). These latter optical transitions are taken into account by the term σ0/T
ij,pump(ω).

The effect of photo-induced pump charging with circularly polarized light in the whole
frequency domain can be thus evaluated by considering all the possible contributions,
σij,pump(ω) = σ0/B

ij,pump(ω) + σT/B
ij,pump(ω) + σ0/T

ij,pump(ω). The formal structure of each term

is very similar to the term σ0/B
ij,pump(ω), which we have explicitly evaluated above. Taking

into account the slight differences for each term, we obtain thus:

Imσxy,pump(ω) = σ0
2v2

0/B

cAh̄ω
[θ(h̄ω − ∆A)− θ(h̄ω − ∆A − EP,A)]

−σ0
v2

T/B

|cC|h̄ω
[θ(h̄ω − ∆C)− θ(h̄ω − ∆C − EP,C)]

−σ0
v2

0/T

|cD|h̄ω
[θ(h̄ω − ∆ + EP,D)− θ(h̄ω − ∆D)], (48)

where

cC = āT,↑ − āB,↑, (49)

cD = āT,↑ − ā0,↑, (50)

and where EP,C = |cC|( p̄a)2 = 4π|cC|a2npump and EP,D = |cD|( p̄a)2 = 4π|cD|a2npump. The
real part, Reσxy,pump(ω), is thus obtained by Kramers–Kronig relations. In Equation (48),
we have assumed that cC > 0, which is a valid assumption for the W-based transition-metal
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dichalcogenides WS2, WSe2, and WTe2 (see Table A1). However, since these materials
are very close to the perfect band-nesting limit (cC ≈ 0) for these states at the K, K′ point,
the sign of cC is not a priori determined. For the MoX2 family, for instance cC < 0 (see
Table A1), the analytical expression Imσxy,pump(ω) should rather read:

Imσxy,pump(ω) = σ0
2v2

0/B

cAh̄ω
[θ(h̄ω − ∆A)− θ(h̄ω − ∆A − EP,A)]

−σ0
v2

T/B

|cC|h̄ω
[θ(h̄ω − ∆C + EP,C)− θ(h̄ω − ∆C)]

−σ0
v2

0/T

|cD|h̄ω
[θ(h̄ω − ∆ + EP,D)− θ(h̄ω − ∆D)]. (51)

Figure 3. (a) Sketch of the optical processes responsible for the Faraday/Kerr rotation at different
energies driven by the circularly polarized pumping, which is parametrized in terms of a charge
density, npump, transferred from the valence to the conduction band at the K point. The vertical
light-blue arrow marks the transitions associated with the A-exciton from the valence band with
orbital character dR to the lowest conduction band with d3z2−r2 character. The brown arrow marks
the transitions associated with the C-exciton from the valence band with orbital character dR to
the high-energy conduction band with dL character. These processes profit from the strong band-
nesting between these two bands close to the K, K′ points. The magenta arrow marks the transitions
giving rise to an additional optical feature, denoted as the D-peak, corresponding to the transitions
between the lowest conduction band with d3z2−r2 character and the high-energy dL-band. (b) Real
and imaginary part of the off-diagonal component of the optical tensor, σxy,pump(ω), as driven by the
circularly polarized pumping. Due to the strong band-nesting, the C-exciton feature in Imσxy,pump is
too narrow and sharp to be visible on this scale, and it has been represented by the thick black arrow.

The plot of σxy,pump(ω) for MoS2, with a pump-driven photo-induced charge density
npump = 0.002/Vcell (p̄a ≈ 0.171), is shown in Figure 3b, showing how a valley-selective
population due to a circularly polarized pumping gives rise to a finite off-diagonal com-
ponent (and hence to a finite Faraday/Kerr effect), not only at the A-exciton energy, ∆A,
but also at the C-exciton energy, ∆C, and at another energy range, ∆D, corresponding to
∆D ≈ ∆C − ∆A, net of the exciton binding energy. We predict thus an opposite sign of
the off-diagonal component of the optical tensor (and hence an opposite Faraday/Kerr
rotation) at the energies ∆C, ∆D compared with the one predicted at the A-exciton energy
scale. The absolute intensity of these additional features in the off-diagonal component of
the optical tensor is found:
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IC = σ0
v2

