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Abstract: The high dimensionality of hyperspectral images (HSIs) brings significant redundancy to
data processing. Band selection (BS) is one of the most commonly used dimensionality reduction
(DR) techniques, which eliminates redundant information between bands while retaining a subset of
bands with a high information content and low noise. The wild horse optimizer (WHO) is a novel
metaheuristic algorithm widely used for its efficient search performance, yet it tends to become
trapped in local optima during later iterations. To address these issues, an enhanced wild horse
optimizer (IBSWHO) is proposed for HSI band selection in this paper. IBSWHO utilizes Sobol se-
quences to initialize the population, thereby increasing population diversity. It incorporates Cauchy
mutation to perturb the population with a certain probability, enhancing the global search capability
and avoiding local optima. Additionally, dynamic random search techniques are introduced to
improve the algorithm search efficiency and expand the search space. The convergence of IBSWHO is
verified on commonly used nonlinear test functions and compared with state-of-the-art optimization
algorithms. Finally, experiments on three classic HSI datasets are conducted for HSI classification.
The experimental results demonstrate that the band subset selected by IBSWHO achieves the best clas-
sification accuracy compared to conventional and state-of-the-art band selection methods, confirming
the superiority of the proposed BS method.

Keywords: band selection (BS); global optimization; wild horse optimizer (WHO); hyperspectral
image (HSI) classification

1. Introduction

Hyperspectral remote-sensing images (HSIs) have rich spectral and spatial information
and the unity of map and spectrum. Their applications have yielded important value in the
fields of mineral exploration [1], environmental monitoring [2], precision agriculture and
forestry [3] and national defense and the military [4]. However, the large volume and high
dimension of HSI data can easily lead to a dimensional disaster [5]. On the other hand,
due to the numerous HSI bands, the strong correlation between adjacent bands and a lot of
redundant information, information recognition and feature extraction are difficult and the
accuracy is not high. Therefore, when using the original HSI, the band with the highest
separability should be selected.

In recent years, scholars have conducted a large amount of research on hyperspectral
BS methods. Jiang et al. [6] proposed a BS method based on the minimum redundancy
maximum relevance (MRMR), which computed the correlation between each band and the
labels and then calculated the redundancy between each band and the other bands. The
band subsets were selected by maximizing the relevance and minimizing the redundancy.
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Xu et al. [7] used structural similarity to measure the relationship between bands and ranked
bands according to their similarity and significant differences to select representative band
subsets. In order to speed up the efficiency of band selection, a strategy called band
grouping was introduced in BS. Wang et al. [8] grouped bands followed by the clone
selection algorithm to select representative bands for each group as a subset. Wang et al. [9]
proposed a fast neighborhood grouping BS method (FNGBS), which divided the HSI into
several groups using a coarse-to-fine strategy and simultaneously selected the most relevant
and information-rich bands for each group based on local density and information entropy
factors. Although ranking-based BS methods can quickly obtain feature subsets, they often
overlook the intrinsic structure of HSI data, resulting in high correlations among the selected
bands. In contrast, filtering-based methods are designed based on certain mathematical
models or principles, allowing them to utilize the structure and characteristics of HSIs
to select bands relevant to the task, which can effectively remove redundant bands. Kira
et al. [10] proposed a statistical approach Relief, which had advantages in terms of time and
accuracy. Fu et al. [11] proposed a novel adjacent band grouping and normalized matching
filter for BS (NGNMF), which preserved spatial–spectral information while reducing data
dimensionality. However, limitations in the type of filters and parameter settings may
restrict its applicability and performance. Cluster-based methods offer flexibility in selecting
bands based on the actual characteristics of the data, thereby reducing the correlation among
band subsets. Wang et al. [12] proposed a hyperspectral band selection method based on
an adaptive subspace partitioning strategy (ASPS), which divided HSI into multiple sub-
cubes with the maximum ratio of inter-class distance to intra-class distance and selected
the least noisy bands within each sub-cube. Zhang [13] selected representative bands
based on the similarity metric, calculated applicable similarity metric weights using the
coefficient of variation and then put the similarity metric into K-means as the kernel with
weights. Wang et al. [14] raised an area-aware hierarchical latent feature representation
learning-guided clustering (HLFC) method, which reflected band similarity by constructing
a similarity map, learning latent features hierarchically and then clustering with k-means.
However, cluster-based methods do not consider the overall performance after merging
representative bands, and they are not guided by the classifier when searching for band
subsets, leading to relatively low accuracy. In recent years, deep learning has also been
applied to hyperspectral band selection and it has achieved good results [15–24], but it
requires a large number of training samples, while labeled samples for HSI are limited.

