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Abstract: Herein, we evaluate the conversion efficiency of dye-sensitized solar cells (DSSCs) photo-
sensitized using two different natural dyes extracted from Alpinia purpurata and Alstroemeria flower
petals. The appreciable absorption capacity of the extracts in the visible light region was exam-
ined through absorption spectroscopy. The functional groups of the corresponding pigments were
identified through Fourier transform spectroscopy (FTIR) technique thus indicating the presence of
cyanidin 3-glycosides and piperine in the flowers of Alstroemeria and Alpinia purpurata. The extracted
dyes were immobilized on TiO2 on transparent conducting FTO glass, which were used as pho-
toanode. The dye-coated TiO2 photoanode, pt photocathode and iodide/triiodide redox electrolyte
assembled into a cell module was illuminated by a light source intensity 100 mW/cm2 to measure
the photovoltaic conversion efficiency of DSSCs. The TiO2 anode and Pt counter electrode surface
roughness and morphological studies were evaluated using atomic force microscope (AFM) and field
emission scanning electron microscopy (FESEM), respectively. Through the photoelectric charac-
terizations, it was promising to verify that the solar conversion efficiency was calculated with the
photovoltaic cell sensitized by Alstroemeria and Alpinia purpurata. This was achieved with a yield (η)
of 1.74% and 0.65%, with an open-circuit voltage (Voc) of 0.39 and 0.53 V, short-circuit current density
(Jsc) of 2.04 and 0.49 mA/cm2, fill factor (FF) of 0.35 and 0.40, and Pmax of 0.280 and 0.100 mW/cm2,
respectively. The results are promising and demonstrate the importance of the search for new natural
dyes to be used in organic solar cells for the development of devices that generate electricity in a
sustainable way.

Keywords: dye-sensitized solar cells; natural dyes; photosensitizers; photovoltaics; renewable energy

1. Introduction

As global energy demand continues to grow, alternatives are being sought for the
development of renewable, sustainable, proficient and inexpensive energy sources, for
example solar power [1,2]. One of the ways to convert solar energy into electrical energy
is through photovoltaic cells. Among these, this work deals with solar cells sensitized by
dyes, which are called dye-sensitized solar cells (DSSCs). Michael Grätzel and O’Regan
first developed DSSCs in 1991 at the École Polytechnique Féderale de Lausanne [3]. The
generation of electrical energy in these devices occurs through a process of electrochemistry
between two electrodes through interactions between semiconductor oxides, such as TiO2
and photosensitizing dyes, as well as with the application of an electrolytic solution between
the anode and cathode capable of assisting the electric current from the oxidizing electrode
to the Pt counter electrode. The dye molecules are in their ground state of low energy
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(LUMO) prior to solar light incidence [3,4]. At present, the anodic surface of coated TiO2
semiconductor oxide is subjected to the same energy level (near the valence band level),
which is non-conducting [5]. When solar light falls on a DSSC device (oxidizing element),
the molecules of dyes are excited and move from their lower energy ground state to a
higher energy excited state (HOMO) [3–5]. In this way, the excited dye molecules have a
higher energy level, overcoming the bandwidth difference of semiconductor valence band
energy level. The photoexcitation of the dye with high absorption is essential for maximum
use of sunlight incident on DSSCs [6].

DSSCs sensitized with commercial dyes containing heavy transition metal complexes,
such as ruthenium-based complexes, are the most efficient, with power conversion ef-
ficiencies reaching as high as 11–12% when utilizing nanoporous TiO2 electrodes [7,8].
However, ruthenium polypyridyl complexes contain a heavy metal that is harmful to the
environment [9]. Furthermore, the high cost of ruthenium complexes and their long-term
unavailability [10] shift the need to hunt for alternate photosensitizers for TiO2-based
photovoltaic devices. Natural dyes, on the other hand, can be used for the same purpose
with good efficiency. Because of their huge absorption coefficients, high light-harvesting
effectiveness, low cost, ease of preparation and environmental friendliness, researchers
have recently concentrated on easily available dyes produced from natural sources as
photosensitizers [11,12]. Natural dye pigments are present in different parts of a plant,
including the flowers, fruits, leaves, stems and roots, and they are a potential alternative
as photosensitizers for DSSC, but there are significant obstacles to be addressed before
they can be used commercially on a large scale. The fundamental problems with dye
conservation are its rapid degradation, lack of stability and limited lifespan. Despite the
existence of coloring groups, they also have a smaller absorption spectrum, which lowers
the effectiveness of photon capture. Among the natural dyes, flavonoids and anthocyanins
stand out; this can be found in flowers and fruits [13]. These dyes have radiation absorption
in the range of visible light, in the wavelength of 520 to 560 nm [14]. The absorption of an-
thocyanin on the surface of TiO2 is only possible through the forces of Van der Waals, and it
occurs through the bond between two atoms of anthocyanin oxygen with the Ti4+ ion found
on the surface of TiO2, with two bonds of unfilled positives [15]. The main electrochemical
processes that occur in DSSCs are the separation and recombination of charges [16–19].

