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Simple Summary: Stroke is a devastating condition that leads to significant morbidity and mortality
worldwide. To enhance our understanding of stroke pathophysiology and improve patient outcomes
orldwides, it is crucial to explore high-throughput omics approaches and integrate multi-omics
data. In this study, we propose a graph-based integrative approach to identify stroke-related gene
expression changes using blood samples from ischemic stroke patients. Our goal is to discover
biomarkers that can aid in the diagnosis, etiological classification, and management of stroke.

Abstract: Recent advancements in high-throughput omics technologies have opened new avenues for
investigating stroke at the molecular level and elucidating the intricate interactions among various
molecular components. We present a novel approach for multi-omics data integration on knowledge
graphs and have applied it to a stroke etiology classification task of 30 stroke patients through the
integrative analysis of DNA methylation and mRNA, miRNA, and circRNA. This approach has
demonstrated promising performance as compared to other existing single technology approaches.

Keywords: ischemic stroke; methylation; mRNA; circRNA; miRNA; multi-omics; biomarkers; graph
neural networks

1. Introduction

Stroke represents a substantial burden on contemporary healthcare frameworks, sig-
nificantly contributing to mortality and morbidity [1]. At present, the identification of
stroke largely relies on clinical assessments and imaging techniques. These methods,
guided by the TOAST classification system, enable the determination of stroke etiology
in approximately 75–80% of instances [2]. However, for the remaining 20–25% of stroke
events, the precise causative factors remain elusive. It has been hypothesized that around
25–30% of these cases with undetermined origins might be attributed to paroxysmal atrial
fibrillation (PAF) [3]. Accurately identifying the etiology of acute ischemic stroke (AIS)
subtypes is crucial for guiding appropriate secondary prevention strategies. For instance,
anticoagulation is recommended for cardioembolic strokes (CE), which are often linked
to atrial fibrillation, while antiplatelets are advised for strokes that are due to large artery
atherosclerosis (LAA). This underscores the growing necessity for biomarkers that can
reliably determine the cause of stroke in a clinical setting.

Biomarkers serve as objective measures for evaluating normal or pathological states,
monitoring therapeutic responses, and forecasting clinical outcomes. These include diverse
biological entities such as proteins, ribonucleic acids (RNAs), lipids, and metabolites.

Recent research has focused on the application of different technologies to characterize
the composition of thrombi, even at the single-cell level [4–7], and many studies have tried
to identify genetic biomarkers in blood both for onset and outcome predictions [8–10].
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The techniques employed include, but are not limited to, proteomics, metabolomics,
and transcriptomics, which are often applied in combination. While a multitude of statistical
methods have been formulated to independently analyze large-scale, high-quality omics
data, these methods, focusing on singular omics levels, often fail to consider the interplay
among various molecular entities. This isolated approach risks overlooking biologically
pertinent information. As a result, the translation of these biomarkers into clinical practice is
hindered by their low sensitivities and specificities, and there currently exists no biomarker
that simultaneously meets the criteria of high sensitivity, specificity, rapidity, accuracy, and
cost-effectiveness for routine stroke management.

The integrated analysis that combines data from diverse omics approaches is in-
creasingly recognized as vital [11]. The integration of this multi-omics data enables a
comprehensive view across various biological levels, significantly enhancing our compre-
hension of the underlying biological mechanisms at play, and it has started being applied
to stroke research [12].

Several common strategies are typically employed for multi-omics data integration
and analysis:

• Correlation Analysis: This approach involves assessing the pairwise correlations between
omics datasets. By examining the co-variation patterns between different types of omics
data, researchers can identify relationships and potential regulatory mechanisms.

• Dimensionality Reduction Techniques: Dimensionality reduction techniques, such as
principal component analysis (PCA) and independent component analysis (ICA), are
used to reduce the high-dimensional nature of omics data. These techniques extract
relevant features and capture the major sources of variation within the data, facilitating
data integration and visualization.