To overcome the aforementioned issue, the wrapper method based on a heuristic
search, with its strong ability to search feature space and full consideration of classification
effect, has been extensively used in HSI BS. Su et al. [25] used particle swarm optimization
(PSO) to select hyperspectral bands while automatically identifying the optimum number
of selected bands. It used two particle swarms: an external swarm to determine the
appropriate band numbers and an internal swarm for band selection. It was proven that
automatically selecting a variable number of bands had a better classification result than
a fixed number of bands, but using two PSOs to search greatly increased the complexity.
Medjahed et al. [26] used the grey wolf optimization algorithm (GWO) for solving the
BS problem and selected the subset of bands well by optimizing the objective function.
Medjahed et al. [27] proposed a BS method based on the sine cosine algorithm (SCA),
which used SCA in combination with KNN to select band subsets based on classification
accuracy. The results showed that IMACA produced accurate classification results, but
the classification accuracy of selected bands was not high. Most existing optimization
algorithms have many parameters, tend to fall into local optimality and cannot solve
complex optimization problems. As a result, newly proposed algorithms are increasing,
such as greylag goose optimization (GGO) [28], Coati optimization algorithm (COA) [29],
parrot optimizer (PO) [30], reptile search algorithm (RSA) [31], MOQEA/D [32], machine
learning (ML) [33], deep neural network (DNN) [34], image segmentation [35] and so
on [36]. In addition, there are also winners of CEC competitions such as LSHADE [37],
COLSHADE [38], IMODE [39], KGE [40] and SASS [41].
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The wild horse optimizer (WHO) [42] is a new meta-heuristic algorithm that has
been employed successfully for the optimization of practical problems due to its limited
parameters, great optimum capability and relatively low time complexity. For example, it
has been employed in extracting model parameters in photovoltaic systems [43], solving
nonlinear multi-objective optimization problems in energy management [44] and solving
link failure problems in underwater channels [45]. Although WHO can achieve satisfactory
results on some practical issues, there are still some problems, such as a limited exploitation
capability and stagnation of locally optimal solutions. Therefore, it is necessary to improve
WHO according to practical problems. Ewees et al. [46] proposed an improved version
of WHO (WHOW) by using the spiral position update strategy of the whale optimization
algorithm (WOA) for updating positions in WHO, and the experimental consequences
indicated the advantages of WHOW in solving different optimization problems and its
outstanding feature selection ability for most benchmark datasets. Zheng et al. [47] pro-
posed an improved WHO (IWHO), which utilized the random running strategy and a
competition mechanism with waterhole to enhance development capabilities and then used
a dynamic inertia weight strategy to optimize the global optimal solution. Simulation tests
and application experiments demonstrated the best optimization ability of the improved
algorithm. However, according to the NFL theory [48], no single optimization algorithm
can address all optimization difficulties, and algorithms need to be improved to fit actual
problems. BS is essentially an NP-hard problem [49] and as the number of bands grows,
the above algorithms’ optimization processes may prematurely converge or even stagnate.

To solve these problems, this paper proposes a hyperspectral BS algorithm based
on an enhanced WHO (IBSWHO), which can overcome the shortcomings of the original
WHO and automatically select informative bands while maintaining excellent classification
precision. The main contributions of this paper are described as follows.

1. The Sobol sequence, Cauchy mutation and dynamic random search technique are
helpful for IBSWHO to step out of local optimality and increase search efficiency and
exploitation ability.

2. A binary-coded version of WHO is proposed and applied to image feature selection.
3. HSI BS is constructed as a binary optimization problem, and IBSWHO is applied to

HSI BS to select the optimal number of bands automatically, and its performance is
verified on typical HSI datasets.

The rest of this paper is organized as follows: Section 2 introduces the proposed BS
algorithm (IBSWHO) and its specific steps. Experimental results and a comparative study
are presented in Section 3. Finally, the full paper and future work are summarized in
Section 4.

2. Proposed Method

To deal with the poor quality of band subsets, the need to preset the expected number
of bands and the stagnation of local optimal solutions of WHO, a binary enhanced WHO
(IBSWHO) for HSI BS is proposed in this paper.

2.1. Binary Encoding

The goal of BS is to determine whether a band is selected in the band subset, so the
value assigned to the band should reflect whether it is selected or not. Here are two possible
values for each band: one indicates that the band is selected, and the other indicates that
the band is not selected. Thus, binary encoding is the best choice [50]. A band is reserved
or removed, and its weight is set to 1 or 0. The details are as follows:

Let the size of the hyperspectral image D be m × n × h, where m × n is the num-
ber of pixels, h is the total number of bands, b = {b1, b2, . . . , bh} is the band set of D,
i = {1, 2, . . . , h} and Xp represents a candidate band found by IBSWHO. To determine
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whether a band is selected, a static threshold of 0.5 is used, as per the expression is given
in (1).

bi =

{
1, i f Xp > 0.5
0, otherwise

}
, (1)

2.2. Band Selection Method Based on Enhanced Wild Horse Optimizer (IBSWHO)

The overall flow of IBSWHO for HSI BS is shown in Figure 1. According to the group
behavior of the wild horses, IBSWHO can be divided into the following seven steps.
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2.2.1. The Sobol Sequence Initializes the Population

WHO uses the rand function to randomly initialize the population, resulting in a
high randomness but uneven distribution across the entire solution space, which results
in a sluggish population search speed, poor diversity and low solution accuracy. To
address these issues, this paper introduces the Sobol sequence to map the initialized
populations. The Sobol sequence, as opposed to pseudo-random sequences, is a low-
discrepancy sequence that replaces a pseudo-random sequence with a deterministic low-
discrepancy sequence, which allows for shorter calculation periods, faster sampling speeds
and higher efficiency in handling high-dimensional sequences [51].

