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Simple Summary: The rumen is a large organ unique to cattle and other ruminants and is essential
for the ingestion, digestion, and absorption of large quantities of plant-based food. Cattle and likely
all ruminants, however, are not born with a voluminous, functional rumen. There is remarkable
postnatal growth and development in the rumen. This review summarizes the major postnatal
changes in the structure and function of the bovine rumen, the major factors causing these changes,
and, more importantly, the biological mechanisms underlying these changes.

Abstract: The rumen plays an essential role in the physiology and production of agriculturally
important ruminants such as cattle. Functions of the rumen include fermentation, absorption,
metabolism, and protection. Cattle are, however, not born with a functional rumen, and the rumen
undergoes considerable changes in size, histology, physiology, and transcriptome from birth to
adulthood. In this review, we discuss these changes in detail, the factors that affect these changes, and
the potential molecular and cellular mechanisms that mediate these changes. The introduction of solid
feed to the rumen is essential for rumen growth and functional development in post-weaning calves.
Increasing evidence suggests that solid feed stimulates rumen growth and functional development
through butyric acid and other volatile fatty acids (VFAs) produced by microbial fermentation of
feed in the rumen and that VFAs stimulate rumen growth and functional development through
hormones such as insulin and insulin-like growth factor I (IGF-I) or through direct actions on energy
production, chromatin modification, and gene expression. Given the role of the rumen in ruminant
physiology and performance, it is important to further study the cellular, molecular, genomic, and
epigenomic mechanisms that control rumen growth and development in postnatal ruminants. A
better understanding of these mechanisms could lead to the development of novel strategies to
enhance the growth and development of the rumen and thereby the productivity and health of cattle
and other agriculturally important ruminants.
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1. Introduction

Ruminants possess a complex stomach comprised of four compartments: rumen,
reticulum, omasum, and abomasum. Among these, the rumen stands as the largest com-
partment in adult ruminants [1,2]. The rumen has an oval shape, and the adult rumen is
internally divided into different sacs by the inflection of the muscular ruminal walls called
ruminal pillars [2,3]. The inner surface of the rumen is covered with numerous finger-like
projections called rumen papillae (Figure 1), which play an important role in nutrient
absorption and metabolism [1,2]. The rumen plays an essential role in ruminant physiology
and production. However, ruminants are not born with a large, functional rumen. The
rumen grows considerably in mass and size after weaning [4]. The postnatal development
of the bovine rumen can be divided into three phases: the pre-ruminant phase, which
spans the initial two to three weeks when the calf relies solely on milk or milk replacer; the
transitional phase, commencing once the calf begins to ingest solid feed until weaning; and
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the ruminant phase, occurring post-weaning when the rumen attains full maturation, and
the calf uses volatile fatty acids (VFAs), the major products of fermentation, as its primary
energy source [5]. Many of the functions of the rumen such as digestion, absorption, and
metabolism are gained after weaning [3,5–7]. The development of the rumen from the
pre-ruminant phase to the ruminant phase is controlled by a complex interplay of factors
and mediators. These factors and mediators include solid feed, microbes, VFAs, hormones,
and genes. Much research has been conducted to understand how the rumen develops
during the postnatal stage. This review aims to summarize the postnatal changes in the
bovine rumen, the factors affecting postnatal rumen growth and development, and the
biological mechanisms underlying these effects.
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Figure 1. Macroscopic view of the internal surface of the rumen. (A) The rumen of a newborn calf;
(B) The rumen of an adult steer. Note that compared to the newborn rumen, the inner surface of the
adult rumen is covered with large rumen papillae.

2. Histology of the Rumen

Histologically, the rumen wall is composed of tunica mucosa, lamina propria, tunica
submucosa, tunica muscularis, and tunica serosa, from inside to outside [4] (Figure 2A).
Tunica mucosa is the innermost part of the rumen, is non-glandular, and has a superficial
stratified squamous epithelium. The rumen epithelium consists of four cellular layers or
strata: stratum basale, stratum spinosum, stratum granulosum, and stratum corneum, from
base to apex (Figure 2B). Cells in these layers differ in morphology and function [4,8]. The
cells in the basal layer (stratum basale) are columnar and play a role in nutrient absorption,
ketogenesis, energy metabolism, and secretion of immunoglobulins [4,9]. The cells in the
spinous layer (stratum spinosum) and granular layer (stratum granulosum) are multilay-
ered and have the presence of tight junctions, adherens junctions, and desmosomes, which
provide strong adhesion, resist mechanical stress, and maintain structural integrity [4,10,11].
Neither the stratum corneum nor the stratum basale expresses junctional proteins and
hence has no barrier function [12]. The cells of the stratum granulosum lie perpendicular to
the cells of the stratum spinosum [13]. The cells in the outermost layer (stratum corneum)
of the rumen epithelium are highly keratinized and devoid of nuclei, and they serve as
a protective physical barrier against rough, fibrous ingesta, and potentially toxic com-
pounds [10,13]. It is believed that the keratinized cells of the stratum corneum are derived
from the cells of the stratum granulosum. During this transition, granular cells lose their
organelles, including the nuclei, ribosomes, mitochondria, and Golgi apparatuses, and as
such, they cannot proliferate. Subsequently, all cellular filaments along with keratohyalin
and endoplasmic reticulum protein complexes are displaced toward the cell periphery. As a
result, a flattened horny cell with condensed content is formed. This horny cell is enveloped
by the thickened plasma membrane, and during this transformation, only keratinizing
epithelia filaments are retained, which subsequently get converted into a cohesive and
protective keratinized stratum corneum [14].
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calf and stained with hematoxylin and eosin. a: rumen papilla; b: mucosal and submucosal layer;
c: muscular layer; d: serosal layer. (B) Schematic representation of different cellular layers of the
rumen epithelium.