• Integrative Clustering: Integrative clustering methods aim to identify clusters or
subgroups of samples based on the integration of multi-omics data. These techniques
consider similarities and dissimilarities across different omics layers, enabling the
identification of distinct molecular subtypes or phenotypes.

More recently, autoencoders [13] have been utilized for multi-omics data integration
by leveraging their ability to learn a compressed representation or latent space of the
input data. Autoencoders are neural network architectures consisting of an encoder and a
decoder. The encoder maps the input data to a lower-dimensional latent space, while the
decoder reconstructs the original input data from the latent representation. Some examples
of models in the multi-omics data integration include AIME [14], MAE [15], and many
others [16].

Machine learning on graphs is also becoming an ubiquitous task in biology and
biomedicine, with applications ranging from function prediction to drug repurposing,
and knowledge graphs play a key role as sources of graph-structured data [17–19]. As
such, a knowledge-graph-based integration approach with multi-omics data makes it
amenable to being easily exploited by deep learning models such as Graph Neural Net-
works (GNNs) [20] by leveraging the graph structure inherent in the data. GNNs are a type
of neural network specifically designed to process and analyze graph-structured data, such
as biological networks or interaction networks in multi-omics contexts. Traditional neural
networks, which expect fixed-size inputs and lack mechanisms to handle the permutation
invariance and complex relational information present in graphs, are ill-equipped for such
tasks. GNNs address these challenges by incorporating the connectivity patterns and fea-
tures of nodes into their computational process, allowing them to learn representations for
nodes, edges, or entire graphs. A pivotal aspect of GNNs is their ability to propagate and
transform node features through the graph structure, enabling the capture of topological
characteristics of the data.

Graph Convolutional Networks (GCNs) [21] are a prominent category within GNNs
that generalize the concept of convolution from grid-like data to graphs. The convolutional
operation in GCNs is generally simplified to directly aggregate and transform neighbor
features, reducing computational complexity and making the model more scalable. These
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models have been applied successfully in node classification tasks, link prediction, and
graph classification, showcasing their ability to harness both local and global graph struc-
tures for informed decision-making in a myriad of applications [22].

Taking into account the fact that biological data can be easily represented as a network
where nodes represent the different biological components (genes, proteins, etc.) and
edges represent the relationship between them, enabling machine learning to incorporate
information about the structure of multi-omics knowledge graphs into the model opens
new avenues to make predictions or discover new patterns using this relational knowledge
for application in new use cases [23–25]. For example, a graph classification task, which
predicts an attribute of each graph in a collection of graphs, can be used for patient
classification. In the same way, node classification tasks predict an attribute of each node
in a graph, which enable them to be used for biomarker discovery. Another interesting
use case is the use of the node feature prediction task for data imputation. Finally, link
prediction to predict an attribute of edges in a graph can be used to predict whether an
edge should exist in the graph with application on associations of bioentities such as
miRNA-target.

In our study, we have comprehensively profiled 30 acute stroke patients with different
etiologies defined by TOAST classification using both transcriptomic (mRNA, miRNA, and
circRNA) and epigenomic (DNA methylation) techniques in order to perform a graph-
based, multi-omics integrative analysis that holds the potential to yield a more nuanced
understanding of the processes involved and help in the identification of etiology-associated
biomarkers that can be easily measured in blood after stroke to guide treatment strategies.