Let ub and lb represent the upper and lower boundaries of the optimal solution.
Kn ∈ [0, 1] is a random number generated by the Sobol sequence, and the mathematical
expression for the initial population xn is as follows:

xn = lb + Kn × (ub − lb), (2)

Assuming that the upper and lower bounds of the population are 0 and 1, respectively,
the search space dimension is 2, and the population size N is 100. When the initial popu-
lation distribution of the Sobol sequence is compared to that of the random function, as
shown in Figure 2, it can be seen that the distribution initialized by the Sobol sequence is
more uniform.



Electronics 2024, 13, 1930 5 of 21

Electronics 2024, 13, x FOR PEER REVIEW 5 of 22 
 

 

population distribution of the Sobol sequence is compared to that of the random function, 
as shown in Figure 2, it can be seen that the distribution initialized by the Sobol sequence 
is more uniform. 

  
(a) (b) 

Figure 2. Distribution of initialization generated by different methods. (a) Random initialization, (b) 
Sobol sequence initialization. 

2.2.2. Grazing Behavior of Foals 
The foals graze around the stallions; that is, they search around the locally optimal 

band subset. The behavior is represented by a mathematical model as follows: 

( ) ( ), ,2 cos 2
j jj j
i G i GBX Z RZ BS BX BSπ= × − + ,  (3) 

where ,
j
i GBX   is the band subset updated by the foal, jBS   is the band subset repre-

sented by the stallion, i.e., the optimal band subset in this group and ,
j

i GBX  is the current 
band subset. Z  is the adaptable mechanism calculated by (4), R  is a uniform random 
number in the range of [ 2, 2]− , π  equals 3.14 and the cos  function makes foals update 
the band subset around the center with different angles and radius. 

1W R TDR= <


, ( )0IDX W= == , ( )2 3Z R IDX R IDX= Θ + Θ ∼


,  (4) 

where W  is a vector composed of 0 and 1, whose size is equal to the total number of 
bands. The values 0 and 1 in W  represent logical values of false and true. TDR  is an 
adaptive parameter that gradually decreases from 1 to 0 with iteration, and its expression 
is given in (5). 1R


 and 3R


 are random vectors uniformly distributed in the range of [0,1], 

and 2R  is a random number uniformly distributed in the range of [0,1]. Θ  is the dot 
multiplication of elements and ∼   is the reverse operation. IDX   indexes 1R


  and re-

turns the value satisfying the condition 0W == . 

1 iterTDR
maxiter

= − ,  (5) 

where iter   represents the current number of iterations and 𝑚𝑎𝑥𝑖𝑡𝑒𝑟  is the maximum 
number of iterations. 

2.2.3. Mating Behavior of Foals 
Foals leave the original group before puberty, and females and males join different 

groups. Upon reaching puberty, they join a temporary group for mating, then their off-
spring leave the temporary group to join another group. The mathematical model is ex-
pressed as follows. 

Figure 2. Distribution of initialization generated by different methods. (a) Random initialization,
(b) Sobol sequence initialization.

2.2.2. Grazing Behavior of Foals

The foals graze around the stallions; that is, they search around the locally optimal
band subset. The behavior is represented by a mathematical model as follows:

BX j
i,G = 2Z cos(2πRZ)×

(
BSj − BX j

i,G

)
+ BSj, (3)

where BX j
i,G is the band subset updated by the foal, BSj is the band subset represented

by the stallion, i.e., the optimal band subset in this group and BX j
i,G is the current band

subset. Z is the adaptable mechanism calculated by (4), R is a uniform random number in
the range of [−2, 2], π equals 3.14 and the cos function makes foals update the band subset
around the center with different angles and radius.

W =
→
R1 < TDR, IDX = (W == 0), Z = R2ΘIDX +

→
R3Θ(∼ IDX), (4)

where W is a vector composed of 0 and 1, whose size is equal to the total number of bands.
The values 0 and 1 in W represent logical values of false and true. TDR is an adaptive
parameter that gradually decreases from 1 to 0 with iteration, and its expression is given in

(5).
→
R1 and

→
R3 are random vectors uniformly distributed in the range of [0,1], and R2 is a

random number uniformly distributed in the range of [0,1]. Θ is the dot multiplication of

elements and ∼ is the reverse operation. IDX indexes
→
R1 and returns the value satisfying

the condition W == 0.
TDR = 1 − iter

maxiter
, (5)

where iter represents the current number of iterations and maxiter is the maximum number
of iterations.

2.2.3. Mating Behavior of Foals

Foals leave the original group before puberty, and females and males join different
groups. Upon reaching puberty, they join a temporary group for mating, then their offspring
leave the temporary group to join another group. The mathematical model is expressed
as follows.

