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Abstract: While wireless sensor node (WSNs) have proliferated with the rise of the Internet of Things
(IoT), uniformly sampled analog–digital converters (ADCs) have traditionally reigned paramount
in the signal processing pipeline. The large volume of data generated by uniformly sampled ADCs
while capturing most real-world signals, which are highly non-stationary and sparse in information
content, considerably strains the power budget of WSNs during data transmission. Given the
pressing need for intelligent sampling, this work proposes an extrema pulse generator devised to
trigger ADCs at significant signal extrema, thereby curbing the volume of data points collected and
transmitted, and mitigating transmission power draw. After providing a comprehensive signal-
theoretic rationale, we construct and experimentally validate these circuits on a system-on-chip field-
programmable analog array in a 350 nm complementary metal-oxide-semiconductor (MOS) process.
Operating within a power range of 4.3–12.3 µW (contingent on the input bandwidth requirements),
the extrema pulse generator has proven to be capable of effectively sampling both synthetic and
natural signals, achieving significant reductions in data volume and signal reconstruction error.
Using a nonideality-resilient reconstruction algorithm, that we develop in this work, experimental
comparisons between extrema and uniform sampling show that extrema sampling achieves an 18-
fold lower normalized root mean square reconstruction error for a quadratic chirp signal, despite
requiring 5-fold fewer sample points. Similar improvements in both the reconstruction error and
effective sampling rate objectives are found experimentally for an electrocardiogram signal. Using
both theoretical and experimental methods, this work demonstrates the potential of extrema-triggered
systems for extending Pareto frontiers in modern, resource-constrained sensing scenarios.

Keywords: analog–digital conversion; asynchronous; event detection; extrema; field-programmable
analog array; non-stationary signal; nonuniform; reconfigurable; reconstruction; sampling; wireless
sensor node

1. The Need for Intelligent Sampling Approaches

The expansion of the Internet of Things (IoT) has brought forth an explosion in the
number of wireless sensor node (WSN) applications; the WSN market [1] is currently grow-
ing by 15.5% annually. The primary objective of a WSN (Figure 1a) is to efficiently encode
observations of physical phenomena into digital symbols for wireless transmission to a
base station. Nearly all application scenarios of WSNs are resource-constrained, and WSN
designers must intelligently balance power usage, data integrity, and system adaptability,
which are, in turn, dependent on both the input signal and the signal processing pipeline.
Biomedical applications, such as wearables and implantable devices [2–5], are particularly
challenging since they have stringent upper bounds on device size and power consumption.

To obtain approximate design constraints for implantables, we consider intracortical
neural recorder arrays. The volume of packaged arrays must be a few mL or less. For
typical die areas (roughly 30 mm2), intracortical neural recorder arrays have a power limit
of roughly 10 mW to prevent damage to brain tissue [6]. The low-noise amplifiers (LNAs)
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required in the analog front end consume 20–30% of the total power in a typical neural
recorder power budget, while wireless transmission and the analog–digital converters
(ADCs) have a combined 40–50% contribution to the total power [6,7].

ADC & TDC
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Data
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Figure 1. Signal flow diagram comparing (a) a conventional WSN with uniform sampling to
(b) our energy-efficient extrema-sampled approach with our proposed extrema pulse generator
and reconstruction algorithm.

Modern ADCs perform at efficiencies exceeding 1 µW/Mbps [8], yet simply connect-
ing the ADC output to a standard digital pad, which can present up to 100 pF capacitance
(at VDD = 1 V), would require 50 µW/Mbps. In fact, the power consumption of wireless
transmission and ADCs can range from 100 µW/Mbps for backscatter communication
to 10 mW/Mbps for short-range frequency-shift keying (FSK) transmission [6,7]. Blue-
tooth low energy 5 (BLE 5) and similar commercial standards need roughly 50 mW/Mbps
at 8 dBm transmit power [9].

Improvements in LNA power consumption and data transmission cost are fundamen-
tally bottlenecked by gain and noise requirements [6]. Nevertheless, not all sensor data
are relevant, and one can greatly benefit from reducing the transmitted data. However,
data reduction approaches must not cause the excessive loss of information or require
excessive resource overhead. Biological signals, epitomized by electrocardiograms (ECGs)
(Figure 2a), are often non-stationary [10–12]. To accurately capture the rapid transients of
the QRS complexes (marked in Figure 2a), which usually persist for less than 20% of the
inter-heartbeat period, sampling rates of at least 250 Hz and resolutions of at least 8 bit
are essential [13,14]. This non-stationary characteristic opens up the possibility of utilizing
nonuniform sampling to significantly reduce the number of transmitted data points at the
source without requiring complex data compression approaches.