The lamina propria fuses with the submucosa and supports, nourishes, and protects
the mucosal layer [4]. There is an extension of the lamina propria and submucosa into the
papillae [15]. These fused propria-submucosa layers lie beneath the mucosa and contain
blood vessels, nerves, and lymphatic vessels, providing structural support, facilitating
nutrient and oxygen delivery, and regulating physiological and immune functions [4,10].
The tunica muscularis consists of the longitudinal and circular smooth muscular layers
responsible for the movement and contraction of the rumen, promoting effective mixing
and fermentation of feed in the rumen [15]. Recently, telocytes have been identified as
a novel structural component within and between the longitudinal and circular smooth
muscles of the rumen, and they function to support the muscular layer and facilitate
intercellular signaling, either directly or indirectly, through the telocyte network [16]. The
outermost layer of the rumen is the tunica serosa, a thin layer of smooth tissue that functions
to minimize the friction of the rumen with the surrounding organs [4,15].

3. Functions of the Rumen
3.1. Digestion

The rumen itself does not produce enzymes for the breakdown of plants and other feed
eaten by a ruminant; however, it provides a habitat for various microbes, which include
bacteria, protozoa, archaea, and different kinds of fungi that can break down complex plant
and feed materials into readily available products for utilization [17–20]. These microbes
can be categorized as cellulolytic, amylolytic, and proteolytic, responsible for degrading
the cellulose, starch, and protein components of the feed, respectively [19]. Bacteria and
protozoa are responsible for most of the digestion in the rumen, with bacteria accounting
for 80% and protozoa 20% of the digestion [19,21].

Microbial digestion of complex plant polysaccharides produces short-chain fatty acids
(SCFAs), which are also known as volatile fatty acids (VFAs), gases, and heat [19,22,23].
Major VFAs produced by rumen fermentation include acetic acid, propionic acid, and
butyric acid [3,22]. The typical ratio of these three VFAs in the rumen ranges from 75:15:10
to 40:40:20, depending on dietary composition [22]. Major gases produced in the rumen
include methane, ammonia, and carbon dioxide. Microbial digestion of complex polysac-
charides in the rumen also yields lactic acid, formic acid, succinic acid, and other short-chain
monocarboxylic acids [3].
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Rumen microbes can convert esterified plant lipids to unsaturated fatty acids, which
are further converted to saturated fatty acids by biohydrogenation [17,24]. Proteases
and peptidases from rumen microbes diligently degrade feed proteins into peptides and
amino acids, which are then incorporated either into microbial proteins or deaminated
to form VFAs [25]. Microbial proteins are eventually digested and absorbed by the abo-
masum and the small intestines, accounting for 80% of total absorbable proteins in the
ruminants [17,25]. Besides digestion, rumen bacteria can synthesize vitamin B complex and
vitamin K [15,26]. In addition, the rumen epithelium can absorb ammonia and metabolize it
to glutamic acid [27]. The rumen is also involved in waste elimination by moving methane,
carbon dioxide, hydrogen, ammonia, and some other end products of rumen fermentation
and undigested materials to the hindgut [28]. In addition, the rumen is involved in con-
verting the potentially toxic products of rumen fermentation into metabolites that have
less toxicity [29].

Ruminants have a special ability to regurgitate their ingesta from the reticulum to the
esophagus and finally to the mouth for re-mastication, also known as cud chewing. This
allows them to decrease the particle size and more efficiently digest the feed. It is believed
that cud chewing also helps the ruminants provide saliva to maintain optimum rumen pH,
increase the concentration of rumen microbes, and maintain the motility of the rumen [30].

3.2. Absorption of VFAs

The VFAs are the most important products of rumen fermentation. A dairy cow
produces more than 100 moles of VFAs a day in the rumen [31,32]. Nearly 90% of total
VFAs produced in the rumen are absorbed by the rumen epithelium [22]. The remaining
VFAs are absorbed by the reticulum, omasum, abomasum, and to some extent, the small
intestines [33]. The rate of absorption is directly proportional to the increasing chain length
of fatty acids; thus, the rate of absorption of butyric acid is higher than that of propionic
or acetic acid [22,33]. The number and size of the papillae are directly proportional to
the capacity of the rumen to absorb VFAs, as they increase the surface area of the rumen
epithelium [34]. Three sequential processes are involved in the absorption and transport of
VFAs from the rumen (Figure 3). Firstly, equilibration of VFAs occurs between the rumen
and the apical surface of the rumen epithelium. Subsequently, VFAs are absorbed into the
rumen epithelium. Finally, the capillaries in the rumen epithelium remove VFAs from the
basal side of the rumen epithelium into the blood [32,35].

