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Abstract: Traditional collaborative filtering (CF)-based recommendation systems are often challenged
by data sparsity. The recent research has recognized the potential of integrating new information
sources, such as knowledge graphs, to address this issue. However, a common drawback is the neglect
of the interplay between user–item interaction data and knowledge graph information, resulting in
insufficient model performance due to coarse-grained feature fusion. To bridge this gap, in this paper,
we propose a novel graph neural network (GNN) model called KGCFRec, which leverages both
Knowledge Graph and user–item Collaborative Filtering information for an enhanced Recommender
system. KGCFRec employs a dual-channel information propagation and aggregation mechanism to
generate distinct representations for the collaborative knowledge graph and the user–item interaction
graph. This is followed by an attention mechanism that adaptively fuses the knowledge graph with
collaborative information, thereby refining the representations and narrowing the gap between them.
The experiments conducted on three real-world datasets demonstrate that KGCFRec outperforms
state-of-the-art methods. These promising results underscore the capability of KGCFRec to enhance
recommendation accuracy by integrating knowledge graph information.

Keywords: recommendation systems; graph neural network; collaborative filtering; knowledge
graph; feature fusion

1. Introduction

Recommendation systems (RSs) [1] have become widely used in multimedia
applications [2–4], social networks [5,6], and e-commerce platforms [7–9] with the growth
of internet services. Great success has been achieved by collaborative filtering (CF) recom-
mendation, which takes into account the users’ previous interaction behavior and makes
recommendations based on potential similar preferences of users who share similar inter-
ests. The CF-based RS, however, generally suffers the data sparsity problem. In order to
overcome the problem, some recent research [10] has focused on using side information,
such as user attribution and item description. The representation of relationships between
users and items can be enhanced and complemented by the side information of the knowl-
edge graph (KG) [11,12]. From certain perspectives, KGs can partially mitigate the issue of
the data sparsity problem.

However, the recently proposed KG-based RS models have shortcomings in infor-
mation modeling and information fusion, resulting in sub-optimal recommendation per-
formance. The existing methods, which independently model knowledge graphs and
collaborative information, are faced with problems such as insufficient capability for long-
distance information modeling [13,14] and complex task-oriented design [15,16]. In the
feature fusion stage, these models tend to ignore the gap between the representation
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distribution and combine the knowledge graph and the collaborative information in a
coarse-grained way [17,18]. How to perform adaptive feature fusion from the knowledge
graph side and the collaborative information side in an end-to-end manner to improve the
recommendation performance is still a common challenge facing the current field.

More recently, creating end-to-end models based on a graph neural network (GNN)
has been a popular technical approach. The key idea is to utilize the message passing
and aggregation mechanism, which can effectively integrate the KG and collaborative
information into the embedding space. Motivated by this, we created a novel framework we
called KGCFRec, which is a kind of two-channel information propagation and aggregation
method aimed to produce the corresponding representations of collaborative knowledge
graphs and user–item interaction graphs.

KGCFRec consists of two components to address the challenge in the appropriate
way: (1) Knowledge and Collaborative-aware representation learning. We predefine the
knowledge graph, the user–item interactions graph, and the collaborative-knowledge graph.
Then, we design a novel aggregation mechanism of GNN for knowledge- and collaborative-
aware representation learning. (2) Adaptive feature fusion. In order to achieve adaptively
fine-grained fusion of the two types of features, an attention mechanism is designed to learn
the weights between nodes on the two graphs throughout the propagation process. At last,
the collaborative knowledge graph representation for Top-N recommendation is generated.

In summary, our work makes the following contributions:

• The knowledge graph and user–item interactions graph are combined into a single
collaborative-knowledge graph in order to address the data sparsity problem.

• KGCFRec, an end-to-end model, is proposed that fuses knowledge and collaboration
features for recommendation via a novel attention mechanism.

• Experiments conducted on three real-world datasets demonstrate that our proposals
perform significantly better than baselines.

The organization of our paper is shown as follows: we first present related work in
Section 2 and then provide the problem formalization in Section 3. Section 4 describes
the knowledge- and collaborative-aware representation learning module and the adaptive
feature fusion module. Section 5 describes the experimental setup. The experiment results
and discussion are provided in Section 6. In the end, the conclusion and future work are
shown in Section 7.

2. Related Work

There are three primary types of current study on knowledge-graph-enhanced recom-
mendation: embedding-based, path-based, and GNN-based.