BXp
G,k = Crossover

(
BXq

G,i, BXz
G,j

)
, i ̸= j ̸= k, q = z = end, Crossover = Mean, (6)

where BXp
G,k is the offspring of foal q and foal z, i.e., the updated band subset. BXq

G,i is the
location of foal q from group i and BXz

G,j is the location of foal z from group j. The average
operation is used to represent mating, and we take the average value of the position of the
two mating foals as the position of their offspring.
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2.2.4. Leading Groups to Find Water by Leaders

Stallions must lead the respective group to the appropriate water source, and each
group moves towards this source. If the source is empty, it can be used; otherwise, groups
must leave. This process can be described as follows:

BSGi =

{
2Z cos(2πRZ)×

(
BG − BSGi

)
+ BG, i f R3 > 0.5

2Z cos(2πRZ)×
(

BG − BSGi

)
− BG, i f R3 ≤ 0.5

}
, (7)

where BSGi is the updated locally optimal band subset, Z is the adaptive mechanism
calculated by (3), R is a uniform random number in the range of [−2,2], BG is the globally
optimal band subset (i.e., the location of water source) and BSGi is the current subset of the
locally optimal band.

2.2.5. Cauchy Mutation

As the number of iterations increases, WHO converges gradually, and once it converges
to a local optimum, it will find it difficult to jump out. To solve this problem, this paper
uses Cauchy mutation when updating the local optimal band subset so that the range of the
updated band subset becomes wider, and it is easier to step out of the local optimum. In the
early stage, the variance probability should be small because the algorithm needs to find
the global optimal subset quickly. In the later stage, to avoid converging prematurely, the
population diversity needs to be increased, so the variance probability should be increased.
In this paper, a simple and effective formula for variation probability is designed as follows.

P =
exp

(
iter

maxiter

)
3

, (8)

where P is the probability of variation, iter is the current number of iterations, maxiter is the
maximum iterations and the value of P grows gradually with the increase in iterations. To
visualize the change in the P-value under different iterations, (8) is plotted as in Figure 3.
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The mathematical description of Cauchy mutation for the band subset update is
described as follows.

BSGinew = BSGi + BSGi × Cauchy(0, 1), (9)

where BSGinew is a new band subset for which the leader of the group i has been updated
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by the Cauchy variation, and BSGi is the new band subset for which the leader of the group
i has been updated by (7). Cauchy is the Cauchy operator, which is calculated.

Cauchy = tan
(

original_x − 1
2

)
× π, (10)

where original_x is the initial random number uniformly distributed in the range of (0,1),
and π equals 3.14.

At the same time, the greedy strategy is employed here, and if the new band subset
generated by the variation is better than the current locally optimal band subset, the mutant
individual is retained; otherwise, it is discarded.

BSGi
′ =

{
BSGi , i f cost

(
BSGi

)
≤ cost

(
BSGinew

)
BSGinew, i f cost

(
BSGi

)
> cost

(
BSGinew

) }
, (11)

where BSGi
′ is the final updated subset of locally optimal bands, cost represents the classifica-

tion error rate obtained by sending this band subset to SVM classifier; that is, cost = 1−OA,
a smaller value indicates a better classification performance of the subset. OA is the overall
classification accuracy, and its concept is in Appendix A.

2.2.6. Exchange and Selection of Group Leaders

The algorithm randomly selects the leader to maintain randomness at first, and in
the late stage, the leader is selected according to the classification error ratio for the band
subset. If the error rate of the member is lower than that of the leader, the positions of the
member and the leader are exchanged.

BSGi =

{
BXG,i, i f cost(BXG,i) < cost

(
BSGi

)
BSGi , i f cost(BXG,i) ≥ cost

(
BSGi

) }
, (12)

2.2.7. Dynamic Random Search Technique

When searching for the global optimum, WHO suffers from poor convergence and
blindness in the search process. In this paper, we adopt the local search phase in the
dynamic random search technique (DRASET) [52] to save the relevant information of
the current optimal band subset and search on this basis, to increase IBSWHO’s search
efficiency and exploitation capacity.

In the local search phase, the search process centers on the current global best solution
gBest and investigates whether a better subset exists by smaller search steps. After the
search iteration, if gBest’s cost becomes smaller, the new gBest is adopted, and this process
continues until the stopping criterion is reached. The parameter T determines whether the
technique is used or not, and the value of T is determined according to the experience [53].

3. Experiments

In this section, two sets of experiments are conducted to test the optimization and
convergence performance of IBSWHO on benchmark functions, and its effectiveness on
HSI BS. All experiments were conducted on a simulation experimental platform with Intel
(R) Core (TM) i7-8750H CPU @ 2.20 GHz, 8 GB RAM, the Windows 11 operating system
and MATLAB R2021a.

3.1. Optimization Performance Test

For testing the optimization and convergence performance of IBSWHO, nine com-
monly used nonlinear benchmark functions are selected and PSO, GWO, WHO and a
recently proposed improved WHO (IWHO) are used for comparison. The details of the
test functions and the parameters of the optimization algorithms are shown in Tables 1–3,
respectively. The results of the comparative experiments are shown in Table 4, and we have
highlighted the best results in bold. Among the benchmark functions, F1–F3 are unimodal
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functions, F4–F6 are multimodal functions and F7–F9 are fixed-dimension multimodal func-
tions. To verify the optimization ability of IBSWHO for complex problems, the CEC2019 test
functions, which are more complex and difficult than other benchmark test functions, are
introduced and compared with the three recent state-of-the-art top algorithms, i.e., SASS,
COLSHADE and KGE, and basic optimization algorithms, i.e., PSO, GWO and WHO. The
experimental results are shown in Table 5.