Recently, numerous natural pigments containing anthocyanin, betalains, chlorophyll,
tannin and carotene have been successfully used as photosensitizers in DSSCs fabrica-
tion. For example, DSSCs constructed using dyes extracted from ivy gourd fruits and red
frangipani flowers achieved an efficiency of 0.08% and 0.30%, respectively, in a study by
Shanmugam et al. [20]. DSSCs have also been prepared from dye extracts of flame tree
flower, pawpaw leaf and their mixture as photosensitizers. The anthocyanin extract of
flame tree flower and chlorophyll extract of pawpaw leaves resulted in a DSSC of 0.20%
efficiency each. The efficiency of solar conversion using their mixture reached an efficiency
of 0.27%, and the mixed dye showed better conversion efficiency [21]. DSSCs fabricated
using lemon extract (Citrus limon) showed an efficiency of 0.03% [22]. Dye extracted from
cherry, blackberry, blueberry, raspberry and strawberry fruit when used as sensitizers in
DSSC gave an efficiency of 0.21%, 0.69%, 0.21%, 0.20% and 0.14%, respectively [23]. Other
natural dyes which are reported as sensitizers for DSSC are red Sicilian orange juice (Citrus
Sinensis); purple extract of eggplant peels (Solanum melongena) [24]; pomegranate leaf and
mulberry [25]; Siahkooti fruit [26]; fruit of Melastoma malabathricum [27]; bougainvillea flow-
ers; red turnip; and the purple wild Sicilian prickly pear fruit juice [28]. DSSCs fabricated
using extracts from Nerium Oleander (red-pink), Bougainvillea (dark pink), and Hibiscus (red)
were found to give a conversion efficiency of 0.06%, 0.05% and 0.19%, respectively [29].
Precisely to meet the favorable conditions mentioned, the present research used the natural
dyes extracted from the flowers of Alpinia purpurata and Alstroemeria rich in anthocyanin
with a high capacity to absorb sunlight [30–32]. It should be noted that these flowers can be
easily found in nature, unlike commercial inorganic dyes, such as ruthenium (Ru), which,
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in addition to not being a photosensitizer compatible with the environment, also has a
high cost [33].

In this work, we demonstrated low-cost new organic sensitizers extracted from Alpinia
purpurata and Alstroemeria with a wide spectral range, in order to obtain good solar con-
version efficiency. To the best of our knowledge, the dyes extracted from Alpinia purpurata
and Alstroemeria flowers have not been previously employed as photosensitizer dye in
DSSCs. The optical characteristics of the flower extracts were studied by FTIR spectroscopy
and ultraviolet-visible (UV-Vis) spectroscopy. The surface morphology and topography
of the photoelectrodes were examined using SEM and AFM, respectively. DSSCs using
natural dye extracts as a photosensitizer from Alpinia purpurata- and Alstroemeria-coated
TiO2 were prepared, and the photoelectrical parameters provided by short-circuit current
density (JSC), open-circuit voltage (VOC), fill factor (FF), power (Pmax) and efficiency (η%)
were evaluated.