2.1. Embedding-Based Methods

Embedding-based methods primarily extract the data from the first-order neighboring
nodes in the knowledge graph (KG) and the user–item interaction graph [19]. First of all,
these approaches frequently use KG embedding techniques like TransE [20] and TransH [21]
to improve the entity embeddings. These entity embeddings are then used as item semantic
characteristics for supplying the recommendation model. For instance, TransE is utilized by
collective knowledge embedding (CKE) [13] to extract entity embeddings from the KG and
effectively incorporates them into matrix factorization (MF). Knowledge-aware transferable
user preference (KTUP) [14] constructs a multi-task framework that applies TransH to
both user–item interactions and KG triplets concurrently, aiming to learn user preferences
and accomplish KG completion in unison. However, instead of directly recommending,
KG embedding algorithms usually concentrate on modeling strict semantic relationships,
which are better suited for link prediction tasks. Furthermore, embedding-based methods
frequently ignore higher-order connectivity and lack end-to-end training regimes. This
oversight prevents them from capturing the extensive semantics or sequential dependencies
along the paths between nodes, thereby constraining their capability to reveal the deeper,
underlying user–item relationships.
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2.2. Path-Based Methods

Path-based methods consider the relational patterns linking users and items through
KG entities, often referred to as meta-paths [22–24], to enhance the predictive capabilities of
recommendation systems. In order to extract paths that convey valuable higher-order infor-
mation, researchers have resorted to either deploying algorithms that pinpoint significant
paths or crafting predefined meta-path templates to limit the scope of potential paths. These
identified paths are subsequently harnessed to anticipate user preferences through the use
of recurrent neural networks and memory networks. A case in point is RippleNet [15],
which concentrates on the propagation of user interests and identifies potential paths from
items interacted with by users to other items, without the need for predefining meta-paths
or meta-graphs. In order to improve top-N recommendations, MCRec [16] has built a deep
neural network with a co-attention mechanism that takes advantage of the rich context
provided by meta-paths within various information networks. Path-based techniques
rely heavily on manually generated meta-paths/meta-graphs, which might complicate
performance tweaking in real-world scenarios, even though they can more organically
incorporate KG insights.

2.3. GNN-Based Methods

GNN-based methods exploit the information aggregation prowess of GNNs to de-
rive node representations. The key of GNN-based methods is to develop powerful node
representations [25–27]. They achieve this by integrating information from the immediate
neighboring nodes to refine the representations of the central nodes. Through iterative
application of this process, information from nodes several hops away can be incorporated
into the representations. This enables these methods to capture extended connectivity
patterns. To enhance the vector representations of items, knowledge graph convolutional
networks (KGCN) [28] utilize an end-to-end design, a biased neighbor aggregation strategy,
and a graph convolution sampling technique to capture distant inter-item interactions.
KGNN-LS [29], on the other hand, computes the embedding of each item node by aggregat-
ing feature information within the node’s local network neighborhood. By designing unique
aggregation algorithms for each, CKAN [18] distributes and aggregates data throughout
the KG and the user–item interactions graph, respectively. KGAT [17] integrates user–item
interactions with the KG into a unified heterogeneous graph and employs an attention
mechanism to iteratively propagate embeddings from neighboring nodes—be they users,
items, or attributes—to further refine each node’s embedding.

While numerous studies have integrated KG and GNN techniques into recommender
systems, the fusion of KG information with collaborative data has not been extensively
explored. KGCFRec addresses this gap by learning dual information weights through
an attention-based fusion mechanism, enhancing the accuracy and robustness of recom-
mendation. Compared with embedding-based methods such as MF [13], KGCFRec is
good at modeling long-distance information. Compared with path-based methods such
as CKE [30], the task oriented complex design is eliminated; Compared to GNN-based
methods [17,18,29,31–33], efficient modeling knowledge and the collaborative perception of
dual-channel information can be adaptively fused. The substantial benefits of information
fusion are also demonstrated by the end-to-end framework architecture.

3. Preliminaries

The aim of this work is to study KG-augmented recommendation, where the recom-
mender system uses knowledge graph information to improve performance and make
recommendations for items to users. We begin by describing the underlying structural
data, including the knowledge graph and the user–item interactions graph, followed by a
formulation of our task.

Knowledge Graph: The power of the KG approach lies in its ability to store structured
auxiliary data—such as item attributes, taxonomies, or external common-sense knowl-
edge—in the form of a directed graph, denoted as KG =< E, R, T >. Here, E and T
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represent the sets of entities, while R signifies the set of relations. We formally organize
this side information as a knowledge graph, defined as GKG = {(h, r, t) | h, t ∈ ϵ, r ∈ R},
where ϵ encompasses real-world entities, and R comprises the set of relations. For instance,
the tuple (Tom Hanks, ActorOf, Forrest Gump) indicates that Tom Hanks is an actor in the
film Forrest Gump. By mapping items to KG entities (I ⊂ ϵ), item i can be correlated with
an entity h, t within the KG. Consequently, the KG can provide detailed profiles of items
and offer supplementary information to the interaction data.