Due to the high concentration of VFAs in the rumen, a concentration gradient of
VFAs exists between the rumen and the bloodstream. This concentration gradient and
the lipophilic nature of the rumen epithelium allow for the passive diffusion of non-
ionized VFAs from the rumen into the rumen epithelium [18,36,37]. Once the non-ionized
VFAs cross the cell membrane, they dissociate into anions and H+, which is the major
source of hydrogen ions that leave the rumen epithelium (Figure 3). These hydrogen
ions are recycled via a process called sodium/hydrogen exchange. Simultaneously, a
bicarbonate ion exchange process occurs, which facilitates the absorption of ionized VFAs
from the rumen into the rumen epithelium [18,31]. Bicarbonate ions are produced by the
rumen epithelium in a considerable amount [38,39]. This process is important for the
absorption of less lipophilic VFAs (e.g., acetic acid) into the rumen epithelium and finally
into the bloodstream [38]. After the VFAs enter the rumen epithelial cells, an extensive
metabolism of them (Figure 3, discussed in more detail later) occurs [40]. The metabolites
of VFAs are absorbed into the bloodstream through a carrier-mediated process facilitated
by downregulated in adenoma (DRA, also known as SLC26A3 or CLCA), pendrin anion
exchanger 1 (PAT1, also known as SLC26A6), and monocarboxylate transporter 1 (MCT1,
also known as SLC16A1) in exchange for chloride and bicarbonate ions [38,39,41–43].
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Figure 3. Schematic representation of absorption and metabolism of volatile fatty acids. CA: carbonic
anhydrase; VFA: volatile fatty acids; ACSS1: acyl-CoA synthetase short-chain family member 1;
ACADS: acyl-CoA dehydrogenase short-chain; ECHS1: enoyl-CoA hydratase, short chain 1; ACAT1:
acetyl-CoA acetyltransferase 1; EHHADH: enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydroge-
nase; HMGCS2: 3-hydroxy-3-methylglutaryl-CoA synthase 2; HMGCL: 3-hydroxy-3-methylglutaryl-
CoA lyase; OXCT1: 3-oxoacid CoA-transferase 1; BDH1: 3-hydroxybutyrate dehydrogenase 1; SDH:
succinate dehydrogenase; MDH: malate dehydrogenase; LDH: lactate dehydrogenase.

3.3. Metabolism of VFAs

According to the older theory, approximately 90% of butyric acid, 50% of propionic
acid, and 30% of acetic acid absorbed from the rumen are metabolized in the rumen
epithelium to provide nearly 70% of the energy needs of a ruminant [22,40]. However,
more recent work suggests that the extent of metabolism of acetic acid and propionic acid,
particularly the latter, in the rumen epithelium might have been overestimated [40]. Acetic
acid is the least metabolized VFA in the rumen epithelium, and partly because of this, it
accounts for more than 90% of total VFAs in the arterial blood [22].

In the rumen epithelium, butyric acid and acetic acid are metabolized to the ketone
bodies acetoacetic acid (AcAc) and β-hydroxybutyric acid (BHB) through ketogenesis
(Figure 3) [4,44,45]. The 3-hydroxy-3-methylglutaryl-coA synthase, which is a rate-limiting
enzyme in ketogenesis, is highly expressed in the adult but absent in the young rumen
epithelium [46]. The rumen epithelium exhibits greater ketogenic activity with butyric acid
than does the liver, which is the major site of ketogenesis in non-ruminant animals [45,47].
Ketone bodies derived from butyric acid and acetic acid are then used to generate energy
in extrahepatic tissues, including the heart, skeletal muscle, adipose tissue, kidney, and
mammary gland [40,48].
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A trace of butyric acid, which is neither metabolized by the rumen epithelium nor by
the liver, enters the adipose tissue or the mammary gland from the bloodstream, and there,
is rapidly oxidized for lipogenesis [22]. In the rumen epithelium, a small proportion (about
5%) of propionic acid is converted to lactic acid and pyruvic acid [4,49] (Figure 3). The
remaining propionic acid is used by hepatic tissue as a substrate for gluconeogenesis [3].
Most of the acetic acid absorbed from the rumen is not metabolized by the rumen epithelium
or the liver and is instead utilized by peripheral tissues [22,50,51]. In the adipose tissue and
mammary gland, acetic acid is a major substrate for de novo synthesis of fatty acids [52].

3.4. Barrier Function

The rumen epithelium is subject to challenges from rumen microbes, toxins produced
by rumen microbes, changes in the ruminal pH, and many other potential adversities. The
multi-layered rumen epithelium functions to efficiently maintain the separation between
the ruminal lumen and blood circulation. This separation is achieved through tightly
controlled selective absorption mechanisms within cells and intercellular junctions between
cells that restrict the paracellular passage of ruminal pathogens and other insults into the
rumen epithelium [38,53]. Besides the intercellular junctions, the immune cells within
and beneath the rumen epithelium provide an “immune barrier” that protects the rumen
epithelium from pernicious stimuli [54,55].