The joint analysis of methylation and mRNA, circRNA, and microRNA expression
presents a comprehensive approach to understanding the intricate regulatory networks
that govern cellular processes. DNA methylation serves as a pivotal epigenetic mechanism,
influencing gene expression without altering the underlying DNA sequence. Methylation
typically occurs in the cytosine bases in DNA, particularly in cytosine-phosphate-guanine
(CpG) dinucleotides. In the human genome, CpG sites are often clustered in regions
called CpG islands, which are frequently located near or within gene promoters. When
methylation occurs in the promoter region of a gene, it usually leads to the suppression
or silencing of that gene. This happens because the methyl groups added to the DNA can
physically impede the binding of transcription factors necessary for gene expression. By
analyzing methylation patterns alongside mRNA profiles, we can elucidate the epigenetic
modifications that drive or suppress gene expression, offering insights into the underlying
mechanisms of disease [26,27]. Meanwhile, the integration of circRNA and miRNA expres-
sion data adds a further layer of complexity and regulatory control. MicroRNAs (miRNA)
are small, non-coding RNA molecules that can target multiple mRNAs and play a critical
role in the regulation of gene expression and gene silencing at the post-transcriptional
level [28]. Circular RNAs, (circRNA) are single-stranded RNA molecules of endogenous ori-
gin that form a circular structure through covalent bonding [29]. Notably, these molecules
are evolutionarily conserved and are present in large quantities in the human transcrip-
tome [30]. CircRNAs are recognized for their diverse regulatory roles in RNA biology
and gene expression. An example of their functions includes acting as sponges to absorb
microRNAs or RNA-binding proteins, thereby influencing the expression of specific target
genes [31]. By exploring the dynamic interplay between these molecular entities, we can
uncover regulatory networks that are critical in stroke pathogenesis and progression.

We propose the construction of a graph neural network (GNN) that can incorporate
these different omics layers and exploit the existing biological databases to represent rela-
tionships or interactions between them. We can then apply graph convolutional operations
to propagate expression information through the graph structure. Graph Convolutional
Networks (GCNs) leverage the graph topology to update the node features based on
their neighborhood relationships. This enables capturing local and global patterns within
the multi-omics data and allows downstream analysis such as patient classification or
biomarker discovery. This novel model aims to overcome the challenges faced by previous
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approaches and provide improved prediction capabilities for our etiology classification
and biomarker discovery tasks.

2. Materials and Methods
2.1. Study Population

Patients presenting acute ischemic stroke were enrolled from the emergency depart-
ment of the Hospital of Navarra, provided that they arrived within 4.5 h of symptom onset.
Blood samples were collected from these patients within the first 24 h following admission.
Informed consent was obtained from all participants, and the study was approved by the
local ethics committee under project number 2015/21. From a total cohort of 700 patients
recruited between January 2015 and December 2016, 30 were selected for the discovery
cohort analyzed in this study. Another 50 patients were identified as a validation cohort.
To ascertain the etiology of each stroke, a series of diagnostic tests were conducted. These
included an electrocardiogram (EKG), chest radiography, a complete blood count, a blood
biochemistry analysis, carotid ultrasonography, a transcranial Doppler (TCD) examination,
non-contrast cranial tomography (CT) at baseline, an echocardiogram, and 24-h Holter
monitoring. Based on the findings from these tests, patients were categorized into etio-
logical subgroups in accordance with the Trial of ORG 10,172 in Acute Stroke Treatment
(TOAST) criteria [2].

2.2. mRNA Expression

For gene expression profiling, total RNA was extracted using the miRNeasy Mini
kit (Qiagen, Hilden, Germany) and labeled using Agilent’s Quick Amp Labeling Kit. Mi-
croarray analysis was performed using Agilent SurePrint G3 Human Gene Expression
8 × 60 K v3. Post-hybridization, the microarrays were scanned using the Agilent Tech-
nologies G4900DA SG12494263 scanner. For data processing and analysis, we employed
Agilent Feature Extraction software, version 11.0.1.1. We followed manufacturer’s protocol
to ensure the precise and reliable acquisition of gene expression data for our analysis. Five
samples failed quality control, and their correlation with other samples was not good, so
they were removed from analysis.

2.3. MicroRNA Expression

To assess the miRNAs levels in blood after stroke, we processed the samples as
follows: samples were labeled using the miRCURY LNA™ microRNA Hi-Power Labeling
Kit, Hy3™/Hy5™ and hybridized on the miRCURY LNA™ microRNA Array (7th Gen),
following a single-color experimental design.