User-Item Interaction Graph: In this work, we focus on implicit feedback within
recommendations, where users’ historical interactions, indicative of their preferences,
are indirectly expressed through actions such as viewing, clicking, and purchasing. We
conceptualize these interaction data as a user–item bipartite graph, denoted as GUI , which
is formalized as {(u, dui, i) | u ∈ U, i ∈ I}. Here, U = {u1, ..., uN} represents the set of users,
and I = {i1, ..., iM} represents the set of items. A link with dui = 1 signifies an interaction
between user u and item i, whereas dui = 0 indicates the absence of such interaction.

Task Description: Hence, for the KG-based recommendation approach we are intro-
ducing, we formalize the recommendation task as follows:

F(G | ΘF) → F(GKG, GUI | ΘF) → ŷ (1)

where ΘF represents the parameters of the model that need to be optimized.
Input: A collaborative knowledge graph G, which encompasses the knowledge graph

GKG and the user–item interactions graph GUI .
Output: A prediction score ŷui, representing the likelihood of user u engaging with

item i.

4. The Proposed Methodology

We now introduce our model, a GNN-based framework designed for KG-augmented
recommendation that operates on a collaborative knowledge graph. As depicted in
Figure 1, KGCFRec comprises three principal components: (a) knowledge-aware rep-
resentation learning, (b) collaborative-aware representation learning, and (c) adaptive
feature fusion.
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Figure 1. The overall framework of KGCFRec. (a) KGCFRec initiates the process by encoding the
knowledge information of user u and item i within the KG using varying numbers of GNN layers
for each triple (h, r, t) in the KG. (b) Subsequently, for each observed interaction (u, i) in the UI
graph, KGCFRec similarly encodes the collaborative information of users and items employing GNN
layers. (c) Following this, KGCFRec leverages an attention mechanism to integrate the user and item
knowledge with their collaborative information. Ultimately, the framework computes the similarity
score between the user and the item, facilitating the recommendation process.
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GNNs progressively enrich the representation of a node by integrating information
from its neighboring nodes. As a result, the node’s representation after k iterations encapsu-
lates the structural nuances and attributes of nodes within its k-hop vicinity. This approach
mitigates the challenges posed by data sparsity. The pivotal aspect of GNN-based recom-
mender systems lies in the design of the neighborhood aggregation strategy. Specifically,
the representation vector of an entity is refined by iteratively aggregating and transforming
the representations of its multi-hop neighbors.

However, it is challenging to accurately model user and item representations by
directly fusing graph and collaborative features in a coarse-grained manner without con-
sidering the distributional gap between them. We leverage GNN layers to extract user
and item representation from both the knowledge graph and collaborative information
channels. Additionally, we introduce a novel attention mechanism to adaptively refine
these representations, thereby enhancing the performance of recommendation tasks.

4.1. Knowledge-Aware Representation Learning

Knowledge-aware representation learning is depicted in Figure 2. We define
GKG = {(h, r, t) | h, t ∈ ϵ, r ∈ R}, where r denotes the relation from entity h to entity
t. Given that entities are connected through one or more varying relations, we contend
that relation modeling is as crucial as entity modeling. GNNs excel at modeling entities
and relationships, prompting us to adopt a GNN-based approach for the representation
learning of entities and relations. An entity can be characterized by different relations
across multiple KG triplets, illustrating the content similarity among items from various
perspectives. For instance, the movie “Forrest Gump” can be characterized by its director,
Robert Zemeckis, or its star, Tom Hanks. The process of information aggregation within
the knowledge graph, as facilitated by our model, is defined in Equation (2):

eKG(k+1)
i = fKG

({(
eKG(k)

i , er, eKG(k)
v

)
| (r, v) ∈ N KG

i

})
(2)

where fKG(.) is an aggregation function that aggregates the features of neighbors of item
i, N KG

i is a set of the neighbor of item i in the knowledge graph, which consists of some
tuples, including relation and entity. Here, we implement fKG(·) as Equation (3):

eKG(k+1)
i =

1
∥N KG

i ∥ ∑
(r,v)∈N KG

i

er ⊙ eKG(k)
v (3)

where eKG(k)
v is the embedding including knowledge information of entity v of k layer, er is

the embedding of relation r, ⊙ is the element-wise product. The reason of design relational
message er ⊙ eKG(k)

v is to obtain new eKG(k+1)
i , including different meanings of er and eKG(k)

v .
Additionally, modeling the user’s knowledge graph embedding is treated consistently,

which is defined as Equation (4):

eKG(k+1)
u =

1
∥N KG

u ∥ ∑
i∈N KG

u

eKG(k)
i (4)

where N KG
u is a set of the neighbor of user u in the knowledge graph.
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Figure 2. Knowledge-aware representation learning. To capture the knowledge embedded within the
graph, we employ the function fKG to aggregate information from the k-hop neighbors of both users
and items, resulting in distinct embeddings across K layers.