Rumen epithelial integrity and barrier function are achieved mainly through the in-
tercellular junctions in stratum granulosum and stratum spinosum, which include tight
junctions (TJ), adherens junctions (AJ), and desmosomes [56,57]. Tight junctions provide
barrier functions, intercellular communication, cell adhesion, and selective permeability;
adherens junctions and desmosomes provide strong cell adhesion and mechanical anchor-
ing between the cells [58,59]. The keratinized layer present at the upper tip of the rumen
papillae also protects the rumen against abrasion caused by feed particles and changes in
rumen pH [55].

Various tight junction proteins have been identified in epithelial cells of different
species, including claudins, occludin, cingulin, tricellulin, junctional adhesion molecule,
and MarvelD3, which form semipermeable transmembrane along with the adapter protein
and zona occludens 1, 2, and 3 [57,60–62]. Zona occludens link tight junction transmem-
brane proteins to actin cytoskeleton and help maintain the structure and functioning of tight
junctions [58]. In rumen tissue and rumen epithelial cells, researchers have identified the
protein presence of claudins 1, 4, and 7, and occludin [53]. Transcriptomic analyses have re-
vealed the mRNA expression of claudins 1, 3, 4, 7, 12, and 23, cingulin, junctional adhesion
molecules 2 and 3, occludin, and zona occludens 1 and 3 in rumen epithelial cells [7,63]. At
low rumen pH, tight junctions in the rumen epithelium may lose their integrity or function,
allowing harmful microbes to enter the bloodstream [56,64]. To combat this, activation
of toll-like receptors by rumen microbes and their products, such as lipopolysaccharides
(LPS), induces the production of cytokines, which trigger immune cells such as CD4+ T
cells to resist the noxious stimuli [65,66] and the epithelial cells to increase the expression of
zona occludens 1 and 2 [67]. Probiotics such as Lactobacillus plantarum MB452 also enhance
the barrier function of the rumen epithelium by increasing the expression of tight junction
genes [68]. Heat stress affects the rumen epithelial barrier negatively to some extent but
does not completely disrupt it, due to the upregulation of heat shock proteins [69]. In
essence, the strength of the physical barrier of the rumen is intricately linked with the
microbes and immune cells in the rumen.

4. Prenatal Development of the Rumen

During bovine gastrointestinal development, which commences around the 29th day
of gestation, the caudal region of the esophagus undergoes enlargement, leading to the
formation of the definitive stomach compartments, although debates persist regarding the
precise origins of these compartments, with evidence leaning toward development from a
fusiform primordium [70,71]. By the 6th week of gestation, the rumen undergoes significant
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expansion and migrates to the left cephalic region, accompanied by the formation of blind
sacs and spirally twisting vestibule, the narrow caudal portion of the rumen [70,71]. By
around the 58th day of gestation, the dorsal and ventral blind sacs of the rumen expand,
forming small evaginations of the main rumen, which later assume their definitive caudal
position with a transverse notch, known as the caudal groove of the rumen, between
them. During this period before birth, the caudal part of the vestibule develops into
atrium ventriculi, while the cranial region merges with the dorsal sac of the rumen in adult
animals [71]. At the end of the first trimester, the rumen and reticulum occupy the room
between the 7th thoracic vertebrae and the 4th lumbar vertebrae. They extend consistently
between the 3rd trimester and the birth to eventually occupy the abdominal cavity between
the 9th thoracic and the 3rd lumbar vertebrae [72]. This period also witnesses a surge
in cellular proliferation and differentiation within the rumen epithelium, resulting in a
marked increase in cell layers [71,73]. Fully developed conical papillae, while still fused
with the epithelium, are observable by the end of the pregnancy. By this point, the rumen
epithelium already comprises the four layers (Figure 2) [73–75].

5. Postnatal Development of the Rumen

The rumen of a newborn calf is underdeveloped and not functional, and the digestive
functions of the stomach are primarily performed by the abomasum, the largest part of the
stomach at birth [4,6]. In pre-weaning ruminants, the ingested colostrum, milk, or milk
replacer bypasses the rumen, reticulum, and omasum and goes directly from the esophagus
to the abomasum through the esophageal groove [4,6,76]. The esophageal groove, also
known as the reticular groove, is formed by the muscular fold of the reticulum and is a
reflex response triggered by suckling [77]. The rumen epithelium of a newborn calf lacks
keratinization and ketogenic activity, and the rumen of a newborn calf lacks an established
microbial community [4]. The primary energy source for the neonatal rumen epithelium
is derived from nutrients absorbed in the small intestine. Glucose, along with fatty acids,
is considered a key energy substrate for the immature rumen epithelial tissue, especially
before active fermentation begins in the rumen [78]. During postnatal life, the rumen
undergoes significant changes, including increased muscle mass, epithelial growth, visible
papillae formation, and colonization of microbial communities [20]. The length and width
of rumen papillae increase with ages from birth to one year of age in cattle (Figure 4). The
size of rumen papillae and the thickness of the rumen wall are often used as indicators
of the degree of rumen development [79]. As the rumen matures, it gains the ability to
metabolize VFAs and use VFAs instead of glucose as the major source of energy [80].