The miRCURY 7th generation array of our array contains 3100 capture probes, covering
human, mouse, and rat microRNAs annotated in miRBase 19.0, as well as all viral microRNAs
related to these species. In addition, this array contains capture probes for 25 miRPlus™
human microRNAs. In total 1919 human microRNAs are targeted by the platform.

To measure miRNAs levels in blood after stroke we made use of the miRCURY LNA™
microRNA Array. This array, which covers both human, mouse and rat microRNAs anno-
tated in miRBase 19.0, targets 1919 human microRNAs. Blood samples were labeled using
the miRCURY LNA™ microRNA Hi-Power Labeling Kit Hy3™/Hy5™ and hybridized
onto the array following a single-color experimental design. The array slides were scanned
using the Agilent G2565BA Microarray Scanner System (Agilent Technologies, Inc., Santa
Clara, CA, USA) and standard image analysis to extract background corrected and normal-
ized data was carried out using the ImaGene 9.0 software (Biodiscovery Inc., El Segundo,
CA, USA).

2.4. Microarray Expression of circRNAs

For the circular RNA detection, the total RNAs were digested with RNase R (Epicentre,
Inc., Lindenhurst, IL, USA) to remove linear RNAs and enrich circular RNAs. Then,
the enriched circular RNAs were amplified and transcribed into fluorescence-labeling
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complementary RNA (cRNA), utilizing a random priming method (Arraystar Super RNA
Labeling Kit, Arraystar, Rockville, MD, USA). The labeled cRNAs were purified by RNeasy
Mini Kit (Qiagen) and hybridized onto the Arraystar Human circRNA Array V2 (8 × 15 K,
Arraystar). After hybridization and washing, the arrays were scanned by the Agilent
Scanner G2505C (Agilent Technologies, Inc., Santa Clara, CA, USA). Scanned images were
processed using Agilent Feature Extraction software (version 11.0.1.1) for the extraction of
raw data [17].

2.5. Genome-Wide DNA Methylation Profiling

CpG methylation levels were profiled genome-wide by using the Infinium Human-
MethylationEPIC BeadChip array (Illumina, Inc., San Diego, CA, USA). Following the
manufacturer’s protocol, 500 ng of genomic DNA from each blood sample was isolated by
the standardized salting-out method and then bisulfite treated and hybridized to the Bead-
Chip. Microarray image processing was carried out using the Genome Studio Methylation
Module (v1.8.5).

Following standard practice for methylation data analysis [32], probes that overlap
common single nucleotide polymorphisms (SNPs), as well as those annotated as inter-
nal controls, were removed. Probes located on the X and Y chromosomes, along with
those previously described to hybridize to multiple locations in the genome, were also
discarded [33,34]. Additionally, probes not passing Illumina quality thresholds (bead
count < 3 in >5% of samples and 1% of samples with a detection p value > 0.05) were
filtered. Finally, background correction and type I/II assay chemistry bias adjustment were
applied.

2.6. Annotation and Biomedical Knowledge Graph Construction

Gene Expression Omnibus (GEO) annotations were used to map probe array identifiers
to corresponding gene symbols, sequences, or genomic coordinates. Table 1 reflects the
platform definition used.

Table 1. Gene Expression Omnibus platforms for the array used in this study.

GEO Platform Array Name

circRNA GPL21825 Arraystar Human CircRNA microarray V2
methylation GPL21145 Infinium MethylationEPIC
microRNA GPL19322 miRCURY LNA microRNA Array, 7th gen

mRNA GPL21185 Agilent-072363 SurePrint G3 Human GE v3 8 × 60 K

Probe identifiers for the HumanMethylationEPIC and Human Gene Expression arrays
were mapped to Ensembl Ids [35]. miRBase [36] and miRTarBase [37] were also down-
loaded to generate the association matrix between the microRNAs and their corresponding
gene targets. The Circinteractome [38] tool provided a list of miRNAs that were poten-
tially targeted by the analyzed circRNA. These data were used to build the association
matrices between the different omics technologies and can be viewed as a biomedical
knowledge graph that could be further extended with existing interaction databases such
as Reactome [39].