4.2. Collaborative-Aware Representation Learning

Collaborative-aware representation learning is depicted in Figure 3. The collaborative
information [17] holds significant value in characterizing user preferences, assuming that
users with similar behaviors tend to share similar preferences for items. Consequently,
we refine this collaborative information from the user–item interactions (UI) graph. In
Equations (5) and (6), we leverage a GNN with K layers to harmonize the information
within the UI graph. Specifically, for the k-th layer, we update the user representation eUI(k)

u

and the item representation eUI(k)
i as follows:

eUI(k+1)
u = fUI

(
eUI(k)

i ,
{

eUI(k)
i : i ∈ NUI

u

})
(5)

eUI(k+1)
i = fUI

(
eUI(k)

u ,
{

eUI(k)
u : u ∈ NUI

i

})
(6)

where fUI serves as an aggregation mechanism that compiles the features of neighboring
nodes within the user–item interactions graph. eUI(k)

u and eUI(k)
i represent the k-th layer’s

representation, which incorporates the collaborative information of user u and item i,
respectively. NUI

u denotes the set of item neighbors for user u, while NUI
i signifies the set

of user neighbors for item i.
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Figure 3. Collaborative-aware representation learning. We employ the aggregation function fUI to
consolidate the collaborative information from the k-hop neighbors of both users and items within
the user–item interactions graph, yielding distinct embeddings across K layers.
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The essence of graph convolutional networks (GCNs) lies in the design of the fUI
function. In contrast to the prevalent approaches that integrate feature transformation or
nonlinear activation within the fUI function, we streamline the GCN design to enhance
its conciseness and suitability for recommendation tasks, like LightGCN [34]. The graph
convolution operation is delineated in Equations (7) and (8):

eUI(k+1)
u =

1
∥NUI

u ∥ ∑
i∈NUI

u

eUI(k)
i (7)

eUI(k+1)
i =

1
∥NUI

i ∥ ∑
u∈NUI

i

eUI(k)
u (8)

It is important to highlight that our aggregation process exclusively considers the
neighboring nodes that are directly connected and does not incorporate the target node
itself. This is because we aim to generate a comprehensive embedding representation
by combining the representations from each layer. Following the application of the fUI
function, the user and item representations, which encapsulate collaborative information,
can be derived.

4.3. Adaptive Feature Fusion

It is crucial to harmoniously integrate the representations that encapsulate both knowl-
edge and collaborative information to derive a unified final representation for users and
items. In scenarios where user–item interactions are plentiful, the model can benefit
from learning a wealth of collaborative insights. Conversely, in cases where interactions
are scarce, the model should prioritize capturing the knowledge-rich information within
the graph.

To fuse the knowledge graph and collaborative information, we define a fusion func-
tion f , shown in Equations (9) and (10).

e(k)i = fi

(
eKG(k)

i , eUI(k)
i

)
(9)

e(k)u = fu

(
eKG(k)

u , eUI(k)
u

)
(10)

Specifically, in this paper, we implement the fusion function f as Equations (11) and (12):

e(k)i = Att
(

eKG(k)
i , e(k−1)

i

)
eKG(k)

i + Att
(

eUI(k)
i , e(k−1)

i

)
eUI(k)

i (11)

e(k)u = Att
(

eKG(k)
u , e(k−1)

u

)
eKG(k)

u + Att
(

eUI(k)
u , e(k−1)

u

)
eUI(k)

u (12)

Hence, we introduce an attention score Att(·) to distinguish the importance of knowledge
and collaborative information in Equations (13)–(16):

Att
(

eKG(k)
i , e(k−1)

i

)
=

exp
(

e(k−1)
i · eKG(k)

i

)
e(k)i

(13)

Att
(

eUI(k)
i , e(k−1)

i

)
=

exp
(

e(k−1)
i · eUI(k)

i

)
e(k)i

(14)

Att
(

eKG(k)
u , e(k−1)

u

)
=

exp
(

e(k−1)
u · eKG(k)

u

)
e(k)u

(15)
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Att
(

eUI(k)
u , e(k−1)

u

)
=

exp
(

e(k−1)
u · eUI(k)

u

)
e(k)u

(16)

Specifically, we define e(k)i and e(k)u in Equations (17) and (18):

e(k)i = exp
(

e(k−1)
i · eKG(k)

i

)
+ exp

(
e(k−1)

i · eUI(k)
i

)
(17)

e(k)u = exp
(

e(k−1)
u · eKG(k)

u

)
+ exp

(
e(k−1)

u · eUI(k)
u

)
(18)

Upon completing L layers of representation learning, we acquire the user u and
item i representations across layers 0 to L. These representations are then aggregated
to construct the ultimate user and item embeddings. Specifically, we aggregate the user
(item) embeddings from each layer to derive the comprehensive final representation. This
aggregation is achieved by summing the embeddings from all layers:

e∗i =
1

L + 1

L

∑
j=0

e(j)
i (19)

e∗u =
1

L + 1

L

∑
j=0

e(j)
u (20)

The ultimate representations encapsulate various semantics from each layer, as they
are derived through the layer combination defined by Equations (19) and (20).