The relevance of nonuniform sampling stretches beyond its conventional applications
in sensing into physical computation applications. Solutions derived from biologically
inspired ordinary differential equations (ODEs) frequently exhibit non-stationary signals.
Due to the analogous behavior of metal-oxide-semiconductor field-effect transistors (MOS-
FETs) and biological channels, these biologically inspired ODEs can often be computed
physically with less power than is needed for sampling the solution at the necessary speed
and precision [15]. Consequently, the same incentives for the nonuniform sampling of
physiological signals are applicable to the digital readout of ODE solutions on analog
hardware accelerators.
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Figure 2. Illustration of an ECG (a) waveform and its wideband spectrogram showing the need
for high resolution and high sampling rates during uniform sampling. Pareto fronts for uniform
and nonuniform ECG sampling as determined by (b) an NRMSE minimization and (c) an AICc
minimization problem. Both naive nonuniform sampling approaches show a set of special points,
which includes extrema, that allow the corresponding nonuniform method to reconstruct ECGs using
fewer sample points and achieve a lower reconstruction error (NRMSE) than uniform sampling.

This work, which builds on [16], proposes an extrema pulse generator which is capa-
ble of triggering an ADC (like an asynchronous successive approximation register (SAR))
at significant extrema and a timer to capture the corresponding timestamps (Figure 1b).
While extrema sampling is a versatile, theoretically justified nonuniform sampling method,
its practical use requires the development of more robust hardware and software than
those currently available. In contrast to the limited number of previous hardware ap-
proaches [17,18] that have demonstrated low-power extrema detection circuits and signal
reconstruction from extrema points, our work presents the following enhancements and
technical contributions:

1. A comprehensive discussion justifying extrema sampling using signal-theoretic prin-
ciples and two naive nonuniform sampling approaches.

2. A novel extrema pulse generator circuit design that is readily adaptable for scenar-
ios with differing operating frequencies, power budgets, and signal-to-noise ratios
(SNRs).

3. A reconstruction algorithm that is resilient to circuit nonideality and allows for a more
relaxed set of assumptions about the interpolation function.

4. Experimental verification of the Pareto optimality of extrema sampling over uniform
sampling for two test signals.
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We construct the extrema pulse generator and experimentally demonstrate its perfor-
mance using an system-on-chip (SoC) field-programmable analog array (FPAA) previously
fabricated in a 350 nm complementary MOS process at Georgia Institute of Technology [19].
The rest of this work is structured as follows: Section 2 justifies the reasons for using ex-
trema sampling as opposed to other nonuniform sampling approaches, Section 3 provides
a brief overview of the SoC FPAA infrastructure, Section 4 presents an in-depth analysis
of the subcircuits composing the extrema pulse generator, Section 5 explains the signal
reconstruction process, Section 6 offers a comparative analysis of the system’s performance
against other sampling methods, and Section 7 offers concluding remarks.

2. Nonuniform Sampling Approaches

A primary reason for the high energy efficiency of the human sensory nervous system
is that it is only sensitive to novel events [20]. Nonuniform sampling approaches typically
employ similar event-driven strategies to improve energy efficiency and reduce the need
for energy-intensive compression algorithms and the data transmission cost in WSNs.
Most nonuniform sampling approaches [21–27] leverage extra assumptions or information
about signal features (besides the spectral support range) to sample more intelligently.
Each nonuniform sampling approach comes with its own set of challenges, tradeoffs, and
assumptions. As a result, nonuniform sampling approaches are often highly application-
specific, posing a barrier to the commercial availability of nonuniform ADCs. Even in
academic settings (e.g., clinical studies), a priori information about the signal features of
interest can be limited, so a feature-specific sampling approach may cause the undesired
loss of information. It is illuminating to analyze contemporary nonuniform sampling
approaches before discussing extrema sampling.

Application-specific event-detectors usually wake up a microcontroller to sample an
ADC when an interesting event is detected (such as acoustic spectra from a vehicle [27]).
This approach performs well when interesting events are rare, since high-power compo-
nents can be kept in sleep states for prolonged periods while an always-on, low-power
classifier monitors for interesting events. Yet, as interesting events become more frequent,
the benefits gleaned by application-specific event-detectors become less pronounced [27]
and are eventually overcome by the additional hardware overhead. Low-power event
classifiers are often heavily limited in scope and require meticulous retraining for a different
event class.