2. Experimental Section
2.1. Materials and Methods

To construct the photoelectrodes, a thin transparent film deposited on fluorine-doped
tin oxide (FTO) was used and procured from Sigma-Aldrich and cut into desired size.
Potassium iodide, polyethylene glycol, semiconductor TiO2 (size ∼= 20 nm) and chloropla-
tinic acid were also purchased from Sigma Aldrich. To avoid undesirable leaks from the
junction between the anode and cathode, TEKBOND superglue was used. To evaluate the
extracted natural dyes from the two flowers, Agilent Cary 630 FTIR (Santa Clara, CA, USA)
and SHIMADZU UV-2600i spectrometers (Kyoto, Japan) were used. For annealing both
electrodes, the QUIMIS Q318S25T muffle furnace (São Paulo, Brazil) was used. To examine
the morphological and surface roughness of photoelectrodes, the JEOL JSM-7100F FESEM
(Tokyo, Japan) and the Nanosurf Easyscan 2 atomic force microscope (Liestal, Switzerland)
were used, respectively. The short-circuit (JSC) and open-circuit voltage (VOC) of each
cell were obtained through the electrochemical characterizations carried out in the IVIUM
Compactstat multi-potentiostat coupled to the Ivisun® IVIUM Technologies(Eindhoven,
Netherlands), solar simulator using 100 mW/cm2 of incident power.

2.2. Extraction of Dye

Fresh flowers of Alpinia purpurata and Alstroemeria were procured from a flower shop in
Rio de Janeiro, Brazil. Before extracting the dyes, the flowers were cleaned with deionized
water and the respective flower petals peeled and kept dried at room temperature. The
dried petals were powdered mechanically; 10 g of dried powder was separated from the
respective flowers and measured on the SHIMADZU ATY224 weighing balance (Barueri,
Brazil). The dried powder was poured into 100 mL of ethanol solution in each beaker and
soaked for 24 h. Finally, the extracted dyes were filtered through filter paper and kept in
glass containers without any undesirable residues [34]. Finally, the dyes were stored in the
refrigerator at a temperature of 5 ◦C in airtight containers and then used as photosensitizers
in the construction of DSSCs.

2.3. Photoanode Fabrication

The TiO2 photoanode was prepared by using the spin-coating method described
elsewhere [34,35]: briefly, polyethylene glycol (0.3 g), powdered TiO2 (1 g), distilled water
(6 mL) and acetic acid (6 mL). The photoanode was prepared from the deposition of TiO2
thin film on the FTO using a spin coater, with the speed controlled at 1000 rpm for a period
of 10 s in order to obtain a homogeneous deposition. Finally, the electrodes were kept
in the conventional oven annealed at 450 ◦C for 30 min and then steadily turned cold at
ambient temperature.
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2.4. Photocathode Fabrication

To minimize the errors caused by the resistance of the solar cell in controlling the
potential of the working electrode, platinum (Pt) was used as a counter electrode. Pt was
chosen because comparative studies have already been carried out between it and graphite,
and Pt proved to be more efficient in its catalytic process, interacting in a more profitable
way with the oxidizing electrode [36,37]. The Pt counter electrode was prepared through a
5 mM ethanolic solution of hexachloroplatinic acid (H2Cl6PtH2O) using the drop casting
method. In the last step, the electrode was kept in the conventional oven and annealed at
350 ◦C for thirty minutes.

2.5. Electrolyte Preparation

The redox electrolyte for analyzing the performance of the DSSCs was synthesized by
the solution containing potassium iodide (2.075 g), iodine (0.12 g) and polyethylene glycol
(0.02 g) in acetonitrile (5 mL) [38–40].

2.6. Construction of DSSCs

Scheme 1 presents the assembly of the DSSC developed in this work. On the coated
faces of the electrode (sensitized anode and cathode), a small external band was cleaned,
which served as a contact for the electrochemical characterization and was placed in
equidistant positions. For sealing, a small amount of instant glue was applied on the two
faces adjacent to the one that was used as a contact. Finally, the electrolyte was injected
between the two faces, and the cathode and anode were joined together.
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Scheme 1. (a) Schematic representation of DSSC assembly diagram, (b,c) fabricated devices of Alpinia
purpurata and Alstroemeria dyes, respectively.