4.4. Model Optimization

Following the integration of the layers, the model’s predictive function is formulated
as the dot product between the user’s and item’s final representations, as outlined in
Equation (21):

ŷui = e∗T
u e∗i (21)

ŷui is employed to estimate the probability of a user adopting an item, which serves as the
ranking metric for generating recommendations.

To optimize the model, we utilize the Bayesian personalized ranking (BPR) loss [35],
a pairwise loss function that encourages the model to rank observed entries higher than
unobserved ones, as depicted in Equation (22):

LBPR = ∑
(u,i,j)∈O

− ln σ
(
ŷui − ŷuj

)
(22)

where O = {(u, i, j) | (u, i) ∈ O+, (u, j) ∈ O−} represents the training dataset composed
of observed interactions O+ and unobserved counterparts O−; σ(·) denotes the sigmoid
function. Prior to the commencement of training, the items with which the user has
interacted are chosen to form a positive sample with the user. For negative samples, we
randomly select items that the user has not interacted with, maintaining a ratio of 1:1 to the
positive samples.

To mitigate overfitting, we minimize the objective function outlined in Equation (23)
to train the model’s parameters effectively.

LKGCFRec = LBPR + λΘ∥Θ∥2 (23)

where λΘ∥Θ∥2 is the regularization term. Upon the computation of the loss, the parameters
of the KGCFRec model are updated via the gradient descent algorithm Adam [36]. Training
ceases after a predefined number of iterations or when the loss does not decrease for a
specified number of iterations.
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Once training is complete, the process of item recommendation for a user unfolds as
follows: the user’s embedding vector and the embedding vectors of all items with which
the user has not interacted are input into the prediction function ŷui in pairs. The preference
scores for all uninteracted items are then determined, and the top N items with the highest
scores are selected for recommendation to the user after ranking.

5. Experimental Setup

In this section, we delineate the dataset utilized for our experiments, the baseline
approach and the evaluation metrics employed for comparison, and provide an overview
of the experimental setup.

5.1. Datasets

To validate the efficacy of the model presented in this paper, we employ three widely
recognized recommendation datasets across distinct domains. These datasets include
Last-FM, a music recommendation dataset; Amazon-book, a book recommendation dataset;
and Alibaba-iFashion, a fashion clothing recommendation dataset. A comprehensive
description of the fundamental aspects of these datasets is provided below.

Amazon-book is a subset of the Amazon-review dataset, a well-known product recom-
mendation dataset published by Amazon.com. It pertains specifically to book recommen-
dations, where the items are books and the user ratings represent the interaction actions. In
this study, we treat high user ratings as positive samples, thereby transforming display feed-
back into implicit feedback. To ensure the quality of the dataset, we employ a preprocessing
method to eliminate user and item data with fewer than 10 interactions. Amazon-book is
openly available on Github at https://nijianmo.github.io/amazon/index.html, accessed
on 15 May 2023.

Last-FM [37] is derived from the Last.fm online music system and represents music
listening habits. Each music piece in the dataset is considered an item, and users’ music
listening patterns constitute the interactions. The data used in this study span the period
from January 2015 to June 2015. Last-FM is openly available from the Last.fm website,
http://www.lastfm.com, accessed on 18 May 2023.

Alibaba-iFashion is a fashion apparel recommendation dataset sourced from Alibaba’s
e-commerce platform. The various fashion outfits are treated as items, and user behaviors
such as purchases and clicks are considered interactions. The knowledge graph for this
dataset is constructed using the attributes of the fashion outfits. Alibaba-iFashion is openly
available on Github at https://github.com/renesemela/lastfm-dataset-2020, accessed on
20 May 2023.

The three datasets used in this paper are open source and can be accessed by visiting
their official links. A detailed statistical comparison of these three datasets is presented in
Table 1. This comparison reveals that the datasets vary in terms of various data metrics,
which will facilitate the assessment of the model’s effectiveness proposed in this paper.

Table 1. Statistics of the datasets.

Dataset #Users #Items #Interactions #Entities #Relations #Triplets

Amazon-book 70,679 24,915 847,733 88,572 39 2,557,746
Last-FM 23,566 48,123 3,034,796 58,266 9 464,567

Alibaba-iFashion 114,737 30,040 1,781,093 59,156 51 279,155

In the context of each dataset, we randomly select 80% of the historical interaction
data for each user to constitute the training set. The remaining 20% is designated as the test
set. Within the training set, we further segregate 10% as the validation set, which aids in
refining the model’s hyper-parameters by evaluating their impact on performance.

https://nijianmo.github.io/amazon/index.html
http://www.lastfm.com
https://github.com/renesemela/lastfm-dataset-2020
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5.2. Baseline Methods

This subsection outlines the baseline methods that are used for comparative evalu-
ation against KGCFRec. In this study, these baselines are categorized into three distinct
groups: solely utilizing user–item interaction data without incorporating knowledge graph
information (MF); embedding-based methods (CKE); and graph-neural-network-based
methods (KGAT, KGNN-LS, CKAN, R-GCN, Simple-HGN, KGCN). The specific details of
these baseline methods are detailed below:

• MF [13] is a conventional matrix factorization approach that exclusively relies on
user–item interaction data for recommendations. MF projects users and items into
a latent vector space and refines their vector representations by decomposing the
co-occurrence matrix, thereby capturing the collaborative signals between user–item
interactions.