Level-crossing ADCs [22], which generalize the principle of event detection, sample
the input signal when it changes by some multiple of a least sensitive bit. Level-crossing
ADCs map the problem of precision voltage measurement at uniform time steps to the
often easier problem of precision time measurement as the input crosses (usually uniformly
spaced) reference voltages. Level-crossing ADCs are expected to scale well since time–
digital converter precision and energy efficiency improve with decreasing technology
node [28]. Although there have been efforts to mitigate this [25,26], level-crossing ADCs
tend to oversample many classes of signals, especially if good voltage resolution is required.

If it is known a priori that the signal to be sampled has a sparse representation in some
transform domain, then the signal can be acquired by random sampling approaches widely
known as compressive sampling. Compressive sampling has been immensely successful
in the recovery of many natural signals far below their Nyquist rate. Yet, a major demerit
of compressive sampling lies in signal recovery, where a convex optimization problem
(typically L1 norm minimization) must be solved [23,24]. The best case overhead for L1

minimization [29] tends to be higher than that of Lagrange [30,31] or cubic [32] interpolation.
Furthermore, the convergence time of the recovery algorithm in compressive sensing, which
is uncertain (as opposed to interpolation-based approaches), can be problematic for real-
time or closed-loop applications.

To summarize, the events identified by a nonuniform sampling methodology range
in complexity from simple input value changes, as in level-crossing ADCs, to complex,
signal-specific features identified by techniques like spectral template matching [27], as
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in application-specific event detectors. While the former method offers higher sensitivity
with a lower component count (albeit with lower specificity), the latter approach provides
higher specificity, but with lower sensitivity and an increased number of components. In
contrast, our proposed approach, extrema sampling, is a broadly applicable solution that
reduces energy usage with both a low component count and low reconstruction error.

Indeed, extrema sampling, in contrast to the previously mentioned methods, relaxes
signal-specific assumptions, offering a framework applicable to a wide array of scenarios.
Sampling at twice the mean frequency of the input signal, extrema sampling often samples
considerably below the global Nyquist rate for non-stationary signals (even after accounting
for the two-fold penalty associated with also acquiring sample timestamps). Moreover,
extrema sampling does not necessitate costly signal reconstruction algorithms and is
grounded [21] in theory since

1. Signal quantities of interest are often simply the time between extrema and the extrema
values; interpolation may not be required in such use cases [33].

2. Since extrema are the zero crossings of the derivative of the signal, extrema essentially
carry double the information of uniformly sampled points.

3. Extrema appear in excess of half the Nyquist rate in band-limited signals. It then
follows from the second rationale that there is enough information to reconstruct
band-limited signals perfectly from its extrema samples via variants of Lagrange
interpolation [21].

In addition to the established reasons described above, in this work, we also show
that extrema sampling arises naturally from the solution of a few types of optimization
problems. The first problem we propose is the selection of time-domain points so as to
minimize the polynomial reconstruction error subject to a constraint on the mean sampling
rate (Fstar). We formulate this first problem as the following constrained nonlinear integer
programming problem, which we solve using a genetic algorithm:

arg min
Φ

NRMSE s.t.


k
n
≤ Fstar

∀Φi ∈ {0, 1}
, where


k = ∑

i
Φi

NRMSE :=
∥F (X, Φ)− X∥2
∥X− ⟨X⟩∥2

. (1)

Normalized root-mean-square error (NRMSE) is an estimate of the error between the
original ECG data vector (X) and the reconstructed data vector (F ), guided by a vector (Φ)
of length n containing binary elements which decide which of the n elements of X to
sample. It can be shown that the definition of NRMSE in this work, which was proposed
previously in [15], is equivalent to the root-mean-square reconstruction error normalized
by the standard deviation of the truth (original ECG data). While solving Equation (1), we
ensure X is highly oversampled so as to approximate a continuous-time signal, and we
reconstruct F using a piecewise cubic Hermite interpolating polynomial (PCHIP) function.

The Pareto fronts (please see [34] for a detailed discussion on Pareto fronts and
optimality) obtained for uniform and nonuniform ECG sampling (as determined by solving
Equation (1)) are shown in Figure 2b. As shown in Figure 2b, our naive nonuniform
sampling approach has a tendency to prioritize significant signal extrema, which allows the
nonuniform method to reconstruct ECGs using a fewer number of sample points and with
a lower reconstruction error (NRMSE) than the uniform sampling approach (i.e., achieving
a Pareto optimal tradeoff between NRMSE and the effective sampling rate Fse f f relative to
uniform sampling). The optimality advantage of nonuniform sampling remains even if the
extra overhead needed to acquire timestamps in the nonuniform case is considered.