To ensure the fairness and objectivity of the experiment, the population size of all
algorithms is set to 30, the maximum iteration is set to 500, each algorithm runs 30 times
independently and the average and standard deviation of 30 experiments are counted under
the dimensions of 30, 200 and 500, respectively. The accuracy and quality of each algorithm’s
solutions are evaluated by comparing their average values, while the algorithm’s stability
is indicated by the standard deviation value.

Table 1. Information about test functions.

Function Function Name Dimension Range Optimum Value

F1 Sphere 30/200/500 [−100,100] 0
F2 Step Function 30/200/500 [−100,100] 0
F3 Quartic Function 30/200/500 [−1.28,1.28] 0
F4 Generalized Rastrigin’s Function 30/200/500 [−5.12,5.12] 0
F5 Ackley’s Function 30/200/500 [−32,32] 0
F6 Generalized Penalized Function 1 3 [−50,50] 0
F7 Shekell’s Foxholes Function 2 [−65,65] 0.998004
F8 Six-Hump Camel-Back Function 2 [−5,5] −1.031630
F9 Hatman’s Function 2 6 [0,1] −3.322000

Table 2. Information about the CEC2019 test functions.

Function Function Name Dimension Range Optimum Value

CEC01 Storn’s Chebyshev polynomial
fitting problem 9 [−8192,8192] 1

CEC02 Inverse Hilbert matrix problem 16 [−16,384,16,384] 1

CEC03 Lennard-Jones minimum
energy cluster 18 [−4,4] 1

CEC04 Rastrigin’s function 10 [−100,100] 1
CEC05 Griewank’s function 10 [−100,100] 1
CEC06 Weierstrass function 10 [−100,100] 1
CEC07 Modified Schwefel’s function 10 [−100,100] 1

CEC08 Expanded Schaffer’s
F6 function 10 [−100,100] 1

CEC09 Happy cat function 10 [−100,100] 1
CEC10 Ackley function 10 [−100,100] 1

Table 3. Parameter values for IBSWHO and other algorithms.

Algorithm Parameters

IBSWHO PS = 0.2; PC = 0.13
IWHO PS = 0.2; PC = 0.13; PRR = 0.1; w ∈ [0.01,0.99]
WHO PS = 0.2; PC = 0.13
GWO a = [2,0]
PSO
GA

c1= 2; c2 = 2; W[0.2, 0.9]; vMax = 6
CR = 0.4; MR = 0.01

It can be seen from Table 4 that the proposed IBSWHO achieves the greatest advantages
in accuracy and stability compared with the other four algorithms in most functions,
regardless of unimodal, multimodal or fixed-dimension multimodal functions. Therefore,
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when solving optimization problems, IBSWHO finds it the easiest to exit out of the local
optimum and has the best exploration and development ability.

From Table 5, it can be seen that compared to the other six algorithms, IBSWHO has
the closest average value to the theoretical optimum in the eight functions, demonstrating
the best convergence performance and search success rate. Therefore, IBSWHO possesses
the capability to solve complex problems.

Table 4. Comparison results of the nine test functions.