As a result of postnatal development, the proportions of the reticulorumen, omasum,
and abomasum in the entire stomach undergo significant changes, shifting from 38%, 13%,
and 49% at birth to 61%, 13%, and 25% at 8 weeks of age, and reaching 67%, 18%, and 15%
at 12–16 weeks of age [76,81,82].
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6. Factors Affecting the Postnatal Development of the Rumen
6.1. Diet

When fed exclusively milk, calves had limited rumen development; however, in-
creased intake of solid feed accelerated rumen development in calves [91]. Rumen papillae
grew in weaned calves but not in sucking and milk-continued calves [92]. Calves weaned
earlier with higher solid feed intake showed more advanced rumen epithelial, papillary,
and muscular growth in the rumen [6,93,94]. Lambs raised on a milk replacer alone showed
limited metabolic maturation, while those weaned onto solid feed demonstrated increased
VFA concentrations in the rumen and larger rumen papillae [91]. The proliferation rate of
cells in the stratum basale was higher in calves fed milk replacer combined with a starter
diet than in calves fed milk replacer alone [94]. All these data support the stimulatory effect
of solid feed on rumen development in calves.

As mentioned earlier, when milk or milk replacer is drunk by a calf, it bypasses the
rumen through the esophageal groove and directly enters the abomasum. Direct infusion
of milk into the rumen promoted the growth of rumen papillae in calves, probably due
to the availability of substrate for fermentation in the rumen [93]. However, it has also
been reported that the introduction of liquid feed into the rumen within the first two weeks
of birth can cause defective fermentation and, as a result, digestive disturbances such as
ruminal acidosis and bloat occur, which can sometimes be fatal [77,95].

When inert substances such as nylon bristles, plastic tubes, and wood shavings,
which are incapable of undergoing fermentation, were directly inserted into the rumen,
it resulted in effective muscular growth in the rumen wall but no significant growth of
rumen papillae [6,93]. The surface area of rumen papillae increased in a dose-dependent
manner when dairy cows were fed different doses of rumen-fermentable organic matter
during lactation and dry periods [96]. These findings suggest that the stimulatory effect
of solid feed on rumen papillary growth is primarily attributed to the presence of active
fermentation in the rumen, while the effect of solid feed on the growth of rumen muscle is
probably due to the physical form of diet activating the stretch receptors in the muscular
wall of the rumen [76,97,98].

6.2. Volatile Fatty Acids

As calves consume solid feed, rumen fermentation begins, and, as a result, rumen
concentrations of VFAs rise. It has been widely believed that VFAs, particularly, butyric acid,
mediate the effect of solid feed intake on rumen development [76,97,99]. Supplementation
of sodium butyrate in calf starter promoted rumen development in newborn calves [85].
Intraruminal infusion of sodium butyrate increased the length of rumen papillae, the
thickness of the stratum corneum, and the overall size of the rumen epithelium [100].
Sheep with rapid infusion of butyric acid showed greater mitotic activity in the rumen
epithelium than sheep with slower infusion of butyric acid [101]. The expression of genes
responsible for apoptosis, Caspase-3, and Bax, were significantly reduced in lambs fed
sodium butyrate [100]. Volatile fatty acids stimulate rumen epithelial growth by increasing
cell proliferation while reducing apoptosis [102,103].

VFAs influence the proliferation and apoptosis of rumen epithelial cells through vari-
ous mechanisms. Dietary supplementation of ketone bodies, particularly β-hydroxybutyric
acid (BHB), enhanced the growth of rumen epithelium [104], suggesting that butyric acid
stimulates the growth of rumen epithelium through its metabolite BHB. Butyric acid and
propionic acid might stimulate rumen papillary proliferation also by increasing blood flow
through the rumen wall [76,105]. Butyrate can function as a histone deacetylase inhibitor to
increase histone acetylation and thereby gene expression. There was a correlation between
the production of acetic acid and butyric acid and the expressions of genes including
MAPK1, PIK3CB, TNFSF1, ITGA6, SNAI2, SAV1, and DLG in rumen epithelium, all of
which are related to cell growth [100]. Butyric acid has been shown to increase the expres-
sion of CCND1, CDK4, and PPARA, genes that promote cell cycle progression and lipid
metabolism [97,106,107]. Thus, butyric acid might stimulate rumen epithelial growth by
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directly affecting the expression of genes involved in cell proliferation and metabolism
through its histone deacetylase inhibitory activity.

6.3. Rumen Microbiota

As discussed above, the growth of rumen epithelium in postnatal ruminants is primar-
ily driven by active fermentation and the production of VFAs within the rumen. Rumen
fermentation and production of VFAs are facilitated by a diverse array of microflora con-
sisting of bacteria, fungi, protozoa, and archaea, which colonize the rumen from maternal
contact, environmental exposure, and feed intake [1,23,108]. These microorganisms per-
form fibrolytic, amylolytic, cellulolytic, and proteolytic activities [109]. The establishment
of rumen microbiota is influenced by both host genetics and external environmental factors.
The colonization of the rumen by microbiota can be observed as early as the first day of
birth, transitioning from aerobic to facultative anaerobic and finally to strictly anaerobic
bacteria as the animal matures [110,111].