Our second proposed problem is the selection of time-domain points so as to minimize
a model-selective, information-theoretic criterion subject to a constraint on the mean sam-
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pling rate (Fstar). We formulate this second problem as the following constrained nonlinear
integer programming problem, which is also solved using a genetic algorithm:

arg min
Φ

AICc s.t.

{
k/n ≤ Fstar

∀Φi ∈ {0, 1}
. (2)

The number and selection of sample points on the time-domain waveform corresponds
to the selection of the PCHIP model order and a choice of parameters. AICc denotes the
Akaike Information Criterion corrected for small sample sizes, which is a widely used
information-theoretic model selection criterion [35,36] that rewards models with lower
mean-squared error while appropriately penalizing models with a larger number of model
parameters (k) and adding a correction term for small sample sizes. In our mathematical
formalism, AICc can be written as follows [36]:

AICc := n ln
(

1
n
∥F (X, Φ)− X∥2

2

)
+

2kn
n− k− 1

. (3)

The optimization results of Equation (2) are shown in Figure 2c. We see similar results in
Figure 2b, where the AICc minimization demonstrates that an intelligent choice of time-
domain sample points leads to a precise, yet more parsimonious, representation of a signal
than a uniformly sampled set of points. Additionally, like in Figure 2b, the optimal sample
points also predominantly include extrema.

The efficacy of signal reconstruction from extrema samples is contingent on a proper
selection of reconstruction basis. The discussion in the preceding paragraph suggests
that, for certain smooth signals like ECGs, PCHIPs are a good choice of basis function
because PCHIPs enforce continuity and smoothness conditions. However, for signals with
abrupt changes or corners, such as a sawtooth wave, a different basis function (e.g., a linear
interpolation method) could be more effective, offering accurate reconstructions without
the need for complex algorithms. It should be noted that signals that are contaminated
with high-frequency noise beyond signal frequencies should be prefiltered before extrema
sampling to mitigate false positives. False positives do not constitute data loss and thus
would not degrade reconstruction quality given an a posteriori assessment of which data
points correspond to false positives (e.g., using a method we show in Section 5). However,
the occurrence of false positives would diminish the data savings gained through extrema
sampling, thereby increasing the mean effective sampling rate to a value that is closer to
the Nyquist rate.

3. SoC FPAA Infrastructure

To construct our circuits, we use an SoC field-programmable analog array FPAA
developed at Georgia Institute of Technology. The SoC FPAA is a highly versatile general-
purpose analog computing platform in a 350 nm process [19]. The FPAA uses software tools
that are openly available at hasler.ece.gatech.edu/FPAAtool/ and has 98 fully reconfig-
urable computational analog blocks (CABS) that are interconnected with a programmable,
nonvolatile routing fabric comprising floating-gate (FG) transistors (Figure 3).

Each CAB contains a wide assortment of analog computational elements: operational
transconductance amplifiers (OTAs), floating-gate OTAs (FGOTAs), discrete transistors,
capacitors, current mirrors, and T-gates, which can be interconnected to synthesize larger
circuits. Synthesized circuits can be either contained within a CAB or span multiple CABs.

The routing fabric of the FPAA is used to make flexible nonvolatile connections or
to generate nonvolatile subcircuit current biases with 13-bit precision [37] using roughly
half-a-million FG transistors. An FG transistor is a MOSFET with only capacitors tied
to the gate. In this way, the gate of a FG is floating, with no DC connection to any
other node, which allows charge to be trapped on the gate. One of these gate capacitors
(typically a MOS capacitor) is used to remove electrons from the FG through Fowler–
Nordheim tunneling across its insulator. The other capacitors, which typically have a
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higher coupling factor to the FG than the MOS capacitor, are control gates. The control
gates are particularly useful during hot electron injection, a process by which electrons
can be injected into the FG through the gate oxide of the FG transistor. FG transistors
allow circuit designers a great level of control over transistor IV curves and can be used to
mitigate manufacturing mismatch.

Figure 3. Block diagram and programming flow of the 350 nm SoC FPAA, which contains 98 fully
reconfigurable CABs interconnected with FG routing fabric and programmed via open-source tools.