• CKE [30] is a notable example of an embedding-based knowledge graph recommen-
dation. It learns the embedding vector representation of items within the knowledge
graph through the knowledge graph embedding algorithm TransR and integrates
these item embeddings into the matrix factorization framework.

• KGAT [17] is a state-of-the-art knowledge graph recommendation algorithm that
leverages graph neural network technology. It implements a neighbor aggregation
mechanism based on an attention mechanism, enabling the selective propagation of
node information. KGAT operates on a collaborative knowledge graph that includes a
user–item interaction graph and a knowledge graph, outperforming other methods in
this setting.

• KGNN-LS [29] is another knowledge graph recommendation algorithm based on
graph neural networks. It differs from KGAT in that it does not operate on a col-
laborative knowledge graph but rather uses the transformation of knowledge graph
information into a user–item interaction graph. KGNN-LS takes into account the
propagation of user preferences across the knowledge graph.

• CKAN [18] is an extension of the KGNN-LS model. It differs from KGNN-LS in that it
propagates and aggregates information on the user–item interaction graph and the
knowledge graph separately, and it designs two distinct aggregation mechanisms.

• R-GCN [32] is a graph neural network framework. It treats the relationships in the
knowledge graph as distinct information dissemination channels and utilizes different
channels for aggregating node information based on their relationships.

• Simple-HGN [33] is a novel, simple, and effective method for modeling heterogeneous
graphs. The model is applicable to knowledge-aware recommendation and has shown
promising results.

• KGCN [31] is a recommender algorithm that leverages knowledge reasoning opti-
mization. It involves two key steps: knowledge graph completion, which uses a
reasoning algorithm to enrich the graph with better user interaction and semantic
information, and the application of KGCN to capture higher-order features for im-
proved personalized recommendations through embedding and aggregation of the
completed knowledge graph.

5.3. Evaluation Metrics

The model proposed in this study is assessed as a top-n recommendation model.
During the evaluation phase, two prevalent evaluation metrics in contemporary recommen-
dation systems are employed: sample evaluation metrics [29] and all-ranking evaluation
metrics [38]. Sample evaluation entails presenting a user with a recommendation list
and selecting a predefined number of negative samples for final evaluation, rather than
predicting all potential negative samples. Conversely, the all-ranking evaluation approach
involves predicting all unadopted items by a user and then providing a top-n list of rec-
ommendations for evaluation. While sample evaluation is more expedient, all-ranking
evaluation offers a more thorough and precise assessment. In this paper, we opt for the
all-ranking evaluation method.
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To evaluate the efficacy of the model, two commonly employed evaluation metrics,
recall [38] and normalized discounted cumulative gain (NDCG) [39], are employed. Recall
is defined as shown in Equation (24).

Recall =
#TP

#TP + #FN
(24)

The recall metric is typically assessed by setting a fixed number of items, denoted as
K, that each user is recommended. This is represented as Recall@K. Recall is a prevalent
metric for assessing the performance of a ranking model, quantifying the proportion of
correct recommendations to the total number of correct items available.

The discounted cumulative gain (DCG) metric is introduced to define the normalized
discounted cumulative gain (NDCG), as depicted in Equation (25).

DCG@K =
K

∑
i

2r(i) − 1
log2(i + 1)

(25)

where r(i) represents the relevance score of the item at position r in the recommendation
list. In this study, we define r(i) as 1 if the recommended item has been interacted with by
the user; otherwise, r(i) is set to 0. Subsequently, the normalized discounted cumulative
gain (NDCG) is formulated as in Equation (26).

NDCG@ K =
DCG@K
IDCG@K

(26)

The ideal discounted cumulative gain (IDCG@K) represents the optimal discounted cumu-
lative gain scenario, where the items in the recommendation list are those that the users
have interacted with. NDCG places greater emphasis on the sequential ordering of correctly
classified samples, ensuring that they are ranked higher than the recall metric.