3. Results and Discussion
3.1. FTIR Spectroscopy

Figure 1 presents the identification of the functional groups of each dye through the
transmittance spectra obtained by FTIR. Analyzing the graph from Figure 1a, it is possible
to observe the hydroxyl functional group (O-H) present in 3313 cm−1, which is due to the
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presence of anthocyanin group, as most of the characteristic peaks are matched with the
previous literature [41,42]. On the side, it is possible to see the wavenumber from 2857 cm−1

to 2932 cm−1 referring to the C-H group asymmetric stretching vibrations, this peak being
characteristic of the anthocyanin base molecule, positively corroborating the effectiveness
of good photosensitization in solar cells, which reveals the characteristic peaks of cyanidin
3-glycosides pigment in the dye sample [43]. The band between 1649 and 1608 cm−1 is
ascribed to the stretching vibrations of -C=C- group in rings of benzene and alkenes. The
small band located at 1241 cm−1 could correspond to -C-O-C- stretching vibrations mode. In
the case of Figure 1b, FTIR demonstrated that the dye contains -C-N, aromatic -C=C, -C=O,
ethers -C-O, and aliphatic -C-H [44]. The stretching vibration at 1637 cm−1 is attributed to
amide -C=O group and the aromatic -C=C absorption at 1511 cm−1 and 1461 cm−1. The
sharp peaks at 2854 cm−1 and 2917 cm−1 indicate -C-H asymmetric stretching vibrations.
Based on the results, it was confirmed that Alpinia purpurata extracted dye contains an
alkaloid compound known as piperine. The FTIR spectra of the dyes extracted from
Alstroemeria and Alpinia purpurata flower petals in the present work were matched with
previous literature [43,44]. The general chemical structure of cyanidin 3-glycosides and
piperine is shown in Scheme 2.
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3.2. UV-Vis Spectroscopy

Through the wavelengths observed in the UV-Vis region, it is possible to evaluate the
absorption transition between the ground state and excited state, as well as the amount of
light energy absorbed by the molecules of the dyes. In the present study, ethanol was used as
a solvent for the UV-Vis analysis of the Alstroemeria and Alpinia purpurata dyes. Figure 2a,b
presents the absorption spectra of dyes extracted from the flowers of Alstroemeria and
Alpinia purpurata. In Figure 2a, the peaks identified at 283 and 331 nm are the near visible
range, which could be due to the absorption of pigments containing cyanidin 3-glycosides
for the case of Alstroemeria. In Figure 2b referring to Alpinia purpurata, it was possible to
observe a wide spectral range in the 267 and 342 nm peaks in the near visible range, which
could be due to the absorption of pigments containing piperine. This region corresponds to
the spectral range of the piperine and cyanidin 3-glycosides molecule, which is considered
the main element present in organic dyes, in order to be used for photosensitization in solar
cells [45]. The wavelengths specifically correspond to the compound cyanidin 3-glycosides
anthocyanin radicals and piperine.

Colorants 2023, 2, FOR PEER REVIEW 6 
 

 

 
Scheme 2. Molecular structure of cyanidin 3-glycosides (a) and piperine (b). 

3.2. UV-Vis Spectroscopy 
Through the wavelengths observed in the UV-Vis region, it is possible to evaluate the 

absorption transition between the ground state and excited state, as well as the amount of 
light energy absorbed by the molecules of the dyes. In the present study, ethanol was used 
as a solvent for the UV-Vis analysis of the Alstroemeria and Alpinia purpurata dyes. Figure 
2a,b presents the absorption spectra of dyes extracted from the flowers of Alstroemeria and 
Alpinia purpurata. In Figure 2a, the peaks identified at 283 and 331 nm are the near visible 
range, which could be due to the absorption of pigments containing cyanidin 3-glycosides 
for the case of Alstroemeria. In Figure 2b referring to Alpinia purpurata, it was possible to 
observe a wide spectral range in the 267 and 342 nm peaks in the near visible range, which 
could be due to the absorption of pigments containing piperine. This region corresponds 
to the spectral range of the piperine and cyanidin 3-glycosides molecule, which is 
considered the main element present in organic dyes, in order to be used for 
photosensitization in solar cells [45]. The wavelengths specifically correspond to the 
compound cyanidin 3-glycosides anthocyanin radicals and piperine. 

 
Figure 2. Absorption spectra of extracted dyes from: (a) Alstroemeria and (b) Alpinia purpurata. 

  

Figure 2. Absorption spectra of extracted dyes from: (a) Alstroemeria and (b) Alpinia purpurata.