4. Extrema Pulse Generator

Comprising two subcircuits, the extrema detector and the edge detector, our proposed
low-power extrema pulse generator is shown in Figure 4. The objective of the extrema
detector is to change its output state at the input extrema. The edge detector then produces
an active-low pulse given a state change on the extrema detector output. The hysteretic
differentiator (HD) is pivotal to the overall extrema detector circuit; thus, it is imperative to
first elucidate the HD operation.

HD1
Vin

HD2
RH

RL

GLPF

CLPF

Vhd,1
Vlpf

VTRIM,1

GINT

CP,2

Vhd,2
Vint Vcomp Edge 

Detector

Vevent

VTRIM,2

IntegratorNoise Filter Scaler

Extrema 

Detector
Comp-

arator

Figure 4. Diagram of the extrema pulse generator. The capacitors drawn with gray lines are induced
via routing parasitics.

4.1. Hysteretic Differentiator

In order to detect extrema, one must perform edge detection using some sort of
differentiation operation. However, the noise immunity of linear differentiators is poor [20].
In a fundamental sense, differentiators are circuits whose outputs are insensitive to the
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absolute voltage level of the signal while remaining sensitive to the local signal derivative.
The functionality of our extrema detector is contingent on the HD (Figure 5a), a nonlinear
differentiator circuit [20] which is tolerant to noise.

GHD
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Figure 5. HD (a) schematic diagram and (b) experimental measurements of Vlp f and Vhd,2 in response
to 500 Hz sinusoidal inputs with different signal amplitudes (increasing left to right).

In essence, the structure of the HD is analogous to a voltage follower comprising a
nonlinear buffer stage that is driven by OTA GHD, which is biased via an FG pFET. The
output of the HD (Vhd) corresponds to the output of GHD. For a small HD input (Vc), the
output swing of the buffer stage is also small, and the buffer can be approximated as a
linear system; thus, Vhd tracks Vc closely given a small Vc. In contrast, Vhd is sensitive
to sgn(∂Vc/∂t) when Vc is large, transitioning sharply at signal extrema since the dominant
FET swaps; given the unconventional positioning of the transistors (pFET drain at ground
and nFET drain at Vdd), the swap of the dominant FET requires a large change in the
common gate control voltage to source or sink an appreciable amount of current. Note that
the pFET is dominant for decreasing Vc, and the nFET is dominant for increasing Vc.

4.2. Extrema Detector Circuit

While the HD can generate sharp transitions upon observing extrema, the output
transients of an HD are slow if a large neighborhood surrounding the extrema is flat, and
the swing of an HD is not rail-to-rail. Therefore, a single HD cannot fulfil the key objective
of the extrema detector: to produce a digital output (Vcomp) that flips its state when it
observes a significant Vin extrema. Therefore, to produce the extrema detector, we cascade
two HDs (labeled HD1 and HD2 in Figure 4). This approach allows HD1 to sharpen Vin
extrema so that HD2 can have faster transients. Therefore, since the input of HD2 is already
sharp, HD1 dominates latency; thus, the use of two HDs does not appreciably increase the
overall system power draw. We then compare the output of HD2 to the output of HD1 to
generate the digital classification Vcomp.

Directly cascading HDs leads to nonidealities, as each HD contributes output noise, has
an input feedthrough component, and overall gain. In order to address these nonidealities,
we introduce other subcircuits into the system: the noise filter, scaler, integrator, and Schmitt
trigger. It is undesirable to pass the output noise of HD1 lying far beyond input signal
frequencies into HD2, since this high-frequency noise would be amplified. To this end, we
use a low-pass OTA-capacitor noise filter to mitigate high-frequency noise from HD1.

The input offset and input swing of HD2 can be transformed via the voltage bias
(VTRIM,1) and resistors (RH and RL) present in the scaler circuit, respectively. VTRIM,1, RH ,
and RL are intelligently chosen to satisfy two criteria:

1. For typical Vin swings, the input voltage swing of HD2 does not saturate Vhd,2 near
the supply rails.

2. The HD1 output offset is larger than the HD2 output offset by the HD2 output noise
swing. This condition mitigates spurious comparisons.
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To better illustrate the circuit operation, we show the response of the cascaded HDs to
sinusoids of successively larger amplitudes in Figure 5b.