5.4. Parameter Settings

We developed our KGCFRec model using PyTorch. Training was conducted on a
Nvidia GeForce RTX 3060 with Adam as the optimizer, with a fixed batch size of 1024. To
ensure a level playing field with the baseline methods, we standardized the embedding
dimension (d) at 64. The model parameters were initialized using Xavier [40]. We use the de-
fault model configuration for all baseline methods, keeping the training strategy consistent.
At the same time, the grid search traversed the hyper parameters as the parameter of the
comparison method to ensure a fair comparison. A grid search was conducted to optimize
hyper-parameters: the learning rate (σ) was varied within {5 × 10−2, 5 × 10−3, 5 × 10−4},
and the L2 normalization coefficient λΘ was explored in {10−3, 10−4, 10−5}. To enhance
the model’s generalization capabilities, we employed dropout techniques, specifically node
dropout and edge dropout, with their respective ratios adjusted in {0.0, 0.1, 0.3, 0.5, 0.7}.
Each dataset underwent 600 epochs of training, and the parameters yielding the best per-
formance are tabulated in Table 2. The impact of the depth of the graph neural network
layers is discussed in Section 6.

Table 2. The parameters of best result.

Dataset d δ λ1
Node

Dropout Rate
Edge

Dropout Rate #Triplets

Amazon-book 64 5 × 10−4 10−4 0.5 0.1 2,557,746
Last-FM 64 5 × 10−4 10−4 0.5 0.1 464,567

Alibaba-iFashion 64 5 × 10−4 10−4 0.3 0.3 279,155

6. Results

In this section, we present the results of our experiments. Initially, we compare the
performance of our model against that of the baseline methods. Next, we conduct an
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ablation study to illustrate the efficacy of our model. Finally, we conduct hyper-parameter
studies to reveal the sensitivity of each module of the model.

6.1. Recommendation Performance

We report the results of the baseline methods and our model in Table 3.

Table 3. Overall performance comparison.

Model Amazon-Book Last-FM Alibaba-iFashion
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF [13] 0.13 0.0678 0.0724 0.0617 0.1095 0.067
CKE [30] 0.1342 0.0698 0.0732 0.063 0.1103 0.0676

KGAT [17] 0.1487 0.0799 0.0873 0.0744 0.103 0.0627
KGNN-LS [29] 0.1362 0.056 0.088 0.0642 0.1039 0.0557

R-GCN [32] 0.122 0.0646 0.0743 0.0631 0.086 0.0515
CKAN [18] 0.1442 0.0698 0.0812 0.066 0.097 0.0509

Simple-HGN [33] 0.1587 0.0854 0.0917 0.0797 0.0952 0.0566
KGCN [31] 0.1592 0.0864 0.0919 0.0807 0.0971 0.0574
KGCFRec 0.1646 0.0880 0.0933 0.0826 0.1231 0.0769
(%) Imp. 3.39 1.85 1.52 2.35 11.6 13.76

In Table 3, the symbol Imp. stands for the relative improvement of the top-performing
method (bolded) compared to the most robust baseline methods (underlined). Table 3
reveals the following key insights:

• KGCFRec surpassed the baseline model in all evaluation metrics across all datasets.
When contrasted with the traditional collaborative filtering model MF, which re-
lies solely on collaborative data without leveraging knowledge graph information,
KGCFRec’s superior performance underscores the significance of integrating knowl-
edge graph data. In comparison with graph neural network models like KGAT
and KGNN-LS, which are more focused on encoding knowledge graph information,
KGCFRec demonstrates its strength in incorporating collaborative data. Against
the CKAN model, which also models both knowledge graph and collaborative
data, KGCFRec achieves superior results due to its attention-based information fu-
sion model.

• The experimental findings reveal that MF, which solely relies on user–item interaction
data without knowledge graph information, outperforms models like KGAT, KGNN-
LS, R-GCN, and CKAN on the Alibaba-iFashion dataset in terms of evaluation metrics.
This observation suggests that models that predominantly rely on knowledge graph
information without integrating collaborative data may not achieve the expected
performance. In contrast, KGCFRec consistently outperforms MF, underscoring the
importance of incorporating both collaborative and knowledge information.

• Analyzing the relative gains of KGCFRec over the best baseline across the Amazon-
book, Alibaba-iFashion, and Last-FM datasets, the largest gains were observed on the
Amazon-book dataset, with 3.39% (Recall@20) and 1.85% (NDCG@20). On the Last-FM
dataset, the gains were 1.52% (Recall@20) and 2.35% (NDCG@20). On the Alibaba-
iFashion dataset, the gains were 11.6% (Recall@20) and 13.76% (NDCG@20). These
differences could be attributed to the varying quality and distribution of the datasets,
which may explain the varying gains KGCFRec achieves in fusing collaborative and
knowledge information.

6.2. Ablation Study

To further corroborate the efficacy of the attention-based fusion design for fusing
knowledge and collaborative information, as presented in Section 4 of this paper, this
subsection performs ablation studies on the proposed design. Specifically, the performance
of the two models is contrasted across three datasets: Alibaba-iFashion, Last-FM, and
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Amazon-book. This comparison is achieved by substituting the attention-mechanism-
based fusion with a straightforward summation-based fusion approach. In this paper,
the altered KGCFRec model is referred to as the KGCFRec-a model. The experimental
parameters of the KGCFRec-a model are tuned identically to those of the KGCFRec model,
and the experimental outcomes are presented in Table 4.