T/B

h̄cC∆C
EP,C = 4πa2σ0

v2
T/B

h̄∆C
npump, (52)

ID = σ0
v2

0/T

h̄cD∆D
EP,D = 4πa2σ0

v2
0/T

h̄∆D
npump. (53)

The expression of Equations (52) and (53) is formally identical at Equation (47) for
IA, upon changing the proper variables, with the noticeable difference of a factor 2. This
is due to the fact that the strength of σxy,pump(ω) at ω ≈ ∆A profits from the presence of
the pump-driven charge in both the conduction and valence bands. On the other hand, the
onset of a finite off-diagonal component, σxy,pump(ω), at the energies ω ≈ ∆C, ω ≈ ∆D is
related in an independent way only to the pump-driven charge in the conduction band
and in the valence band, respectively. This complex multi-peak structure of the pump-
induced Faraday/Kerr effect opens an interesting perspective, not only for characterizing
and proving the onset of these effects, but also for harvesting them for multi-frequency
operative devices.

5. Time-Dependence

In the previous section, we have shown, using an appropriate three-band model, how
a valley-selective population driven by a circularly polarized pump can give rise to an
off-diagonal component of the optical tensor, and hence to a finite Faraday/Kerr optical
rotation at three characteristic energies, related to the A-exciton, the C-exciton, and to
another energy scale governed by the optical transitions between the lowest conduction
band and high-energy conduction band, roughly determined by the energy difference
between the A and C-exciton.

Most notable, in this description, is the absence of any Faraday/Kerr signature at the B-
exciton energy. This is essentially due to the strong light-polarization/orbital/valley/spin
entanglement, so that a circularly polarized pumping tuned at the A-exciton resonance
induces a valley/spin selective population. More, in particular, left-circularly polarized
light tuned at the A-exciton resonance, in the absence of scattering, triggers particle–hole
transitions uniquely at the K valley and uniquely for spin-up electrons, making thus an
optical unbalance only in the spin-up sector. This scenario gives rise to a finite Faraday/Kerr
signature only close to the energies ω ≈ ∆A, ω ≈ ∆C, and ω ≈ ∆D. Such a snapshot is
valid, however, only on a short time scale, before impurity and many-body scattering can
cause spin-flip and/or intervalley processes.

In order to gain an insight into how many-body scattering can affect the magneto-
optical Faraday/Kerr properties induced by circularly polarized pumping, we consider the
charge density in each relevant band that is involved in the time-dynamics. We denote thus
n3z2−r2,σ(ν) as the charge density in the lowest-energy conduction band with d3z2−r2 -orbital
and σ-spin character at the ν valley, nR,↑(K) as the charge (hole) density in the valence band
at the K valley with spin-up, and nL,↓(K′) as the charge (hole) density in the valence band
at the K′ valley with spin-down. Neglecting the frequency-resolved details of each optical
feature, we can estimate the “Faraday/Kerr” intensity of each spectral feature as:

IA(t) ≈ n3z2−r2,↑(K, t) + nR,↑(K, t)− n3z2−r2,↓(K
′, t)− nL,↓(K

′, t), (54)

IC(t) ≈ nR,↑(K, t)− nL,↓(K
′, t), (55)

ID(t) ≈ n3z2−r2,↑(K, t)− n3z2−r2,↓(K
′, t), (56)

IB(t) ≈ n3z2−r2,↓(K, t)− n3z2−r2,↑(K
′, t). (57)

Here, following the analysis for the other features, we have properly estimated the
intensity of a spectral feature at the energy corresponding to the B-exciton as resulting by
the dR,↓(K) ↔ d3z2−r2,↓(K) and dL,↑(K′) ↔ d3z2−r2,↑(K

′), and hence governed by the
time-dynamics of n3z2−r2,↓(K) and n3z2−r2,↑(K

′). In all the cases, we have taken into
account that, due to the orbital/spin/valley entanglement, similar processes at K′ can-
cel the contributions at the K valley. Assuming an initial pumping with left-circularly
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polarized photons resonant at the A-exciton energy, we model at t = 0 the respective
charge density as n3z2−r2,↑(K, 0) = nR,↑(K, 0) = npump, n3z2−r2,↓(K, 0) = n3z2−r2,↓(K

′, 0) =
n3z2−r2,↑(K

′, 0) = nL,↓(K′, 0) = 0. These conditions reproduce the static results discussed in
the previous section.