Function Dim Metric IBSWHO IWHO WHO GWO PSO

F1

30
Mean 0.00 × 1000 0.00 × 1000 1.00 × 10−43 7.64 × 10−28 1.01 × 10−04

Std 0.00 × 1000 0.00 × 1000 4.14 × 10−43 1.05 × 10−27 1.07 × 10−04

200
Mean 0.00 × 1000 0.00 × 1000 1.30 × 10−33 1.03 × 10−07 3.29 × 1002

Std 0.00 × 1000 0.00 × 1000 4.36 × 10−33 6.03 × 10−08 4.51 × 1001

500
Mean 0.00 × 1000 0.00 × 1000 1.02 × 10−29 1.68 × 10−03 5.88 × 1003

Std 0.00 × 1000 0.00 × 1000 5.28 × 10−29 7.19 × 10−04 3.62 × 1002

F2

30
Mean 5.10 × 10−06 5.09 × 10−05 2.46 × 10−02 8.27 × 10−01 1.98 × 10−04

Std 1.03 × 10−05 4.64 × 10−05 8.29 × 10−02 3.23 × 10−01 5.77 × 10−04

200
Mean 2.15 × 1001 2.19 × 1000 2.98 × 1001 2.89 × 1001 3.26 × 1002

Std 1.73 × 1000 3.26 × 1000 1.20 × 1001 1.45 × 1000 4.66 × 1001

500
Mean 8.63 × 1001 1.07 × 1001 1.26 × 1002 9.14 × 1001 5.95 × 1003

Std 1.88 × 1000 1.34 × 1001 1.22 × 1002 1.88 × 1000 4.31 × 1002

F3

30
Mean 1.98 × 10−04 2.23 × 10−04 1.02 × 10−03 2.06 × 10−03 1.87 × 10−01

Std 1.91 × 10−04 2.05 × 10−04 6.73 × 10−04 1.09 × 10−03 6.71 × 10−02

200
Mean 2.45 × 10−04 4.58 × 10−04 1.56 × 10−03 1.47 × 10−02 7.84 × 1003

Std 2.25 × 10−04 4.58 × 10−04 1.21 × 10−03 5.52 × 10−03 7.82 × 1002

500
Mean 3.19 × 10−04 5.06 × 10−04 2.05 × 10−03 5.08 × 10−02 5.75 × 1004

Std 2.64 × 10−04 6.25 × 10−04 1.97 × 10−03 1.24 × 10−02 2.46 × 1003

F4

30
Mean 0.00 × 1000 0.00 × 1000 6.72 × 10−10 2.68 × 1000 5.92 × 1001

Std 0.00 × 1000 0.00 × 1000 3.61 × 10−09 4.55 × 1000 1.43 × 1001

200
Mean 0.00 × 1000 0.00 × 1000 0.00 × 1000 1.92 × 1001 1.89 × 1003

Std 0.00 × 1000 0.00 × 1000 0.00 × 1000 1.56 × 1001 1.23 × 1002

500
Mean 0.00 × 1000 0.00 × 1000 0.00 × 1000 7.70 × 1001 6.54 × 1003

Std 0.00 × 1000 0.00 × 1000 0.00 × 1000 2.90 × 1001 4.02 × 1002

F5

30
Mean 8.88 × 10−16 8.88 × 10−16 1.84 × 10−15 1.04 × 10−13 1.15 × 10−01

Std 0.00 × 1000 0.00 × 1000 1.60 × 10−15 1.86 × 10−14 3.05 × 10−01

200
Mean 8.88 × 10−16 8.88 × 10−16 1.60 × 10−15 2.49 × 10−05 6.63 × 1000

Std 0.00 × 1000 0.00 × 1000 1.45 × 10−15 7.99 × 10−06 3.18 × 10−01

500
Mean 8.88 × 10−16 8.88 × 10−16 1.95 × 10−15 1.85 × 10−03 1.18 × 1001

Std 0.00 × 1000 0.00 × 1000 2.12 × 10−15 3.62 × 10−04 3.18 × 10−01

F6

30
Mean 3.35 × 10−08 6.24 × 10−07 2.10 × 10−02 3.81 × 10−02 6.91 × 10−03

Std 2.51 × 10−08 1.16 × 10−06 4.21 × 10−02 1.56 × 10−02 2.63 × 10−2

200
Mean 1.52 × 10−01 9.49 × 10−04 4.09 × 10−01 5.28 × 10−01 3.86 × 1001

Std 4.32 × 10−02 1.56 × 10−03 2.57 × 10−01 5.97 × 10−02 1.41 × 1001

500
Mean 4.97 × 10−01 1.44 × 10−03 7.29 × 10−01 7.67 × 10−01 2.47 × 10−05

Std 4.89 × 10−02 2.08 × 10−03 2.18 × 10−01 5.97 × 10−02 8.28 × 1004

F7 2
Mean 9.98 × 10−01 9.98 × 10−01 1.69 × 1000 4.85 × 1000 3.24 × 1000

Std 8.25 × 10−17 1.30 × 10−16 1.08 × 1000 4.47 × 1000 2.28 × 1000

F8 2
Mean −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000 −1.03 × 1000

Std 4.52 × 10−16 6.05 × 10−16 5.13 × 10−16 2.99 × 10−05 6.39 × 10−16

F9 6
Mean −3.32 × 1000 −3.26 × 1000 −3.27 × 1000 −3.28 × 1000 −3.29 × 1000

Std 2.17 × 10−02 6.05 × 10−02 6.81 × 10−02 6.13 × 10−02 5.54 × 10−02
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Table 5. Comparison results of the CEC2019 test functions.

Function Metric IBSWHO SASS [54] COLSHADE [54] KGE [40] WHO GWO PSO

CEC01
Mean 3.89 × 1004 4.05 × 1004 5.43 × 1004 6.19 × 1004 4.06 × 1004 4.30 × 1008 2.16 × 1012

Std 1.03 × 1003 2.72 × 1003 3.52 × 1003 6.57 × 1003 2.82 × 1003 8.73 × 1008 1.87 × 1012

CEC02
Mean 1.73 × 1001 1.73 × 1001 1.73 × 1001 1.75 × 1001 1.73 × 1001 1.74 × 1001 1.34 × 1004

Std 9.14 × 10−15 8.72 × 10−09 2.13 × 10−08 1.10 × 10−01 7.23 × 10−15 5.87 × 10−02 3.73 × 1003

CEC03
Mean 1.27 × 1001 1.27 × 1001 1.27 × 1001 1.27 × 1001 1.27 × 1001 1.27 × 1001 1.27 × 1001

Std 4.41 × 10−09 0.00 × 1000 7.14 × 10−09 5.67 × 10−07 3.61 × 10−15 2.39 × 10−04 3.61 × 10−15