Table 4. Impact of the attention mechanism

Model Amazon-Book Last-FM Alibaba-iFashion
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

KGCFRec 0.1646 0.0880 0.0933 0.0826 0.1231 0.0769
KGCFRec-a 0.1583 0.0859 0.0887 0.0786 0.1188 0.074

6.3. Hyper-Parameter Studies

In this subsection, we conduct an empirical investigation into the impact of three hyper-
parameters of KGCFRec: the embedding dimension, the number of graph convolutional
layers, and the dropout ratio.

Given that KGCFRec represents users and items as embedding vectors, the size of
these embeddings significantly influences the model’s expressive capabilities. To exam-
ine this influence, we varied the embedding size of KGCFRec across the Amazon-book
dataset, setting it to 8, 16, 32, and 64, respectively, while the other parameters were deter-
mined through grid search. The final experimental outcomes for each embedding size are
illustrated in Figure 4.
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Figure 4. Performance of different embedding sizes (d) on Amazon-book.

From Figure 4, it is evident that as the embedding size increases, the recommendation
performance of KGCFRec improves, albeit with diminishing returns. This suggests that a
judicious increase in embedding size can enhance the model’s expressiveness. However, an
excessive increase in size may also complicate the model’s convergence, underscoring the
importance of selecting an appropriate embedding size based on the specific characteristics
of the data in practical applications.

As KGCFRec is a graph-neural-network-based knowledge graph recommendation
algorithm, the graph convolutional layers play a pivotal role in aggregating information.
Consequently, the number of these layers is a crucial hyper-parameter that influences
the recommendation efficacy. In the experiments conducted in this section, we varied the
number of graph convolutional layers in KGCFRec to 1, 2, and 3, respectively, and identified
the optimal combination of other parameters through grid search. The experimental results
on the Amazon-book and Alibaba-iFashion datasets are presented in Figures 5 and 6.



Electronics 2024, 13, 1927 14 of 17

1 2 3
h

0.01

0.04

0.07

0.1

0.13

0.16

0.19

R
ec

al
l@

20

Recall@20

0.03

0.04

0.05

0.06

0.07

0.08

0.09

N
dC

G
@

20

NDCG@20

Figure 5. Performance of different graph convolution layers (h) on Amazon-book.
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Figure 6. Performance of different graph convolution layers (h) on Alibaba-iFashion.

Figures 5 and 6 indicate that both the Amazon-book and Alibaba-iFashion datasets
achieve optimal performance with three graph convolutional layers in terms of Recall@20
and NDCG@20. The general trend suggests that the recommendation performance im-
proves with an increase in the number of convolutional layers, underscoring the soundness
of the graph neural network design at the core of KGCFRec. By employing multiple layers
of graph convolution, KGCFRec can effectively gather information from more distant
nodes, facilitating the learning of a more comprehensive embedding representation for
users and items.

Dropout [41] is a technique used to mitigate the risk of overfitting in neural network
models. This subsection explores the impact of varying dropout rates on the model’s
performance using the Last-FM dataset. The results are presented in Figure 7.

Figure 7 suggests that the dropout ratio has a significant influence on the model’s
performance. For node dropout, increasing the dropout ratio leads to a notable improve-
ment in model performance. Conversely, for edge dropout, increasing the dropout ratio
has a detrimental effect on the model’s performance, possibly due to the disruption of
connections between nodes, which can hinder the model’s convergence. These findings
indicate that the judicious application of dropout can effectively reduce the training com-
plexity of the model, aiding in the prevention of overfitting and enhancing the model’s
generalization capabilities.
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Figure 7. Performance of different dropout rates.

7. Conclusions

In this paper, we have introduced a method for personalized recommendation that
fuses collaborative and knowledge information from a knowledge graph. To achieve
this, we devised two graph neural networks to collect collaborative information from the
user–item interactions graph and knowledge information from the knowledge graph. This
design enables the differentiation of the two types of information, thereby facilitating the
creation of more robust user and item representations. We then employed an attention
mechanism to merge the collaborative and knowledge information embeddings, resulting
in a more judicious weighted combination. Extensive experiments conducted on three
real-world datasets validate the rationality and efficacy of KGCFRec. The experiment
proves that knowledge graph and collaborative information can enhance each other to
improve recommendation performance, and further confirms that it is feasible to use side
information to improve recommendation performance. Ablation and hyper-parameter
studies further corroborate the soundness of the model’s design. In future work, we intend
to investigate the further leveraging of the background knowledge of large language models
to improve KGCFRec performance while implementing interpretable recommendations.
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