Recombination processes, related to annihilation of particle–hole excitations, are
known to occur on a very long time scale. On the other hand, the off-diagonal term,
σxy,pump(ω), of the optical tensor is expected to vanish in a much shorter time scale
when scattering processes redistribute the charge in both the conduction and valence
bands, giving identical populations in the K, K′ valley. Neglecting the very weak in-
travalley spin-flip processes, two main scattering channels have been identified in this
scenario [16,34–36,41,59,60]: (i) an interband spin-conserving scattering, mediated by
electron–phonon coupling and/or impurities, where the charge-density of the conduction
band with given spin is scattered for a valley, ν, to the opposite valley, −ν. This process
is hampered in the valence band due to the spin-splitting [34,36,41]; and (ii) spin-flip
intervalley exchange, where a particle–hole couple in a given valley with given spin is
scattered into the opposite valley with reverse spin [36,60,61]. According to this picture,
we model in a compact way the time dynamics of the pump-driven charges with a set of
coupled equations:

dn3z2−r2,↑(K)

dt
= α f (t)−

min[n3z2−r2,↑(K), nR,↑(K)]− min[n3z2−r2,↓(K
′), nL,↓(K′)]

τexc

−
n3z2−r2,↑(K)− n3z2−r2,↑(K

′)

τ0
, (58)

dn3z2−r2,↓(K)

dt
= −

n3z2−r2,↓(K)− n3z2−r2,↓(K
′)

τ0
, (59)

dnR,↑(K)

dt
= α f (t)−

min[n3z2−r2,↑(K), nR,↑(K)]− min[n3z2−r2,↓(K
′), nL,↓(K′)]

τexc
, (60)

dn3z2−r2,↑(K
′)

dt
= −

n3z2−r2,↑(K
′)− n3z2−r2,↑(K)

τ0
, (61)

dn3z2−r2,↓(K
′)

dt
= −

min[n3z2−r2,↓(K
′), nL,↓(K′)]− min[n3z2−r2,↑(K), nR,↑(K)]

τexc

−
n3z2−r2,↓(K

′)− n3z2−r2,↓(K)

τ0
, (62)

dnL,↓(K′)

dt
= −

min[n3z2−r2,↓(K
′), nL,↓(K′)]− min[n3z2−r2,↑(K), nR,↑(K)]

τexc
, (63)

where f (t) is the profile of the pump pulse, α is related to the absorption coefficient,
and τexc, τ0 are the scattering rates of the two processes discussed above. The factors
min[n3z2−r2,↑(K), nR,↑(K)] and min[n3z2−r2,↓(K

′), nL,↓(K′)] take into account that the in-
tervalley exchange scattering requires the presence of both particle–hole changes in the
conduction and valence bands. We take in the representative values τ0 = 200 fs [35,59]
and τexc = 1.8 ps [20,61]. The time dynamics of the different charge densities, ni,σ(ν), is
shown in Figure 4a, and the corresponding time-dependence of the Kerr intensity of the
different spectral features in Figure 4b, whereas Figure 4c depicts some representative time-
snapshots of ni,σ(ν). Notice that, in order to focus on the time dynamics, we plot here only
the dependence of Iµ(t) on the time-dependent charge densities, ni,σ(ν, t), neglecting the
current operator matrix elements and other time-independent factors, so that the relative
ratio of the intensities here is not meant to be representative of the experimental ratio. The
overall behavior of ni,σ(ν) and IA(t) that we obtain is in very good agreement with the
results by Ref. [36], performed with ab initio techniques.
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Figure 4. (a) Time-dependence of the pump-driven charge densities, ni,σ(ν), upon a Gaussian
pump with width ∼ 50 fs (black solid line). Legend for different charge densities is reported above.
(b) Corresponding time-dependence of the integrated Faraday/Kerr intensities of the different
spectral features associated with different optical interband transitions. Inset: the same on a linear-log
plot, where the red dashed lines represent the exponential behaviors’ decay rate, 2τ0 and 2τexc,
respectively. (c) Sketch of the spin-resolved charge densities, ni,σ(ν), in the conduction and valence
bands at the K and K′ points, along with the main optical transitions in the different time regimes, as
outlined in the panels above.