3.3. FESEM

The size and morphologies of the TiO2-deposited anode and Pt-deposited counter elec-
trode, respectively, were obtained using SEM, as shown in Figure 3a,b. The semiconductor
TiO2 nanoparticles were homogenously deposited on the FTO electrode surface. The parti-
cle sizes were ~20 to 30 nm (Figure 3a) and demonstrated that every TiO2 nanoparticle was
well connected with appropriate mesoporosity to permit an arrangement of a wide bound-
ary of electrode/electrolyte. Further, the evaluation assigned that the electrode surface
morphology is very rough and could be motivated to improving the adsorption of dye due
to its high irregular surface and surface area. The thickness (depth profile) of the prepared
TiO2 electrode was ~6 µm, as shown in the inset of Figure 3a. Furthermore, the surface
morphology of the nanostructured pt cathode was performed as presented in Figure 3b.
The surface morphology of photoanode was showed a spherical-like structure of less than
50 nm with a small aggregation of Pt nanostructures. The Pt nanostructures improved
the electrocatalytic activity and conductivity of the electron transfer in the photovoltaic
performances in the DSSC device.
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3.4. AFM

The topography and surface roughness of the photoelectrodes were examined by 3-D
AFM, as presented in Figure 4. The TiO2 photoanode and Pt photocathode were exam-
ined by using a non-contact approach. The photoelectrode surface analysis (i.e., surface
roughness) is the basic investigation of the elements, for example the semiconducting TiO2
photoanode and platinum photocathodes performances. The presence of microporous
structure and hollows plays a very important role in coating the semiconducting TiO2
nanoparticles on the FTO surface, which should be mesoporous and uniform, coating the
whole surface of electrode and exclusive of any fractures or big craters [46]. To attain the
good performance of the DSSC, the TiO2 coating should be completely uniform, which
hinders the thin film and the possibility of recombination processes. However, to overcome
this, various parameters are regulated, such as the sample preparation, coating method
and regularity [47]. Furthermore, the DSSCs’ efficiencies primarily depend on the compo-
nents’ construction method. Hence, optimizing each parameter is extremely significant to
achieve higher efficiency. In DSSCs, the semiconducting TiO2 electrode, as one of the main
components, influences the photoelectric performances. Figure 4a shows that the surface
TiO2 photoelectrode was extremely homogeneous with expected root mean square (RMS)
and a surface roughness of ~65 µm. Similarly, the photocathode was performed using the
3-D AFM, as presented in Figure 4b. The nanostructured Pt was homogenously deposited
on the surface of the FTO electrode, forming an excellent conducting cathode. The surface
roughness (RMS) of the Pt counter electrode was 23 nm.

Colorants 2023, 2, FOR PEER REVIEW 8 
 

 

FTO electrode, forming an excellent conducting cathode. The surface roughness (RMS) of 
the Pt counter electrode was 23 nm. 

 
Figure 4. Surface topographical studies of (a) TiO2 electrode and (b) Pt counter electrode. 

3.5. Electrochemical Characterization 
The prepared DSCCs were characterized electrochemically with a solar illumination 

of light intensity (100 mW/cm2). The J-V curves of DSSCs were employed to obtain the 
photovoltaic parameters, such as short-circuit current density (Jsc), open-circuit voltage 
(Voc), fill factor (FF), power maximum (Pmax) and conversion efficiency (η). The efficiency 
(η) and FF were obtained from the below equations: 

FF = Jmax × Vmax/Jsc × Voc (1)

η(%) = Jsc × Voc × FF/IIns × 100 (2)