2.7. Graph-Based Multi-Omics Data Integration

The proposed approach aims to predict stroke etiology by simultaneously training
multiple heterogeneous networks using an extended GraphSAGE [40] model.

Graph Neural Networks (GNNs) leverage a message-passing mechanism to generate
a representation of a node aggregating information from its neighbors up to a hop dis-
tance. While traditional GCN models typically rely on the entire graph for training, a key
characteristic of GraphSAGE is that it does not necessitate the entire graph structure to be
present during the learning process because it samples a fixed number of neighbors for
aggregation. This feature allows GraphSAGE to effectively handle large graphs by learning
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from a sample of the nodes, and it can be used to generate representations of new nodes.
While GraphSAGE was designed to work with a single graph, some attempts have been
performed to extend it to two interconnected graphs [41].

Typically, an undirected graph G = (V, E) with n nodes and m edges is represented
using an adjacency matrix denoted by A∈{0, 1}n×n, with each element Aij = 1 if there
exists an edge between node vi and vj, otherwise Aij = 0. Each node is associated with a
d-dimensional feature vector, and the feature matrix for all nodes is represented
as X ∈ Rn×d.

In our case, we first add the nodes relative to each of the omics analyzed and create
links between then according to the information of the knowledge graph, and the patient
nodes, and initialize their corresponding embeddings randomly. The embedding size
chosen is 100. The expression matrix for each of the omics serves as relationship measure
between the patient and the corresponding biological nodes.

The calculation of the node u embeddings at layer k consists in the embeddings of
these chosen neighbors, synthesizing an updated representation for the focal node u. Using
mean aggregation function, this can be expressed as

h(k)
u = σ

(
W · MEAN

({
h(k−1)

u

}
∪
{

h(k−1)
u , ∀v ∈ N(u)

}))
(1)

where σ(.) is the non-linear activation function, W refers to the weights matrix, v are the
neighbor nodes, and h the node embeddings.

Relevant neighbor selection is particularly important in our multiple layer architecture.
Graph Attention Network (GAT) [42] brings the well-known attention mechanism behind
the Transformer architecture [43] to the realm of graph neural networks. Our model assigns
varying levels of importance to nodes in a neighborhood, which allows it to focus on the
most relevant parts of the graph structure for the task at hand. This can be expressed as

hk
u = σ

(
∑

v ∈ N(u)αvuWkhk−1
v

)
(2)

where
αuv =

1
|N(u)| (3)

refers to the weighing factor determining the importance of the message of node v to
node u.

These networks are then merged into a multi-layer network for a two-step training pro-
cess. Figure 1 illustrates this process for the two-layer GCN architecture used by our system.
First, a fixed number of nodes is selected across the different graphs and the aggregation
function is applied, first for one-hope neighbors, and then for two-hop neighbors.

Finally, we apply a softmax classification layer to the unified patient embeddings to
classify patients into the predefined etiology subtypes. The input to this layer is the fused
patient embedding, while the output is a probability distribution over the possible classes.

During training, we optimized the model using cross-entropy loss. The model was
trained end-to-end, allowing the GraphSAGE-based aggregation functions, the cross-graph
feature enhancement, the embedding fusion, and the patient classification layer to all adapt
based on the backpropagation of the loss.

This results in the generation of a collection of embeddings for the different omics and
for the patients. These patient embeddings serve as the final feature representations for
predicting stroke etiology. The complete process, which we named the Biological Multilayer
Graph Neural Network (BioMGNN), is illustrated in Figure 2.
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Figure 2. BioMGNN workflow. The original expressions (circRNA. miRNA, etc.) are projected
into a knowledge graph that captures the known biological relationship between the different
features together with the patient nodes to create a multipartite network. Random embeddings are
generated for each nodes, and the GraphSAGE with the attention algorithm proposed is applied.
After convergence, the final patient embeddings are used to predict the stroke etiology.
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3. Results
3.1. Patient Characterisation

For each participant, a comprehensive record of vascular risk factors was compiled,
including hypertension, atrial fibrillation, diabetes mellitus, dyslipidemia, tobacco use,
cardiovascular disease, and peripheral atherosclerosis. The demographic and clinical
characteristics of patients, classified by stroke etiology, are summarized in Table 2.