We can identify three main regimes. (i) A short time scale, t ≪ τ0 (gray areas, left
panel of Figure 4c), where the charge populations are mainly determined by the driving
pump, with a significant population of only n3z2−r2,↑(K) and nR,↑(K). This is reflected in
a sharp onset of the Faraday/Kerr intensities IA(t), IC(t), and ID(t). (ii) Soon after this
scenario, in the short time range t ∼ τ0 (yellow areas, middle panel of Figure 4c), the
impurity/electron–phonon scattering has a main effect of a depletion of n3z2−r2,↑(K) due a
redistribution of the spin-up conduction electrons towards n3z2−r2,↑(K

′). As a consequence,
a sharp decrease of IA(t) ∝ e−t/2τ0 and ID(t) ∝ e−t/2τ0 is predicted, whereas the finite
valley population, n3z2−r2,↑(K

′), gives rise to a finite (delayed) intensity of IB(t). (iii) In the
time regime τ0 ≪ t ∼ τexc (light blue areas, right panel of Figure 4c), the key many-body
process is the exchange scattering (assisted by the impurity/electron–phonon one), leading
towards a slower equal spin population of each conduction and valence band. The total
spectral intensities in this regime scale as Iµ(t) ∝ e−t/2τexc . The final steady state (right
panel of Figure 4c) is, however, reached only for t ≫ τexc. In this regime, the contributions
of off-diagonal elements of the optical tensor at K and K′ cancel out, and any Faraday/Kerr
effect vanishes. Note that the transient Faraday/Kerr intensity at the B-exciton energy
range is a by-product of the finite valley-K′ population of n3z2−r2,↑. In a similar way
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as this valley-transient population is expect to give rise to a Faraday/Kerr effect at the
energy ∆B associated with optical transitions between nL,↑(K′) and n3z2−r2,↑(K

′), we can
expect the appearance of further Faraday/Kerr features at the energies associated with
optical transitions between nL,↑(K′) and nR,↑(K′), and between n3z2−r2,↑(K

′) and nR,↑(K′).
We denote these transitions as ∆′

C and ∆′
D, whose Faraday/Kerr spectral intensity scales,

assuming pumping tuned at the A-exciton resonance, are I′C(t) ∝ IC(t) and I′D(t) ∝ ID(t).
The band-parameters determining the detailed spectral properties of these features are also
listed in Table A1.

6. Conclusions

In summary, in the present paper we have addressed in an analytical way the onset of
a finite Faraday/Kerr effect in single-layer transition-metal dichalcogenides upon pumping
with circularly polarized light at the A-resonance. With this aim, we have introduced
a proper three-band analytical k · p model that retains all the orbital complexity of the
original band-structure and of the optical selection rules. We have shown how a pump-
driven spin/valley selective population gives rise to a finite off-diagonal component of the
optical tensor responsible for different spectral features in the Faraday/Kerr optical rotation.
We recover the signature of a Faraday/Kerr rotation in the proximity of pump energy at
the A-exciton resonance, in accordance with the available experimental and theoretical
findings [2,19–23,39], and we predict the onset of a Faraday/Kerr signal at the C-exciton
resonance and at a further energy scale related to the high-energy conduction band. These
predictions can guide future experimental investigation, spanning also the different families
of MX2 TMDs. We have further modeled the effects of time-dynamics driven by many-
body scattering, and the consequent emerging of additional transient Faraday/Kerr optical
features. Our results provide suitable compact modeling for describing the magneto-optical
properties induced in transition-metal dichalcogenides by circularly polarized pumping, in
terms of few simple intuitive representative parameters.
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Appendix A. Mapping k · p Band Parameters in Terms of TB Parameters

Below, we summarize useful analytical expressions for the band-parameters of the
k · p Hamiltonian in Equations (6) and (7) in terms of the original tight-binding parameters
provided in Ref. [54].

