
Supplementary document S2: Key omics features in predictive models 

Unsupervised approach to omics analysis   
 In order to identify omics features serving as predictors for BMI and to conduct 
multi-omics analysis, we employed sparse Partial Least Squares regression — a 
supervised method that transforms thousands of omics features into a new low-
dimensional space of latent components. As an alternative to the supervised approach, 
we adopted the Multi-Omics Factor Analysis (MOFA), which operates within a factor 
analysis model framework designed for integrating multi-omic datasets. Similar to 
Principal Component Analysis, MOFA infers an interpretable low-dimensional 
representation in terms of a few latent factors [1] and does not require training data.  
 We used the MOFA2 R package to analyze omics data from obese and healthy 
patients. Each individual omics dataset, as well as every combination of omics datasets, 
served as input for the MOFA method, utilizing default settings. The latent factors 
identified through the MOFA method were employed to categorize patients into four 
groups (underweight, normal, overweight, obese) using the Partitioning Around 
Medoids (PAM) method. A qualitative assessment was conducted to evaluate how the 
obtained sample clustering corresponded to the ground truth, employing the adjusted 
Rand index. Results are presented in the Table below. 
Dataset Adjusted Rand index 
Proteomics 0.120 
Metabolomics 0.038 
Genomics 0.003 
Proteomics + Metabolomics -0.030 
Metabolomics + Genomics 0.003 
Proteomics + Genomics -0.007 
Proteomics + Metabolomics + Genomics 0.003 

 
 We report that according to unsupervised approach to factor analysis via MOFA, 
proteomics data were the best predictors of patient clustering (adjusted Rand index 
R=0.12) as compared to metabolomics (adjusted Rand index = 0.038). This confirms our 
findings for the supervised approach performed using the supervised method (sPLS). 
However for genomics, as well as for any multiomics combinations, latent factors 
identified via MOFA failed to cluster patients into obesity-related groups with adjusted 
Rand indexes almost equal to zero.  

 

 Key proteins in predictive models 
Serpins: SERPINA1 and SERPINF1 encoded proteins 
Serpins are a class of proteins that act as inhibitors of chymotrypsin-like serine 

proteases. Two notable members of this protein family, alpha-1-antitrypsin (P01009) and 
pigment epithelium-derived factor (P36955), have been implicated in the context of 
obesity. Reduced levels of alpha-1-antitrypsin in the blood serum, coupled with elevated 
levels of neutrophil elastase (which is inhibited by alpha-1-antitrypsin) in adipocytes, 
contribute to obesity development. Alpha-1-antitrypsin anomalies are associated with 



chronic obesity-related inflammation, adipose tissue remodeling, insulin resistance, and 
liver steatosis [2]. 

Similarly, pigment epithelium-derived factor, glycoproteins abundantly secreted 
by adipocytes, is suggested as a potential mediator of obesity-induced insulin resistance 
[3]. Proteomic studies have indicated a P36955 as a potential marker of 
inflammation [3,4]. 

Complement system: C7, C9, CFH, and C4BPA encoded proteins 
Intensified inflammation is implicated in cardiometabolic conditions. Initially 

perceived as an antimicrobial defense, the complement system's evolving role includes 
immune complex clearance, tissue regeneration, and metabolic regulation [5]. 

Complement gene perturbations and tissue remodeling are observed in obesity 
and non-alcoholic fatty liver disease (NAFLD). Specifically, C9 gene expression (P02748) 
decreases across NAFLD stages, with reduced C9 in obesity and nonalcoholic 
steatohepatitis [6,7] Chronic elevation of C7 (P10643) is also associated with metabolic 
syndrome and obesity [8]. 

Complement factor H (P08603, fH) maintains complement homeostasis and 
restricts complement action to activating surfaces. Accelerated alternative pathway 
activation, facilitated by fH, is suggested as a link between obesity and metabolic 
disorders [9–11].  

C4-binding protein, a large and abundant plasma glycoprotein, increases its alpha-
chain isoform during inflammation. Alpha-chain (P04003) сontrols the classical pathway 
of complement activation and possesses binding sites for various molecules (serum 
amyloids, heparin, low-density lipoprotein receptor-related protein, and bacterial 
surfaces). This multifaceted binding capability underscores the significance of C4BPA in 
inflammation, lipid metabolism, and coagulation pathways. Deviations in C4BPA 
expression are linked to obesity [12,13], including obesity [14], highlighting its potential 
as a therapeutic target for obesity-related pathologies. 