We cascade an integrator with a Schmitt trigger to produce a noise-immune comparator.
We tune the time constant of the integrator so the switching period of the comparator is
well below the period of Vin but higher than the period of undesired noise components.
As shown in Figure 6a, our Schmitt trigger is composed of two current-starved inverters
arranged in a topology inspired by [38]. The second current-starved inverter in the cascade
uses an FG pFET bias to limit the short-circuit current. In the first starved inverter, the bias
is directly set by the input pFET, which itself is an FG transistor. In fact, the FG pFET in the
first inverter has two control gates, where the first control gate (CIN) corresponds to the
Schmitt trigger input (Vint), and the second control gate (CFB) is tied to the Schmitt trigger
output (Vcomp) so as to create a positive feedback loop.
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Figure 6. Schmitt trigger (a) schematic diagram and (b) hysteresis curve measured from an SoC FPAA
implementation. (c) Measured output of the extrema detector given sinusoidal inputs of increasing
frequencies (increasing left to right). The capacitors with gray lines are induced via routing parasitics.

The hysteresis curve of the Schmitt trigger is mostly shaped by the parameters of the
two-input FG pFET in the first inverter. Mainly, the ratio of CFB to the total capacitance on
the FG node (CT) controls the spacing between the low–high (VT,H) and high–low (VT,L)
transitions, while the charge trapped on the FG (QFG) sets the low–high output transition
level (VT,H). We can derive compact (approximate) expressions for VT,H and VT,L by solving
for the transition voltage of the first inverter in the cascade (i.e., the DC point where the
output of the first inverter Vp = Vint) using the square-law models for MOSFETs operating
in above-threshold saturation [38]:

VT,H ≈
CT ·VDD
CT + CIN

− QFG
CT + CIN

; where, CT ≈ CIN + CFB and (4)

VT,H −VT,L ≈ (CFB ·VDD)/(CT + CIN). (5)

In our derivation of Equation (5), we have assumed µp(W/L)p ≈ µn(W/L)n, which was
ensured during the design of the SoC FPAA, and that CIN and CFB are large compared
to any other miscellaneous capacitances on the floating gate node. We tune the Schmitt
trigger to symmetrize the hysteresis curve around the the mean value of Vint, resulting
in the response shown in Figure 6b. After biasing, we observe that the extrema detector
response has some latency, which can be characterized by using sinusoidal test inputs with
increasing frequencies, as shown in Figure 6c. We find that the latency has a component
that is invariant to the input and a component that scales proportionately to the input
signal period.

4.3. Edge Detector Circuit

Our edge detector circuit, shown in Figure 7a, generates a negative pulse when its
input Vcomp has a falling or rising edge, as shown in Figure 7b. An OTA integrator and
a current-starved inverter are used within the edge detector to produce a delayed and
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inverted copy of the input (Vd). Vd is then compared to Vcomp using an ‘XOR’ operation to
generate the edge detector output Vevent.

We induce integration capacitance CP,3 using routing parasitics. The clock pulse width
is tuned using the integrator bias GTIM. We then trim any mismatch between the OTA slew
rates on the negative and positive edges by setting the common mode voltage of the OTA
in the integrator using its reference VTRIM. Our tuning approach results in a symmetric
clock pulse width (20 µs here) on maxima and minima.

GTIM

Vevent

Vd
VTRIM,2

Vcomp

CP,3

Integrator
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0

1

2

V
co
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p
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)
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Figure 7. Edge detector (a) schematic diagram and (b) experimental wavefronts.

5. Reconstruction Algorithm

In the context of this work, extrema sampling corresponds to the sampling of Vin
and the recording of the corresponding timestamps on each falling edge of Vevent using
an 8-bit oscilloscope. The reconstruction of the input signal from extrema samples is
performed through two successive processes: (1) sample extrapolation and (2) polynomial
interpolation. Algorithm 1 and Figure 8 show the details of the extrapolation algorithm,
which first infers if a sample corresponds to a local extremum from the values of the
surrounding points. At each identified extrema, the extrapolation algorithm compensates
sample timestamps by estimating the extrema pulse generator latency. Latency is estimated
via a linear model since, as mentioned previously, the latency has an input-invariant
component and a component that grows proportionately to the period of the input signal.
The latency model depends on process–voltage–temperature (PVT) conditions and is
estimated through sinusoidal input test signals. During sample extrapolation, the input
period is estimated from a local sinusoidal assumption. To summarize, given an extremum,
the following sequence of events occurs:

1. Timestamps of the two neighboring points to the sample are leveraged for the estima-
tion of the local period of the signal.

2. A linear model is used to estimate the delay from the true extrema location to the
clock pulse produced by the extrema pulse generator.

3. Extrema voltage values are estimated from the sampled voltage using a parabolic
approximation of the waveform and the delay estimate; the form of the parabolic
approximation is found by computing a Taylor series expansion of the local sinusoid.