Figure 5 shows the plot of the open-circuit potential versus short-circuit photocurrent 
density. The short-circuit photocurrent Jsc is obtained using the production and 
accumulation of light-generating carriers, while the sum of forward bias at the cell 
junction owing to the light-generating current provides open-circuit voltage, Voc, for 
DSSCs. The fabricated DSSC photosensitized with Alstroemeria flower extracted dye 
demonstrated the highest Voc (0.39 V), Jsc (2.04 mA/cm2), FF (0.35), Pmax (0.100 mW/cm2) 
and high η (1.74%); while the fabricated solar cell photosensitized Alpinia purpurata 
extracted dye showed Voc (0.53 V), Jsc (0.49 mA/cm2), FF (0.40), Pmax (0.280 mW) and η 
(0.65%). The adsorption of dye on the TiO2 surface of the photoanode, the dye molecular 
structure, photosensitizers efficiency and the dye electron injection capability influence 
the sum of electrons that were photoexcited and, as a result, also influence the 
photocurrent densities of the fabricated DSSCs [48]. Excess molecules of dye adsorb on 
the surface of TiO2, which generates additional photons from sunlight, resulting in rapid 
electron injection. The primary elements that calculate the efficiency of DSSC are Voc and 
Jsc. The open-circuit potential is the variation between the TiO2 electrode Fermi level and 
redox electrolyte potential, which primarily depends on the rate of adsorption mode of 
the photosensitizer and recombination time [49,50]. Thus, the surface adsorption with 
Alpinia purpurata and Alstroemeria flower dyes as a photosensitizer plays a very significant 
function in DSSC fabrication [51–53]. Table 1 shows the comparative photovoltaic 
performances of natural dyes from previous literature. From the obtained results, it is 
evident that the Alstroemeria flower dyes showed higher efficiency compared to the other 
natural dyes, owing to the huge amount of cyanidin 3-glycosides molecule present in the 
extracted dye. 

Figure 4. Surface topographical studies of (a) TiO2 electrode and (b) Pt counter electrode.



Colorants 2023, 2 625

3.5. Electrochemical Characterization

The prepared DSCCs were characterized electrochemically with a solar illumination
of light intensity (100 mW/cm2). The J-V curves of DSSCs were employed to obtain the
photovoltaic parameters, such as short-circuit current density (Jsc), open-circuit voltage
(Voc), fill factor (FF), power maximum (Pmax) and conversion efficiency (η). The efficiency
(η) and FF were obtained from the below equations:

FF = Jmax × Vmax/Jsc × Voc (1)

η(%) = Jsc × Voc × FF/IIns × 100 (2)

Figure 5 shows the plot of the open-circuit potential versus short-circuit photocurrent
density. The short-circuit photocurrent Jsc is obtained using the production and accumula-
tion of light-generating carriers, while the sum of forward bias at the cell junction owing to
the light-generating current provides open-circuit voltage, Voc, for DSSCs. The fabricated
DSSC photosensitized with Alstroemeria flower extracted dye demonstrated the highest Voc
(0.39 V), Jsc (2.04 mA/cm2), FF (0.35), Pmax (0.100 mW/cm2) and high η (1.74%); while the
fabricated solar cell photosensitized Alpinia purpurata extracted dye showed Voc (0.53 V),
Jsc (0.49 mA/cm2), FF (0.40), Pmax (0.280 mW) and η (0.65%). The adsorption of dye on the
TiO2 surface of the photoanode, the dye molecular structure, photosensitizers efficiency and
the dye electron injection capability influence the sum of electrons that were photoexcited
and, as a result, also influence the photocurrent densities of the fabricated DSSCs [48].
Excess molecules of dye adsorb on the surface of TiO2, which generates additional photons
from sunlight, resulting in rapid electron injection. The primary elements that calculate the
efficiency of DSSC are Voc and Jsc. The open-circuit potential is the variation between the
TiO2 electrode Fermi level and redox electrolyte potential, which primarily depends on the
rate of adsorption mode of the photosensitizer and recombination time [49,50]. Thus, the
surface adsorption with Alpinia purpurata and Alstroemeria flower dyes as a photosensitizer
plays a very significant function in DSSC fabrication [51–53]. Table 1 shows the comparative
photovoltaic performances of natural dyes from previous literature. From the obtained
results, it is evident that the Alstroemeria flower dyes showed higher efficiency compared
to the other natural dyes, owing to the huge amount of cyanidin 3-glycosides molecule
present in the extracted dye.
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Table 1. Photovoltaic performances of DSSCs with various natural dyes compared with previous
literature.

Dye JSC
(mA/cm2) VOC (V) FF η (%) Ref.