Apolipoproteins: APOD and APOA4 encoded proteins 
Apolipoproteins are pivotal in obesity, impacting lipid metabolism, energy 

expenditure, and inflammation—key factors in obesity development [15].  
ApoA4 (P06727), the third most abundant apolipoprotein in high-density 

lipoproteins, promotes cholesterol efflux, thermogenesis, and insulin sensitivity, thereby 
reduces inflammation. With anti-oxidative and anti-inflammatory properties, ApoA4 
potentially contributes to cardiovascular protection. Fasting plasma ApoA4 levels are 
higher in obese individuals than their lean counterparts, [16]. On the other hand, Post-
Roux-en-Y gastric bypass surgery leads to a significant increase in ApoA4 levels due to 
its impact on gastric emptying and satiety [17].  

The situation is even more intricate with ApoD (P05090), which does not share 
significant homology with canonical apolipoproteins and is structurally similar to 
lipocalins responsible for transporting lipids. Its anti-inflammatory function is still under 
exploration. However, the upregulation of the ApoD gene has been linked to decreased 
oxidative stress and inflammation in various pathologies, including Alzheimer’s disease, 
Parkinson’s disease, and cancer. High levels of ApoD have also been associated with 
better metabolic health in morbidly obese women. Impressive research [18] using a 



mouse model has allowed for speculation on potential mechanisms by which ApoD 
regulates body weight and energy homeostasis through increased energy expenditure, 
although further evidence is needed from other biological models. Additionally, 
overexpression of ApoD in the hypothalamus has been found to cause leptin resistance 
without manifesting weight gain or hyperphagia [19]. 

 Furthermore, the study in fruit flies suggested ApoD’s link to anti-oxidation and 
anti-stress activities, contributing to lifespan expansion [20]. In young-onset obesity, 
ApoD's association with age and neurological health suggests potential roles in lipid 
metabolism and aging [20].  

Antioxidants: GPX3 and PON1 encoded protein  
Oxidative stress, implicated in obesity, forms a feedback loop affecting white 

adipose tissue deposition and food intake [21]. Genomic analysis revealed associations 
between mutations in antioxidant enzyme families GPx and PON and obesity risk in a 
pediatric cohort. This observation is supported by disrupted serum concentrations of 
PON1 (P27169) and GPX3 (P22352) are disrupted in cases of human obesity and 
metabolic disorders [22,23]. 

PROS1 encoded protein 
Protein S (P07225), a non-enzymatic cofactor for activated protein C, aids in 

inactivating pro-coagulant factors. Present in blood plasma in free and C4-binding 
protein complexes [24], it sparks interest in understanding obesity-associated metabolic 
aberrations. A diet efficacy study suggested it as a potential biomarker for successful 
weight maintenance under a high protein/low glycemic index diet [25]. 

In a study involving Japanese middle-aged obese women, total and free protein S 
antigen levels correlated with key biological molecules (e.g., triglycerides, total 
cholesterol, protein C), while no correlation was observed with BMI, visceral fat, and 
blood pressure [26]. 

A2M encoded protein  
Alpha-2-macroglobulin (P01023) is a unique protein interacting with various 

endopeptidases. As a substrate for endopeptidases, P01023 lures active proteases into 
molecular cage for elimination. Besides regulating proteolysis, it contributes to immunity 
[27]. With highly conserved and widespread evolutionary properties, P01023 is 
implicated in various diseases. Elevated plasma levels of P01023 are associated with 
obesity, type 2 diabetes, chronic viral hepatitis, and various metabolic conditions, 
including dyslipidemia and steatosis [28,28,29]. 

AHSG encoded protein 
Fetuin A (P02765) is a versatile plasma protein that acts as an insulin receptor 

tyrosine kinase inhibitor and indicates liver function. Its association with metabolic 
syndrome and type 2 diabetes complications is well-documented [30,31]. While fetuin 
A's correlation with BMI remains unclear [32,33], there are studies highlighting links 
between elevated levels of P02765, BMI and waist circumference [34]. 
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