CEC04
Mean 1.63 × 1001 8.42 × 1000 9.85 × 1000 1.87 × 1001 9.85 × 1000 1.42 × 1002 1.67 × 1001

Std 8.67 × 1000 4.29 × 1000 2.66 × 1000 8.90 × 1000 3.57 × 1000 3.16 × 1002 6.20 × 1000

CEC05
Mean 1.06 × 1000 1.08 × 1000 1.23 × 1003 2.31 × 1000 1.07 × 1000 1.45 × 1000 1.15 × 1000

Std 3.62 × 10−02 6.23 × 10−02 5.49 × 10−02 2.96 × 10−01 1.71 × 10−02 2.39 × 10−01 7.99 × 10−02

CEC06
Mean 5.35 × 1000 5.76 × 1000 7.33 × 1000 8.95 × 1000 5.86 × 1000 1.67 × 1001 9.06 × 1000

Std 7.60 × 10−01 2.15 × 10−01 3.19 × 10−01 9.96 × 10−01 8.45 × 10−01 9.28 × 10−01 1.47 × 1000

CEC07
Mean 5.28 × 1001 7.66 × 1001 9.85 × 1001 4.38 × 1002 5.42 × 1001 3.05 × 1002 1.47 × 1002

Std 9.11 × 1001 6.43 × 1001 7.21 × 1001 2.24 × 1002 1.02 × 1002 2.31 × 1002 1.12 × 1002

CEC08
Mean 4.65 × 1000 4.39 × 1000 4.89 × 1003 5.42 × 1000 4.96 × 1000 5.17 × 1000 5.28 × 1000

Std 5.48 × 10−01 8.35 × 10−01 6.83 × 10−01 4.82 × 10−01 5.74 × 10−01 1.07 × 1000 7.50 × 1000

CEC09
Mean 2.38 × 1000 2.44 × 1000 2.42 × 1000 2.44 × 1000 2.45 × 1000 1.36 × 1001 2.37 × 1000

Std 2.95 × 10−02 4.19 × 10−04 7.03 × 10−01 6.63 × 10−02 1.23 × 10−02 5.12 × 1001 1.88 × 10−02

CEC10
Mean 1.94 × 1001 1.99 × 1001 2.00 × 1001 1.99 × 1001 1.98 × 1001 2.05 × 1001 1.96 × 1001

Std 1.12 × 10−02 1.17 × 10−01 8.53 × 10−02 1.31 × 10−02 5.78 × 1000 7.91 × 10−02 3.71 × 1000

However, this is not the case for all test functions, such as F2, F6, CEC04 and CEC08,
which is normal, as the NFL theorem suggests that one optimization algorithm cannot
solve all problems.

3.2. Experimental Results and Analysis of Band Selection

To certify the effect of IBSWHO in HSI BS, it is compared with several meta-heuristic
optimization algorithms and common and advanced band selection methods. To find
the band subset that minimizes the classification error rate, all algorithms employ the
classification error rate under the SVM classifier as the objective function, given that it
stands out as one of the most competitive classifiers in small-sample problems. The LIBSVM
library is utilized to implement the SVM classifier, with the radial basis function (RBF)
serving as the chosen kernel. During the training phase, the two parameters of the SVM
(c and γ) are selected through 5-fold cross-validation.

3.2.1. Description of Datasets

The experiment is conducted using three commonly used hyperspectral datasets,
which were obtained by different sensors, namely the Indian Pines, Pavia University, and
Salinas datasets.

(1) Indian Pines: The Indian Pines dataset is imaged by the airborne visual infrared
imaging spectrometer (AVIRIS) in 1992 on a patch of Indian Pine trees in Indiana,
USA, acquiring an image size of 145 × 145 pixels, a spectrum range of 0.4–2.5 µm
and a spatial resolution of 20 m, containing 220 bands and 16 ground truth classes.
In this paper, we use the bands that contain the absorbing region removed for a total
of 200 bands. The pseudo-color image and the ground truth image are shown in
Figure 4.
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Figure 4. Indian Pines dataset. (a) Pseudo-color image; (b) Color ground truth images with class labels.

(2) Pavia University: The Pavia University dataset is a portion of hyperspectral data
imaged by the German airborne reflection optical spectral imager (ROSIS) in Pavia,
Italy, in 2003. The size of the images is 610 × 340 pixels, the spectrum range is 0.43–
0.86 mm and the spatial resolution is about 1.3 m. It contains 115 bands and 9 classes
of ground truth. In this paper, 103 available bands are used for subsequent research
after removing 12 noise bands. The pseudo-color image and real image of the ground
are shown in Figure 5.
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Figure 5. Pavia University dataset. (a) Pseudo-color image; (b) Color ground truth images with
class labels.