Jabuticaba 0.38 0.41 0.29 0.13 [34]

Thubergia Erecta 0.27 0.54 0.08 0.38 [35]

Achiote seeds 1.1 0.57 0.59 0.37 [54]

Henna 0.42 0.54 0.38 0.09 [55]

Sorghum Stem 1.69 0.34 0.31 0.18 [56]

Leucanthemum 0.42 0.54 0.27 0.88 [37]

Prickly Pear 1.17 0.56 0.85 0.56 [57]

Carica papaya 1.77 0.40 0.42 0.29 [58]

Chrysanthemum 0.85 0.58 0.48 1.35 [59]

Tropaeolum majus 0.72 0.55 0.70 0.28 [60]

Gerbera 1.22 0.59 0.53 1.54 [41]

Amaranthus cruentus 5.81 0.49 0.28 0.81 [61]

Areca catechu 0.9 0.51 0.63 0.38 [62]

Lantana repens 0.45 0.69 0.34 0.12 [63]

Solidago canadensis 0.93 0.79 0.42 0.31 [63]

Alstroemeria 2.04 0.39 0.35 1.74 this work

Alpinia purpurata 0.49 0.53 0.40 0.65 this work

Figure 6 shows the power versus voltage (PV) curves for DSSCs based on Alpinia
purpurata and Alstroemeria flower extracted dyes, and it can be applied to calculate the
maximum power (Pmax), which is attained by selecting a point from the obtained J-V
curve to the maximum photocurrent (Jmax) and maximum potential (Vmax). Alpinia pur-
purata and Alstroemeria flower extracted dyes demonstrate the power maximum Pmax of
0.100 mW/cm2 and 0.280 mW/cm2, respectively. Figure 7a–d presents a comparative
graph of the photoelectric components amongst the Alpinia purpurata and Alstroemeria
flower extracted dyes-based DSSCs. The good performance obtained in this work was
achieved with the DSSC photosensitized by Alstroemeria, reaching a yield (η) of 1.74%,
obtaining a very satisfactory use in comparison with the sensitizer of Alpinia purpurata of
0.65%, as well as with some dyes used in the literature.
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In order to evaluate the fabricated DSSC devices’ internal impedances, electrochemical
impedance spectroscopy (EIS) was performed, as demonstrated in Figure 8a. The EIS curves
can be associated to the conductive film of FTO electrode substrate internal resistances, Pt
counter electrode charge transfer, electrons transport at the interface of the photoanode
surface (i.e., interfaces between the TiO2 adsorbed photosensitizer and the redox electrolyte)
and, in addition, recognition of the diffusion of the electrolyte process. Furthermore,
all of these results of internal resistances sum up the internal resistance of the DSSC
device [64–68]. An important technique to examine the impedance spectra is using fitting
studies. This technique is likely to draw an equivalent circuit to study the electrochemical
process, followed by executing a fitting of the theoretical components with the experimental
results, thus resulting in original frequency response curves. The raw EIS results and the
resultant equivalent circuits were obtained for Alpinia purpurata and Alstroemeria flower
dyes-based DSSCs, as shown in Figure 8b. The obtained EIS fitting parameters and results
were investigated and are summarized in Table 2. In a higher frequency range, a small
semicircle was ascribed to the charge transfer resistances (R1) of the redox electrolyte
and Pt counter electrode (electrolyte/Pt), and the large semicircle in the lower frequency
region was ascribed to the resistance for the charge transport of the dye-adsorbed TiO2
and electrolyte (R2) interface. The resistance of solution (RS) corresponds to the electrolyte
resistance and the substrate of FTO, whereas R3 is attributed to electrolyte diffusion and
serial ohmic resistance. Table 2 shows that the resistance values of low charge transfer
result in the high short-circuit current density (Jsc) and efficiency (η), corroborating that
the impedance values are low, which leads to high values of the DSSC total efficiency in
Alstroemeria rather than Alpinia purpurata.



Colorants 2023, 2 628

Colorants 2023, 2, FOR PEER REVIEW 11 
 

 

internal resistance of the DSSC device [64–68]. An important technique to examine the 
impedance spectra is using fitting studies. This technique is likely to draw an equivalent 
circuit to study the electrochemical process, followed by executing a fitting of the 
theoretical components with the experimental results, thus resulting in original frequency 
response curves. The raw EIS results and the resultant equivalent circuits were obtained 
for Alpinia purpurata and Alstroemeria flower dyes-based DSSCs, as shown in Figure 8b. 
The obtained EIS fitting parameters and results were investigated and are summarized in 
Table 2. In a higher frequency range, a small semicircle was ascribed to the charge transfer 
resistances (R1) of the redox electrolyte and Pt counter electrode (electrolyte/Pt), and the 
large semicircle in the lower frequency region was ascribed to the resistance for the charge 
transport of the dye-adsorbed TiO2 and electrolyte (R2) interface. The resistance of solution 
(RS) corresponds to the electrolyte resistance and the substrate of FTO, whereas R3 is 
attributed to electrolyte diffusion and serial ohmic resistance. Table 2 shows that the 
resistance values of low charge transfer result in the high short-circuit current density (Jsc) 
and efficiency (η), corroborating that the impedance values are low, which leads to high 
values of the DSSC total efficiency in Alstroemeria rather than Alpinia purpurata. 