Table 2. Demographic and clinical characteristics of the patients included in the study.

Atherothrombotic (n = 8) Cardioembolic (n = 14) Undetermined (n = 8)

Age—years, median (IQR) 70 (55–80) 75 (70.5–77) 66.5 (49–77)
Male, n (%) 7 (87.5) 7 (50) 5 (62.5)

High blood pressure, n (%) 6 (75) 12 (85.7) 3 (37.5)
Diabetes mellitus, n (%) 2 (25) 2 (14.3) 2 (25)

Dyslipidemia, n (%) 3 (37.5) 9 (64.3) 5 (62.5)
Smoker, n (%) 4 (50) 2 (20) 3 (42.9)

Cardiopathy, n (%) 3 (37.5) 6 (42.9) 0 (0)
Atrial fibrillation, n (%) 0 (0) 15 (100) 0 (0)

Peripheral arteropathy, n (%) 2 (25) 0 (0) 0 (0)
Basal mRankin, median (IQR) 0.5 (0–1) 0 (0–1.25) 0 (0–0.75)

Basal NIHSS, median (RIQ) 8.5 (5–18) 20 (17–22) 19 (18–20)
Significant ipsilateral carotid stenosis (%) 8 (100) 0 (0) 1 (14.3)

Hemorrhagic transformation, n (%) 5 (62.5) 4 (28.6) 2 (25)
Discharge mRankin, median (IQR) 4.5 (2–6) 4 (2–5) 3 (0.5–5)

3.2. Patient Classification Task

We implemented the proposed BioMGNN model using PyTorch Geometric (version
2.1.0) [44], a Python library built upon PyTorch [45]. We used an Adam optimizer [46] to
train the model on a single NVIDIA H100 GPUs with 80 Gb of memory. After training, the
final patient embeddings were obtained.

We have compared the performance of our algorithm with the performance of the
individual data to predict the patient’s etiology. For this, we used the Xgboost classifier [37]
on the original individual datasets. The average classification evaluation metrics results
using five-fold cross-validation are presented in Table 3.

Table 3. Evaluation metrics for the patient etiology classification task.

BioMGNN miRNA circRNA Methyl mRNA

accuracy 0.95 0.48 0.52 0.67 0.77
precision 0.93 0.43 0.55 0.65 0.77

recall 0.95 0.48 0.52 0.67 0.77
F1 score 0.96 0.50 0.54 0.78 0.86

AUC 0.95 0.40 0.58 0.60 0.90

The BioMGNN-generated embeddings performed much better than the individual
technologies original data, even after feature selection. This can also be seen in Figure 3
where clustering of the used data is shown.
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3.3. Biomarker Module Discovery

In the context of our study, attention weights are learned for node I in a network and
its neighbor node j, and it can be interpreted as the probability of how much impact the
node j has in learning the representation of node i.

The most relevant node interactions for differentiating between stroke subtypes are
identified through the attention weight matrix associated with the nodes. In this matrix,
the magnitude of the attention weight is directly proportional to the significance of a node
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pair in differentiating subtypes. Our model learns these attention weights by assessing the
relative importance of neighboring genes for each gene in the network.

To extrapolate global patterns from these attention weights across node pairs, we
amplify the attention weights by the degree of the nodes, that is, the number of nodes it
connects to.

Establishing a suitable threshold, we can select multiple node pairs to form a com-
prehensive set of biomarkers across the different layers, offering insights into the complex
interplay of molecules relevant to the stroke subtypes in question.