The diverse microbial consortium operates cooperatively, fostering a conducive envi-
ronment for fermentation and digestion, thereby influencing rumen growth. A correlation
exists between ruminal VFA production and bacterial population [112]. Additionally,
there is a correlation between the relative abundance of microbial communities and the
expression of genes involved in various metabolic functions and molecular processes in
rumen tissue [87]. Various taxa present in the rumen are responsible for the production
of different enzymes that mediate the degradation of complex dietary materials and plant
polysaccharides such as starch to glucose and finally VFAs [113]. Microflora in the rumen
also interact with the host’s immune system, modulating various pathways to strengthen
it [54,114]. Furthermore, the interaction between rumen microflora and the host contributes
significantly to the regulation of the rumen’s barrier function and pH levels [54]. Some
rumen bacteria have been found to digest keratinized epithelial cells, which promotes the
growth of new cells in the rumen epithelium [115].

6.4. Hormones

Hormones and growth factors have significant effects on the growth and body com-
position of ruminants, and it would be unwise to disregard their involvement in rumen
development and maturation. Insulin has long been suspected to mediate the stimulatory
effect of VFAs on the proliferation of rumen epithelial cells in vivo [116]. This notion is
supported by multiple lines of evidence. The promoting effect of butyric acid and propionic
acid on rumen epithelial growth was associated with improved insulin sensitivity [117].
Infusion of insulin significantly stimulated cell proliferation in the rumen epithelium [116].
Treatment of primary rumen epithelial cells with insulin arrested the inhibitory effect of
butyric acid on cell proliferation in vitro and increased the DNA synthesis of the cultured
cells in a dose-dependent manner [118]. Nevertheless, not all studies support the role of
insulin in mediating the effect of VFAs on rumen growth. For example, Wang et al. found
that supplementation of isobutyric acid stimulated rumen development but was associated
with decreased blood concentration of insulin in calves [119].

Calves weaned earlier (meaning transitioning to solid feed earlier) showed signifi-
cantly more growth of the rumen and had higher concentrations of plasma insulin-like
growth factor I (IGF-I) than calves weaned later [120]. Similar results were demonstrated
in sheep [121]. The stimulatory effect of high-concentrate diets on the growth of rumen
papillae was associated with increased systemic IGF-I concentration and increased binding
of IGF-I to rumen epithelial IGF-I receptors in goats [121]. Supplementation of isobutyric
acid increased rumen development and ketogenesis in calves in a dose-dependent manner,
and these increases were accompanied by increased blood concentrations of IGF-I [119].
IGF-I stimulated the proliferation of rumen epithelial cells in vitro [121,122]. These obser-
vations suggest that intake of solid feed or butyric acid might stimulate rumen growth
by circulating IGF-I [123]. However, short-term intraruminal infusion of butyric acid in
castrated bulls increased the size of rumen papillae without increasing the concentration of
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plasma IGF-I [124], arguing against the role of IGF-I in mediating the effect of solid feed
intake or VFAs on the growth of rumen epithelium.

Leptin is a hormone predominantly produced by fat and plays a central role in reg-
ulating appetite and energy balance [125]. Interestingly, leptin mRNA was expressed
at elevated levels in the rumen and other stomach chambers in calves, indicating a po-
tential involvement of leptin in the initiation of rumen development [126]. Ghrelin, a
peptide hormone, is synthesized in the stomach and regulates growth hormone release,
appetite, gastrointestinal motility, nutrient absorption, and energy balance in monogastric
animals [127,128]. In lambs, ghrelin mRNA is abundantly expressed in the rumen [128],
and this suggests a possible paracrine or autocrine action of ghrelin in the rumen. However,
the role of ghrelin in postnatal rumen growth is not supported by the data indicating that
rumen expression of ghrelin was not different between calves and adult cattle [126].

Epidermal growth factor (EGF) is a growth factor known for its function in regulating
epithelial cell proliferation, morphogenesis, and tight junctions in the intestines [97,129].
Proliferation of rumen epithelial cells was stimulated by EGF in vitro [130]. EGF increased
mRNA expression of tight junction proteins claudin 1 and occludin in the rumen [129].
These results support the potential role of EGF in regulating epithelial cell proliferation
and tight junctions in the rumen.

Transcriptomic analyses suggested that transforming growth factor-β might be another
hormone mediating the growth of rumen epithelium from pre-weaned to post-weaned
calves [131]. Similarly, integrated analysis of differentially expressed long non-coding
RNAs and mRNAs revealed thyroid hormone as another candidate hormone that mediates
rumen development in postnatal animals [132,133].

6.5. Weaning

Weaning refers to the transition of young ruminants from dependency on maternal
milk or milk replacer to consuming solid feed. Most calves start to consume solid feed after
two weeks of age, and the intake of solid feed increases in an inverse relationship with the
intake of milk [5,134]. Natural weaning starts when milk alone is insufficient to supply the
daily requirements of the calves. This process is accompanied by a gradual reduction in the
maternal–filial bond and rejection of dam to nurse the calves, forcing the calves to search
for other sources of food [135].