 
Figure 8. (a) DSSC device EIS spectra and (b) corresponding equivalent circuit. 

Table 2. Equivalent circuit components with their related errors. 

Dye Rs (Ω) R1 (Ω) R2 (Ω) R3 (Ω) C1 (µF) C2 (µF) C3 (µF) 
Alpinia purpurata 28.34 163.6 24.50 8.097 64.36 71.75 93.45 

 ±0.53 ±1.50 ±9.85 ±8.26 ±3.63 ±4.15 ±5.29 
Alstroemeria 38.56  73.16  15.75 6.017 44.29 144.28 87.43 

 ±0.78 ±1.27 ±0.21 ±1.21 ±2.28 ±3.01 ±3.43 

4. Conclusions 
The novel dyes extracted from the petals of Alstroemeria and Alpinia purpurata flowers 

were used as photosensitizers in DSSC device construction. The identification of 
functional groups and electron excitation were established using FTIR and absorption 
spectroscopy, where it was possible to identify the existence of anthocyanin radicals 
(cyanidin 3-glycosides) in Alstroemeria and piperine in Alpinia purpurata flower extracts. 
Among these photosensitizers, the DSSC fabricated with flower petal extracts of 
Alstroemeria offered a noticeably high photoexcitation, good interaction with 
semiconductor oxide TiO2 and good efficiency. The fabricated DSSC sensitized with 
Alstroemeria flower extract showed a high solar efficiency of 1.74% and Pmax of 0.280 
mW/cm2, whereas the fabricated DSSC sensitized with Alpinia purpurata flower extracts 
showed a solar efficiency of ~0.65% and Pmax of 0.100 mW/cm2. The solar conversion 

Figure 8. (a) DSSC device EIS spectra and (b) corresponding equivalent circuit.

Table 2. Equivalent circuit components with their related errors.

Dye Rs (Ω) R1 (Ω) R2 (Ω) R3 (Ω) C1 (µF) C2 (µF) C3 (µF)

Alpinia purpurata 28.34 163.6 24.50 8.097 64.36 71.75 93.45

±0.53 ±1.50 ±9.85 ±8.26 ±3.63 ±4.15 ±5.29

Alstroemeria 38.56 73.16 15.75 6.017 44.29 144.28 87.43

±0.78 ±1.27 ±0.21 ±1.21 ±2.28 ±3.01 ±3.43

4. Conclusions

The novel dyes extracted from the petals of Alstroemeria and Alpinia purpurata flow-
ers were used as photosensitizers in DSSC device construction. The identification of
functional groups and electron excitation were established using FTIR and absorption spec-
troscopy, where it was possible to identify the existence of anthocyanin radicals (cyanidin
3-glycosides) in Alstroemeria and piperine in Alpinia purpurata flower extracts. Among these
photosensitizers, the DSSC fabricated with flower petal extracts of Alstroemeria offered
a noticeably high photoexcitation, good interaction with semiconductor oxide TiO2 and
good efficiency. The fabricated DSSC sensitized with Alstroemeria flower extract showed a
high solar efficiency of 1.74% and Pmax of 0.280 mW/cm2, whereas the fabricated DSSC
sensitized with Alpinia purpurata flower extracts showed a solar efficiency of ~0.65% and
Pmax of 0.100 mW/cm2. The solar conversion efficiency might be enhanced through the
introduction of ionic liquids-based redox electrolytes instead of organic electrolytes. Gener-
ally, the dyes extracted from natural species as photosensitizers of DSSCs construction are
encouraging due to their biodegradability, low-cost, enhanced efficiency and renewability.
It is concluded that the natural dyes used in this work in the development of DSSCs can be
considered as good sensitizers, creating promising perspectives in the field of emerging
solar cells.
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