We reconstruct the input from the extrapolated sample points using polynomial
interpolation. While theoretically ideal [21,30], Lagrange interpolation variants can be
unreliable if nonidealities, such as a slight misalignment of the extrapolated extrema points
with the true extrema locations or a few false negatives/positives from the extrema pulse
generator are present. This intolerance of Lagrange interpolation to nonidealities makes
polynomial interpolation approaches often more preferable in practice. Previous studies
used a family of Bézier curves with concavity restrictions [17,18]; however, the concavity
assumptions implicate that this family of functions would perform poorly with certain
signals (e.g., triangle/sawtooth waves). We use PCHIPs [32] in this work because PCHIPs
make much more general assumptions about the characteristics of the input signal and
are much more well-behaved given nonidealities in timing or false positives/negatives.
PCHIPs also have minimal overshoot.
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Algorithm 1: Extrapolation of samples (ti, xi), ∀i ≤ n
Data: n ≥ 2, ti, xi
Result: tci , xci = xi + σi∆i
i← 2; % Counter
while i ≤ n do

ai−1 ← (|xi−2 − xi−1|+ |xi − xi−1|)/2;
fi−1 ← (1/(ti−1 − ti−2) + 1/(ti − ti−1))/2;
if sgn(xi−1 − xi−2) = − sgn(xi − xi−1) ̸= 0 then

σi−1 ← sgn (xi−1 − xi−2); % Direction
τi−1 ← ασi−1 + βσi−1 / fi−1; % Empirical

else
σi−1, τi−1 ← 0; % Likely to be a FP

end
tci−1 ← ti−1 − τi−1, ∆i−1 ← πai−1 f 2

i−1τ2
i−1;

i← i + 1;
end
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Figure 8. Annotated diagram depicting the sample extrapolation method detailed in Algorithm 1
and relevant indexed quantities.

6. Results and Discussion

As shown in Figure 4, with the exception of the scaler circuit, we construct all other
extrema pulse generator circuits on the 350 nm SoC FPAA. During characterization, we
supply dynamic voltages from a function generator (Digilent Analog Discovery 2), supply
static voltages from a power supply (Agilent E3620A), and acquire extrema samples from
an 8-bit oscilloscope (Tektronix TDS5034B) on the falling edge of Vevent. An annotated pho-
tograph of our experimental test setup is shown in Figure 9. We optimize and demonstrate
our circuit first for a quadratic chirp and then for an ECG signal. The majority of the power
draw of the extrema pulse generator stems from use of OTA circuits. The OTA-capacitor in-
teractions on each OTA output node determine the bandwidth of the overall extrema pulse
generator. Since the OTAs are biased in subthreshold saturation, the transconductance of
each OTA scales proportionally to its bias current. Consequently, the overall power scales
proportionally to the input bandwidth. In this work, the power-bandwidth scaling factor is
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100 nW/Hz, which translates to a 12.3 µW draw for the quadratic chirp and a 4.3 µW draw
for the ECG.

From the reconstructed waveforms in Figure 10a,b, we visually observe that the
ECG and the quadratic chirp can be reconstructed quite well. Numerically, the NRMSE
corresponding to the reconstructions shown in Figure 10a,b are 0.044 (quadratic chirp)
and 0.261 (ECG). These NRMSEs are substantially less than the NRMSEs observed if these
same signals are uniformly sampled at the same mean rate. Typically, uniform sampling
would need to sample a couple of times faster than our proposed nonuniform sampling
approach in order to achieve a similar reconstruction error. In a quadratic chirp, the average
signal frequency (Favg) is less than a quarter of the global Nyquist rate of the signal. We
therefore experimentally find that extrema sampling, which samples at a rate of roughly
2Favg, results in an effective sampling rate of roughly FNyquist/2.5; even after accounting for
the sampling of timestamps, extrema sampling reduces the amount of data recorded during
the acquisition of a quadratic chirp while achieving an 18-fold lower reconstruction error
than uniform sampling. If uniform sampling is used, the ECG signal must be sampled three
times faster on average in order to obtain the NRMSE as the extrema sampling approach.
Furthermore, the NRMSE in uniform sampling is four-fold higher given the same Fse f f
as the extrema sampling approach. In both ECG and quadratic chirp sampling, extrema
sampling remains a Pareto improvement over uniform sampling, which means that it is
an improvement in both NRMSE and Fse f f compared to the Pareto front of the uniform
sampling approach (even after accounting for any additional overhead associated with
timestamp acquisition). Nevertheless, implementation nonidealities (mostly false positives),
mean that solutions lying on the ideal Pareto front in Figure 2c cannot be attained with our
extrema pulse generator.