We carried out some functional analysis on some of these selected sets using gene set
enrichment analysis (GSEA) methodology [47]. One of the sets resulted in Myc targets-
related biomolecules. It has been shown that the elevation of c-myc or the suppression
of miR-200b-5p improved neurological function, reduced inflammation and neuronal
apoptosis, and attenuated brain tissue pathology and neuronal survival of the middle
cerebral artery occlusion (MCAO) mouse model [48]. Another set included circRNA
hsa_circ_0005568 and some miRNAs enriched in pathways such as lysine degradation,
fatty acids biogenesis, and arrhythmogenic right ventricular cardiomyopathy (ARVC). Sig-
nificant expression level differences for the genes THBS3 and AMIGO2 were also detected
by BioMGNN as part of this biomarker module. Thrombospondin 3 (THBS3) is part of the
thrombospondin family, which is involved in cell-to-cell and cell-to-matrix communication.
It plays crucial roles in tissue remodeling and angiogenesis, which the development of new
blood vessels. These processes are critical in post-stroke recovery and in cardiovascular
diseases where tissue repair and angiogenesis are needed. AMIGO2 is involved in cell
adhesion and signaling. It can influence neuronal maturation and may play roles in neural
circuit formation and recovery mechanisms post-stroke. hsa_circ_0005568 differential ex-
pression levels (Figure 4) were confirmed in the validation cohort using RT-qPCR, making
it an interesting candidate worth exploring in future studies [49]. The expression levels of
the module components are presented in Supplementary Figure S1.
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3.4. Comparison with Other Biomarker Discovery Methodologies

The effectiveness of the biomarkers identified through our study was assessed based
on their predictive accuracy in classifying subtypes using unseen data.
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We benchmarked the performance of our method against two established multi-omics
biomarker discovery tools: MOFA (Multi-Omics Factor Analysis) [50] and MOGONET
(Multi-Omics Graph cOnvolutional NETworks) [51].

Xgboost was employed as the classification model to evaluate the predictive efficacy of
the identified biomarkers using a 10-fold cross-validation (CV) strategy aimed to ensure a
comprehensive and rigorous evaluation of our biomarkers’ validity in subtype classification
tasks. We split the dataset in 10 groups. Then, each group was selected as the test set to
evaluate the performance of a model trained on the other groups.

The performance of our predictive model was quantitatively evaluated using the area
under the receiver operating characteristic curve (AUC) for its effectiveness in measuring
the accuracy and reliability of classification models, particularly in biomedical applications
where the cost of false positives and false negatives can be high.

The results, shown in Figure 5, suggests that our method has a robust predictive capability,
potentially offering enhanced accuracy over existing tools in the context of multi-omics
biomarker discovery. The ability of BioGMGNN to consistently outperform in subtype
prediction, regardless of the train-test set configurations, underscores its effectiveness and
reliability as a tool in the field of precision medicine and biomarker discovery.
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For those interested in a more detailed understanding of our benchmarking scheme
and the specifics of hyperparameter tuning for the different methods, the code to reproduce
the analysis is available at the ICTUSENSOPT project’s Github repository https://github.
com/alabarga/ictusensopt/tree/main/benchmark (accessed on 20 March 2024).

4. Discussion

A common approach in multi-omics data analysis involves transforming the data into
a unified feature space, creating latent representations of the samples. Key methods in this
domain include matrix factorization [52], sparse-generalized canonical correlation analysis
(sGCCA) [53], and multi-omics factor analysis (MOFA). While these techniques were not
originally conceived for the purpose of multi-omics biomarker discovery, they offer a sig-
nificant advantage. The latent representations of patients they generate can be incorporated
into classification models, making these methods adaptable for biomarker identification.

https://github.com/alabarga/ictusensopt/tree/main/benchmark
https://github.com/alabarga/ictusensopt/tree/main/benchmark
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Certain multi-omics integration methods have been expressly developed for biomarker
discovery, exemplifying a focused approach in this field. The Data Integration Analysis
for Biomarker discovery using Latent cOmponents (DIABLO) [54] is a notable instance.
DIABLO employs sparse Generalized Canonical Correlation Analysis (sGCCA) to integrate
multi-omics data, effectively capturing the common biological variations across different
omics by maximizing their intercorrelation. While these methods consider the relation-
ships among various omics types, they are not specifically tailored to identify gene-level
biomarkers, which necessitates considering the complex interactions among biomolecules.