We have explicitly:

E0 = ϵ1 − 3(t0 − 2r0 + u0), (A1)

ET = ϵ2 −
3
2
(t11 + t22 − 4r11 + u11 + u22) + 2

√
3r12 + 3

√
3t12 − 3

√
3u12, (A2)

EB = ϵ2 −
3
2
(t11 + t22 − 4r11 + u11 + u22) + 2

√
3r12 − 3

√
3t12 + 3

√
3u12, (A3)

a0 =
3(t0 − 6r0 + 4u0)

4
, (A4)

aT =
3
8
(t11 + 4u11 + t22 + 4u22)−

9
2

r11 −
3
√

3
2

r12 −
3
√

3
4

t12 + 3
√

3u12, (A5)

aB =
3
8
(t11 + 4u11 + t22 + 4u22)−

9
2

r11 −
3
√

3
2

r12 +
3
√

3
4

t12 − 3
√

3u12, (A6)

v0/T = −3
√

3
2
√

2
t2 +

3
√

3√
2

u2 +
3

2
√

2
t1 −

3(r1 − r2)√
2

+
3√
2

u1, (A7)
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v0/B = −3
√

3
2
√

2
t2 +

3
√

3√
2

u2 −
3

2
√

2
t1 +

3(r1 − r2)√
2

− 3√
2

u1, (A8)

vT/B =
3
√

3
4

(t11 − t22 − 2u11 + 2u22). (A9)

The terms āT,σ, ā0,σ, and āB,σ are related to the dispersion mass of each band, and they
are obtained within the k · p context as:

āT,↑ = aT + γT/B,↑ + γT/0,↑, (A10)

ā0,↑ = a0 + γ0/B,↑ − γT/0,↑, (A11)

āB,↑ = aB − γT/B,↑ − γ0/B,↑, (A12)

āT,↓ = aT + γT/B,↓ + γT/0,↓, (A13)

ā0,↓ = a0 + γ0/B,↓ − γT/0,↓, (A14)

āB,↓ = aB − γT/B,↓ − γ0/B,↓, (A15)

and where

γT/B,σ =
v2

T/B
ET − EB + 2λIσ

, (A16)

γT/0,σ =
v2

0/T
ET − E0 + λIσ

, (A17)

γ0/B,σ =
v2

0/B
E0 − EB + λIσ

. (A18)

The spin-dependent single-particle energies at the K point read thus:

ϵT,↑ = ET − λ, (A19)

ϵ0,↑ = E0, (A20)

ϵB,↑ = EB + λ, (A21)

ϵT,↓ = ET + λ, (A22)

ϵ0,↓ = E0, (A23)

ϵB,↓ = EB − λ, (A24)

and the characteristic interband optical edges:

∆A = ϵ0,↑ − ϵB,↑, (A25)

∆B = ϵ0,↓ − ϵB,↓, (A26)

∆C = ϵT,↑ − ϵB,↑, (A27)

∆D = ϵT,↑ − ϵ0,↑, (A28)

∆C′ = ϵT,↓ − ϵB,↓, (A29)

∆D′ = ϵT,↓ − ϵ0,↓. (A30)

In Table A1, we summarize the numerical values of our three-band k · p model
obtained from the initial tight-binding parameters of Ref. [54]:
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Table A1. Characteric electron and optical parameters for different families of semiconducting
transition-metal dichalcogenides. All parameters are in units of eV.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

λ 0.073 0.091 0.107 0.211 0.228 0.237
ET 3.451 3.056 2.525 3.933 3.443 2.871
E0 1.595 1.482 1.113 1.749 1.565 1.132
EB −0.062 0.053 0.041 −0.057 0.024 0.065
ϵT,↑ 3.378 2.965 2.418 3.722 3.215 2.634
ϵ0,↑ 1.595 1.482 1.113 1.749 1.565 1.132
ϵB,↑ 0.011 0.144 0.148 0.154 0.252 0.302
ϵT,↓ 3.524 3.147 2.632 4.144 3.671 3.108
ϵ0,↓ 1.595 1.482 1.113 1.749 1.565 1.132
ϵB,↓ −0.135 −0.038 −0.066 −0.268 −0.204 −0.172
∆A 1.584 1.338 0.965 1.595 1.313 0.830
∆B 1.730 1.520 1.179 2.017 1.769 1.304
∆C 3.367 2.821 2.270 3.569 2.963 2.332
∆D 1.783 1.483 1.305 1.973 1.650 1.502
∆C′ 3.659 3.185 2.698 4.413 3.875 3.280
∆D′ 1.929 1.665 1.519 2.395 2.106 1.976
aT −1.190 −1.170 −1.142 −1.305 −1.310 −1.221
a0 −0.493 −0.411 −0.012 −0.586 −0.455 −0.212
aB 1.060 0.921 0.578 1.299 1.119 0.860