While calves are naturally weaned at the age of six to nine months, it has become a
common practice in cattle production to separate calves from dams earlier, as early as at the
age of 6 weeks [136–138]. One of the benefits of early weaning is early maturation of the
rumen [137–140]. However, as discussed earlier, early weaning could increase the risk of
calves suffering from acidosis and other digestive disorders in later life. The development
of the rumen following weaning is primarily attributable to the increased availability of
substrate for fermentation, leading to the production of VFAs within the rumen. The pace
of weaning also influences the development of the rumen. A recent study found that
calves weaned gradually showed greater feed intake, higher body weight gain, increased
immune functions, higher serum concentrations of β-hydroxybutyric acid, whereas calves
weaned abruptly showed higher serum concentrations of non-esterified fatty acids and
higher expression of inflammation-related genes such as IL-1β, IL-6, TNF-α, NF-κB, and
ICAM in the liver or jejunum, indicating a more functional rumen in the former than the
latter [141,142]. Weaning also changes the expression of genes related to rumen epithelial
cell proliferation, molecular transport, and energy metabolism [138]. It is advocated that
calves are gradually weaned over a period of two to three weeks at around three months
of life for smooth transitioning from pre-ruminants to ruminants [138,140,143]. Interested
readers can refer to previous reviews by Khan et al., Kertz et al., and Ghaffari and Kertz for
recommended forms and amounts of solid feed intake for calves [134,144,145].
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6.6. Other Factors

Feeding pasteurized colostrum and milk to neonatal calves has a significant positive
impact on their overall health status; calves fed pasteurized colostrum and milk products
developed fewer or no respiratory and digestive pathologies compared to those fed un-
pasteurized products [146,147]. However, feeding pasteurized milk and milk products
has been associated with lower rumen mass compared to calves fed whole milk or milk
replacers during the weaning phase (60 to 180 days of age) [148]. Feeding pasteurized
colostrum and milk products to calves had conflicting effects on the composition of the
ruminal microbiome [147].

Probiotics, prebiotics, synbiotics, growth promoters, and digestive enzymes fed to
ruminants can affect rumen development indirectly by affecting the digestion of feed and
production of VFAs in the rumen [76,84,149]. Supplementing calves’ diet with microbes
or probiotics such as Bacillus licheniformis, Saccharomyces cerevisiae, Bacillus subtilis natto,
Lactobacillus plantarum, and live or hydrolyzed yeast has the potential to enhance rumen
development by influencing the microbial community and digestion in the rumen [150–152].
The addition of inulin to whole milk of calves increased the length and width of the rumen
papillae [84]. Antibiotics added to feed to increase the productivity of animals could
modulate the development and function of the rumen [153,154]. Including pectinase in the
diet of lambs increased the production of major VFAs in the rumen, suggesting its effect on
rumen development or function in young ruminants [155].

The development of the rumen is influenced by various pathological conditions,
including digestive pathologies. Experimental infection of pre-weaned dairy calves with
salmonellosis, a major causative agent of digestive problems in the calves, has been shown
to negatively affect the growth of ruminal papillae [156]. Similarly, digestive issues induced
by the higher intake of lactose, either in milk or in milk replacers in young calves, result in
delayed or lesser growth of the rumen compared to those without digestive problems [157].
In adult steers, gastrointestinal toxicosis or acidosis has been observed to cause serious
degeneration of the ruminal epithelium; such pathologies can alter the acid-base balance of
the rumen, disrupt its microbial ecosystem, and impair its absorptive capacity, ultimately
inhibiting rumen development [34,158,159].

7. Genes Involved in Rumen Growth and Development

Structural and functional development of the rumen can be eventually attributed
to changes in gene expression in the rumen. The expression of 6 transcription factors
(OTX1, SOX21, HOXC8, SOX2, TP63, and PPARG) and 16 ruminant-specific conserved
non-coding elements (RSCNEs) contributes significantly to differentiating the rumen from
the esophagus [160]. Functioning as enhancers or silencers, RSCNEs contribute to pre-
and post-transcriptional regulation, modulation of genes associated with morphological
and physiological traits, and chromatin architecture, and play a crucial role in shaping the
distinctive features of the rumen [132,161,162]. Zhang et al. identified 6048 differentially
expressed genes (DEGs) in the rumen among neonatal, young, and adult cattle [163]. In
experiments conducted by other groups, 2048 rumen DEGs were identified between 1-day-
and 56-day-old calves, and 871 rumen DEGs were found between suckling and weaned
calves [80,164]. Micro RNAs (miRNAs) are small noncoding RNAs that play an important
role in post-transcriptional regulation of gene expression. A total of 132 miRNAs were
differentially expressed in the rumen between the pre- and post-weaning calves [161].