On the other hand, the Multi-Omics Graph cOnvolutional NETworks (MOGONET)
represents an interesting graph-based approach in this domain. MOGONET learns omics-
specific features from graphs built on patient-specific similarity matrices for each omic
technology for later integration through a view correlation discovery network. This process
aids in uncovering latent cross-omics correlations. However, a limitation of MOGONET is
that its integration process is focused on the patient level, thereby potentially overlooking
the intricate interplay between different omics features. This highlights a gap in current
methodologies, pointing to the need for more nuanced models that can capture the detailed
interactions within multi-omics data.

Another recent work proposes the multi-omics, gene-centric biomarker discovery
framework Graph Attention Networks [55]. They used a two-step procedure where a Ran-
dom Walk biomarker prioritization using differentially expressed proteome or metabolome
anchors as the origin of the flow of information and then a graph transformer is used to
model the relations between the selected genes to generate patient embeddings in a patient
classification task. Biomarker genes are the selected using the attention weights in a similar
way than our BioMGNN approach. However, this approach is based on the gene-based
features that represent multi-omics data without being able to capture causal effects from
the regulatory network as BioMGNN does.

In this paper, we propose an end-to-end, supervised multi-omics integration method
named BioMGNN for biomedical classification tasks, which learns the patient similarity
network that is beneficial to classification tasks while selecting important biomarkers.
This multi-omics representation learning can effectively capture complex common and
complementary information between omics during multi-omics integration. In addition,
weighting the embedding representations of different omics through the multi-omics
attention mechanism can improve classification performance and can also be used to
efficiently identify meaningful potential biomarkers using the learned embeddings and
attention weights. Our initial assessment suggests that BioMGNN stands out as a promising
tool for these tasks.

Moving forward, there are several areas of potential future work that are needed to
enhance our multi-omics data analysis platform. The first involves exploring further graph
network architectures and optimizing training performance. Additionally, expanding
ontology mapping to cover more domains and integrating external data sources would
increase the scope of our standardization efforts. Validating and evaluating results against
gold-standard multi-omics datasets, involving domain experts, and developing a user-
friendly library for researchers to run their own analysis are crucial next steps. These future
endeavors will refine and advance our methodology, increasing its impact and adoption
in bioinformatics.

In a discovery study like ours in which a large number of molecules is analyzed in
a relatively small group of subjects, one clear limitation is the limited sample size. This
factor makes us cautious in drawing conclusions. To ensure the external validity of our
findings, it is essential that they be replicated in the validation cohort of ischemic stroke
patients. This validation must include more diverse study populations, as a lack of ethnic
and geographical diversity among participants in our study is currently an important bias.
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5. Conclusions

We have successfully showcased the effectiveness of the Multi-layer Graph Convolu-
tional Network approach in extracting pertinent information from multi-omics expression
data, particularly in regard to tackling the stroke etiology classification challenge. The
knowledge-driven simultaneous analysis of multiple molecular levels exposed networks of
interactions that can be further explored as stroke etiology biomarkers which could hardly
be discovered by the individual data analysis.

The performance of BioMGNN in these initial stages indicates its potential utility in the
field, emerging as an end-to-end, interpretable multi-omics integration method, although
further validation with larger and more diverse cohorts is required to fully establish its
efficacy and applicability.

We believe that the development of novel techniques that make use of the latest
advances in artificial intelligence and foundation models research, together with a much
more complete study population in terms of the study variables and diversity, will help
to improve the prediction capacity of our model. This would allow the development of a
biomarker discovery framework with broad application in both personalized medicine and
treatment decision-making in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biology13050338/s1, Figure S1: Expression levels of hsa_circ_0005568 module
components in Atherosclerotic vs. Cardioembolic groups; Table S1: miRNA and circRNA biomarker
modules detected.
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