āT,↑ −0.800 −0.774 −0.768 −0.836 −0.829 −0.816
ā0,↑ 0.961 0.800 0.873 1.512 1.375 1.624
āB,↑ −0.777 −0.675 −0.667 −1.245 −1.161 −1.346
āT,↓ −0.831 −0.819 −0.826 −0.925 −0.941 −0.932
ā0,↓ 0.838 0.654 0.710 1.071 0.902 0.953
āB,↓ −0.637 −0.505 −0.470 −0.756 −0.628 −0.615
v0/B −1.545 −1.292 0.956 −1.850 −1.565 −1.244
v0/T −0.306 −0.236 0.286 −0.303 −0.246 −0.204
vT/B −1.065 −1.001 0.841 −1.228 −1.148 −0.938
cA 1.739 1.475 1.540 2.757 2.535 2.969
cB 1.474 1.160 1.180 1.828 1.530 1.568
cC −0.023 −0.098 −0.101 0.409 0.332 0.530
cD −1.762 −1.573 −1.641 −2.348 −2.204 −2.439
cC′ −0.194 −0.314 −0.356 −0.168 −0.313 −0.317
cD′ −1.669 −1.473 −1.536 −1.996 −1.843 −1.884

References
1. Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Emerging Device Applications for Semiconducting

Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2014, 8, 1102–1120. [CrossRef]
2. Sun, Z.P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photon. 2016, 10, 227–238. [CrossRef]
3. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017,

2, 17033. [CrossRef]
4. Ashish, A. Magneto-optics of layered two-dimensional semiconductors and heterostructures: Progress and prospects. J. Appl.

Phys. 2021, 129, 120902. [CrossRef]
5. Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010,

105, 136805. [CrossRef]
6. Sallen, G.; Bouet, L.; Marie, X.; Wang, G.; Zhu, C.R.; Han, W.P.; Lu, Y.; Tan, P.H.; Am, T.; Liu, B.L.; et al. Robust optical emission

polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 2012, 86, 081301. [CrossRef]
7. Xiao, D.; Liu, G.-B.; Feng, W.; Xu, X.; Yao, W. Coupled Spin and Valley Physics in Monolayers of MoS2 and Other Group-VI

Dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802. [CrossRef]
8. Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012,

7, 490–493. [CrossRef]
9. Wu, S.; Ross, J.S.; Liu, G.B.; Aivazian, G.; Jones, A.; Fei, Z.; Zhu, W.; Xiao, D.; Yao, W.; Cobden, D.; et al. Electrical tuning of valley

magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153. [CrossRef]
10. Liu, G.B.; Xiao, D.; Yao, Y.; Xu, X.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB

transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663. [CrossRef]

http://doi.org/10.1021/nn500064s
http://dx.doi.org/10.1038/nphoton.2016.15
http://dx.doi.org/10.1038/natrevmats.2017.33
http://dx.doi.org/10.1063/5.0042683
http://dx.doi.org/10.1103/PhysRevLett.105.136805
http://dx.doi.org/10.1103/PhysRevB.86.081301
http://dx.doi.org/10.1103/PhysRevLett.108.196802
http://dx.doi.org/10.1038/nnano.2012.95
http://dx.doi.org/10.1038/nphys2524
http://dx.doi.org/10.1039/C4CS00301B


Nanomaterials 2024, 14, 707 18 of 19

11. Roldàn, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J.
Phys. Cond. Matter 2015, 27, 313201. [CrossRef]

12. Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer
MoS2. Nano Lett. 2010, 10, 1271–1275. [CrossRef] [PubMed]

13. Schaibley, J.R.; Yu, H.; Clark, G.; Rivera, P.; Ross, J.S.; Seyler, K.L.; Yao, W.; Xu, X. Valleytronics in 2D materials. Nat. Rev. Mater.
2016, 1, 16055. [CrossRef]