Analog Discovery 2
(Function Generator)

Scaler Components

Agilent E3620A 
(Power Supply)

350 nm SoC FPAA

ektronix TDS5034B (Oscilloscope)T

Figure 9. Experimental setup for individually characterizing extrema pulse generator circuits and
demonstrating extrema sampling with the full system.
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Figure 10. Experimental results of extrema pulse generator sampling and reconstruction for (a) a
quadratic chip and (b) an ECG. The ECG is filtered with a 60 Hz notch before input into the extrema
pulse generator. A comparison between uniform sampling and extrema sampling performance for (c)
the quadratic chirp and (d) the ECG. The inner points corresponding to the uniform samples form a
Pareto front for the uniform approach; extrema sampling is a Pareto improvement.

We compare the performance of previous nonuniform sampling methodologies; specif-
ically, audio-range FPAA or application-specific integrated circuit (ASIC) approaches in
similar technology nodes are compared with our extrema pulse generator in Table 1. No-
tably, reference [39] is a recent demonstration of extrema sampling for a task other than
data rate reduction [39];the authors use maxima sampling for envelope signal estimation
in a resource-constrained voltage-controlled oscillator (VCO) with automatic gain control.
We find that the proposed extrema pulse generator is more energy-efficient than other
nonuniform sampling methodologies on FPAAs [17,18,27], drawing less power for the
same input bandwidth. A better performance can be attained on ASICs [25] since routing
parasitics can be made lower than an FPAA implementation.

As demonstrated, PCHIP reconstruction works well; however, our PCHIPs do not
leverage information pertaining to the classification of the sample points (maximum,
minimum, or false positive) explicitly. In subsequent discussions, the performance can be
improved further by extracting information from sample point classification. The extrema
pulse generator also has a tradeoff between noise immunity and output delay, which should
be decoupled in future architectural designs. Nevertheless, the great potential of extrema
sampling for data reduction in ADCs is clearly demonstrated by the results of this work.
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Table 1. Comparison of nonuniform sampling approaches.

Proposed [17,18] [27] [39] [25] [40]

Application Extrema Extrema Acoustic Max-Sampling Level-Cross. Asynch.
Det. Det. Vehicle Det. Stabilized VCO ADC ∆-Mod.

Platform FPAA FPAA FPAA FPAA ASIC ASIC

Process (nm) 350 350 350 350 130 180

Bandwidth (Hz) 60, 1000 60 1000 30–40,000 4000 250

Power (µW) 4.3, 12.3 4.95 43 46–50 6.5 109

7. Conclusions

This work presented theoretical and experimental evidence in support of extrema
sampling as a conversion paradigm in ADCs. Our hardware implementation featured
a noise-robust extrema pulse generator to nonuniformly trigger an ADC at the extrema
of the input signal. In a commercial implementation, the conversion clock for the ADC
can be toggled between the extrema pulse generator and a uniform clock source. We also
presented an algorithm for reconstructing the input signal from extrema samples. Using our
approaches, we show the system performance for two test signals: a quadratic chirp and
an ECG. Compared to uniform sampling, our approach achieves a Pareto-optimal tradeoff
between the reconstruction error and ADC power consumption for both the quadratic
chirp and the ECG. Our results suggest extrema sampling is a strong candidate for the
nonuniform acquisition of a wide class of non-stationary signals.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC Analog–Digital Converter
AICc Akaike Information Criterion corrected (for small sample sizes)
ASIC Application-Specific Integrated Circuit
BLE Bluetooth Low Energy
CAB Computational Analog Block
ECG Electrocardiogram
FET Field-Effect Transistor
FG Floating-Gate
FGOTA Floating-Gate Operational Transconductance Amplifier
FPAA Field-Programmable Analog Array
FSK Frequency-Shift Keying
HD Hysteretic Differentiator
IoT Internet of Things
LNA Low-Noise Amplifier
MOS Metal-Oxide-Semiconductor
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
NRMSE Normalized Normalized Root-Mean-Square Error
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ODE Ordinary Differential Equation
OTA Operational Transconductance Amplifier
PCHIP Piecewise Cubic Hermite Interpolating Polynomial
PVT Process–Voltage–Temperature
SAR Successive Approximation Register
SNR Signal-Noise Ratio
SoC System-on-Chip
VCO Voltage-Controlled Oscillator
WSN Wireless Sensor Node
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