It is safe to say that the development and functional maturation of the rumen relies
on the coordinated expression of various genes involved in diverse molecular functions
and biological processes. Genes such as CCNB1, CCNB2, IGF1, IGF2, HMGCL, BDH1,
ACAT1, and CREBP could play important roles in driving rumen development because
they are known to function in cell proliferation and fatty acid metabolism, and they were
expressed at higher levels in the adult cattle than calf rumen [163]. Genes encoding the
IGF binding proteins IGFBP2, IGFBP3, and IGFBP6 were expressed at higher levels in
the rumen of suckling and milk-continued calves than that of weaned and solid feed-fed
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calves [92]. Furthermore, the expression levels of IGFBP2, IGFBP3, and IGFBP6 negatively
correlated with the growth of rumen papillae [92]. IGFBPs in general function to block the
binding of IGF-I to its receptor. These gene expression data support the hypothesis that
reduced expression of IGFBP genes in the rumen contributes to solid feed-induced growth
of rumen papillae in post-weaning animals, perhaps by increasing the mitogenic action of
IGF-I on rumen epithelial cells. Interestingly, in at least one study, IGFBP5 was found to be
upregulated during the growth of rumen papillae [164]. Perhaps IGFBP5 has the ability to
regulate the growth of rumen papillae independent of IGF-I.

Members of the ruminant-specific PRD-SPRRII gene family were expressed at signif-
icantly higher levels in the mature than immature rumen [165]. Genes such as ACTG2,
ILK, and KIF4A, which are involved in cell skeleton regulation, cell adhesions, and cell
organization, were among the genes expressed at higher levels in adult rather than young
ruminants [97,166,167]. Similarly, FABP7, FABP3, ILK, PDGFA, HMGCS2, and AKR1C1
were differentially expressed between the immature and mature rumen [87,168]. Rumen
expression of FABP3 was downregulated in weaned calves compared to pre-weaning
calves [169]. The upregulation of FABP3 is linked with inhibition of cell growth and pro-
liferation, suggesting a possible role for the FABP3 gene in inducing the proliferation of
rumen epithelial cells in post-weaning calves [168,169]. MCT1 (SLC16A1), PAT1 (SLC26A6),
ACAT1, HMGCS2, HMGCL, ACAA1, ACAA2, CA4, PPARA, PPARG, SLC26A3, and
other members of the SLC family are highly expressed in the adult rumen [80,112,170].
These genes participate in rumen development and functional maturation by facilitating
the transportation of VFAs from the ruminal lumen to the rumen epithelial cells and to
the bloodstream, or by facilitating beta-oxidation and ketogenesis of VFAs in the rumen
epithelium [164,169].

Members of the claudin (CLDN) family, CLDN1, CLDN4, and CLDN7, are highly
expressed in the rumen [53], and they may be of prime importance in maintaining the
integrity of the rumen epithelium because they encode tight junction proteins [171]. Simi-
larly, genes coding for tight junction-associated proteins MarvelD3, occludin, and tricellulin
likely play a role in maintaining the structural integrity and epithelial barrier function of the
rumen too [61]. Genes DMRT2, WDR66, COL7A1, EVPL, KRT14, F2RL1, TMPRSS13, and
TMPRSS11A participate in the cell junction biological process, are upregulated in the adult
rumen [80] and, therefore, may also contribute to the barrier function of the adult rumen.

CEBPB, S100A9, CCL20, CXCL8, TNF, NFKBIA, LBP, PGLYRP2, MUC1, SOCS1,
SOCS3, and CCDC3 activate the innate immunity in the rumen [80]. BPIFA1, part of
the BPI-like protein family, plays a role in the innate immunity of the epithelial mucosa [97].
These genes are likely involved in both the development and health of the rumen.

8. Conclusions

The proper development of the rumen, particularly the rumen epithelium and papillae,
is crucial for the physiology and production of cattle and other ruminants. While the
rumen of newborn calves shares anatomical and histological similarities with that of
adult cattle, the rumen undergoes significant development during postnatal life, especially
after weaning. The rumen encompasses remarkable physical and functional changes
in postnatal animals. Physically, the rumen grows in mass and size; functionally, the
rumen gains the ability to ferment feed into VFAs (because of colonization of microbes and
intake of solid feed), absorb VFAs, metabolize VFAs, and protect against potential insults
from the fermentation. Among the various factors influencing postnatal rumen growth
and functional maturation, a solid diet stands out as the most significant. Introducing
solid feed to the rumen is essential for its growth and functional development in young
ruminants. Solid feed stimulates rumen growth and functional development through VFAs,
especially butyric acid, produced by rumen fermentation. Butyric acid and other VFAs
stimulate rumen growth and functional development through both direct and indirect
mechanisms. In direct mechanisms, butyric acid and other VFAs stimulate cell proliferation
and metabolism in rumen epithelial cells by altering the expression of genes critical for these
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processes. In indirect mechanisms, butyric acid and other VFAs stimulate cell proliferation,
and metabolism by increasing the concentration and/or action of circulating insulin-like
growth factor-I (IGF-I), insulin, and perhaps other hormones and growth factors on the
rumen. While these mechanisms have been proposed repeatedly in the literature, they
await validation through carefully designed studies. A deeper understanding of how diet
and other factors affect rumen development, growth, and function at the cellular, molecular,
genomic, and epigenomic levels may help devise novel or more effective management
practices to enhance rumen development and functional maturation in cattle and other
agriculturally important ruminants.
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