14. Liu, Y.; Gao, Y.; Zhang, S.; He, J.; Yu, J.; Liu, Z. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019,
12, 2695–2711. [CrossRef]

15. Soni, A.; Pal, S.K. Valley degree of freedom in two-dimensional van der Waals materials. J. Phys. D Appl. Phys. 2022, 55, 303003.
[CrossRef]

16. Mak, K.F.; He, K.; Shan, J.; Heinz, T.F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol.
2012, 7, 494–498. [CrossRef] [PubMed]

17. Cao, T.; Wang, G.; Han, W.; Ye, H.; Zhu, C.; Shi, J.; Niu, Q.; Tan, P.; Wang, E.; Liu, B.; et al. Valley-selective circular dichroism of
monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887. [CrossRef] [PubMed]

18. Lagarde, D.; Bouet, L.; Marie, X.; Zhu, C.R.; Liu, B.L.; Am, T.; Tan, P.H.; Urbaszek, B. Carrier and Polarization Dynamics in
Monolayer MoS2. Phys. Rev. Lett. 2014, 112, 047401. [CrossRef] [PubMed]

19. Plechinger, G.; Nagler, P.; Korn, T. Time-resolved Kerr rotation spectroscopy of valley dynamics in single-layer MoS2. arXiv 2014,
arXiv:1404.7674.

20. Zhu, C.R.; Zhang, K.; Glazov, M.; Urbaszek, B.; Am, T.; Ji, Z.W.; Liu, B.L.; Marie, X. Exciton valley dynamics probed by Kerr
rotation in WSe2 monolayers. Phys. Rev. B 2014, 90, 161302. [CrossRef]

21. Dal Conte, S.; Bottegoni, F.; Pogna, E.A.A.; De Fazio, D.; Ambrogio, S.; Bargigia, I.; D’Andrea, C.; Lombardo, A.; Bruna, M.;
Ciccacci, F.; et al. Ultrafast valley relaxation dynamics in monolayer MoS2 probed by nonequilibrium optical techniques. Phys.
Rev. B 2015, 92, 235425. [CrossRef]

22. Plechinger, G.; Nagler, P.; Arora, A.; Schmidt, R.; Chernikov, A.; Lupton, J.; Bratschitsch, R.; Schueller, C.; Korn, T. Valley dynamics
of excitons in monolayer dichalcogenides. Phys. Stat. Solidi—Rapid Res. Lett. 2017, 11, 1700131. [CrossRef]

23. McCormick, E.J.; Newburger, M.J.; Luo, Y.K.; McCreary, K.M.; Singh, S.; Martin, I.B.; Cichewicz, E.J.; Jonker, B.T.; Kawakami, R.K.
Imaging spin dynamics in monolayer WS2 by time-resolved Kerr rotation microscopy. 2D Mater. 2017, 5, 011010. [CrossRef]

24. Van der Donck, M.; Zarenia, M.; Peeters, F.M. Strong valley Zeeman effect of dark excitons in monolayer transition metal
dichalcogenides in a tilted magnetic field. Phys. Rev. B 2018, 97, 081109. [CrossRef]

25. Hung, T.Y.; Camsari, K.Y.; Zhang, S.; Upadhyaya, P.; Chen, Z. Direct observation of valley-coupled topological current in MoS2.
Sci. Adv. 2019, 5, eaau6478. [CrossRef] [PubMed]

26. Lin, K.Q.; Ong, C.S.; Bange, S.; Faria Junior, P.E.; Peng, B.; Ziegler, J.D.; Zipfel, J.; Bäuml, C.; Paradiso, N.; Watanabe, K.; et al.
Narrow-band high-lying excitons with negative-mass electrons in monolayer WSe2. Nat. Commun. 2021, 12, 5500. [CrossRef]

27. Lin, K.Q.; Ziegler, J.D.; Semina, M.A.; Mamedov, J.V.; Watanabe, K.; Taniguchi, T.; Bange, S.; Chernikov, A.; Glazov, M.M.; Lupton, J.M.
High-lying valley-polarized trions in 2D semiconductors. Nat. Commun. 2022, 13, 6980. [CrossRef] [PubMed]
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