(3) Salinas: The Salinas dataset is also imaged by AVIRIS, which is an image of the Salinas
Valley in California, USA. The size of the image is 512 × 217 pixels, the spectrum
range is 0.4–2.5 µm and the spatial resolution is 3.7 m. It contains 224 bands and
16 kinds of ground objects. The pseudo-color image and the real image of the ground
are shown in Figure 6.
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3.2.2. Experimental Parameter Settings

Firstly, the proposed IBSWHO is compared with two basic and selection methods
(MRMR and Relief), and three recently proposed effective BS methods (ASPS, FNGBS and
NGNMF). Additionally, other optimization algorithms, including PSO, GWO, GA and
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WHO, are also used for further comparison with the parameters set as shown in Table 3.
Selected band subsets are classified by SVM, and the classification accuracy is used to
assess the discrimination ability of the band subsets. For each dataset, 20% of samples
are randomly selected as training data, and the remaining 80% are used as testing data.
To ensure the fairness of the experimental results, each algorithm is repeated 10 times on
each dataset with the initial population of 20, and the maximum number of iterations is
20. There are numerous evaluation metrics to assess the classification performance in HSI
classification. In this paper, we utilize the averages of OA (overall accuracy), AA (average
accuracy), Kappa (Kappa coefficient) and each category accuracy of the band subset for
evaluation. The concepts of OA, AA and Kappa are described in Appendix A.

3.2.3. Analysis of Experimental Results

Table 6 lists the average results of IBSWHO and other competing methods running on
the Indian Pines dataset. As shown in the table, IBSWHO has the highest classification accu-
racy and the best performance in all methods. Class 3 (Corn-mintil) increased from 40.06%
to 77.56%. Class 12 (Soybean-clean) improved its classification accuracy by 7.98% com-
pared with the best-performing NGNMF. However, it can also be observed that IBSWHO
performs poorly in some categories, possibly because similar spectral land-cover categories
make it more difficult to distinguish between categories. The classification effect of Class
9 (Oats) is not ideal owing to the small sample size in this category. Classification plots
for all methods on the Indian Pines dataset are shown in Figure 7. The black background
represents unlabeled pixels, colors consistent with the true sample color represent correctly
classified pixels and inconsistent colors represent misclassified pixels. The more correctly
classified pixels, the smoother the classification plot is. From the figure, for example, we
can see that the classification map obtained by IBSWHO is the smoothest, compared to that
obtained by other methods that produce the Soybean-clean region.

Table 6. Experimental results on the Indian Pines dataset.

Class MRMR Relief GA PSO GWO WHO ASPS FNGBS NGNMF IBSWHO

1 22.22% 58.33% 69.44% 58.33% 58.33% 63.89% 63.89% 75.61% 93.02% 75.00%
2 65.32% 55.95% 73.82% 74.08% 71.10% 72.94% 67.78% 80.47% 79.79% 83.28%
3 40.81% 40.06% 57.38% 56.17% 58.58% 53.61% 57.98% 64.79% 61.68% 77.56%
4 20.11% 20.11% 45.50% 50.26% 45.50% 52.91% 68.78% 63.85% 42.22% 71.43%
5 91.71% 81.35% 93.26% 93.26% 93.01% 93.00% 87.23% 91.24% 89.52% 94.56%
6 97.26% 97.77% 97.43% 96.75% 98.63% 97.26% 91.95% 95.13% 95.09% 95.21%
7 54.55% 0.00% 86.36% 72.73% 72.72% 81.82% 68.18% 84.00% 92.31% 77.27%
8 99.21% 99.48% 97.91% 98.69% 97.38% 98.43% 98.43% 97.44% 99.34% 97.12%
9 0.00% 0.00% 0.00% 0.00% 0.00% 18.75% 37.50% 22.22% 63.15% 43.75%

10 49.42% 42.86% 69.24% 71.04% 67.05% 72.72% 69.50% 70.61% 82.01% 78.38%
11 83.60% 84.93% 88.09% 87.98% 88.75% 88.75% 84.98% 81.89% 86.41% 84.32%
12 22.15% 25.74% 74.26% 67.93% 72.57% 70.46% 67.09% 78.24% 72.82% 80.80%
13 98.78% 95.73% 98.78% 99.39% 98.78% 94.51% 98.78% 96.20% 96.91% 98.17%
14 96.54% 97.13% 96.74% 97.23% 97.13% 94.37% 96.34% 95.61% 94.50% 91.90%
15 50.32% 43.83% 61.69% 57.79% 60.39% 59.74% 50.97% 48.42% 68.31% 65.91%
16 98.65% 93.24% 97.30% 95.95% 97.30% 81.08% 93.24% 90.36% 89.78% 97.30%

AA 61.92% 58.53% 75.45% 73.60% 73.58% 74.29% 75.20% 77.25% 81.68% 82.00%
OA 71.69% 69.51% 81.52% 81.17% 81.06% 80.94% 79.02% 81.37% 83.18% 84.92%

Kappa 67.07% 64.32% 78.72% 78.32% 78.17% 78.23% 75.87% 78.71% 80.76% 82.80%

The average of the experimental results on the Pavia University dataset is shown
Table 7.

It can be seen from Table 7 that the classification result of IBSWHO is the highest in
all algorithms, especially the increase from 9.96% to 86.94% for Class 7 (Bitumen), and
the individual accuracy of Class 6 (Bare-soil) which also increased by 18.37% compared
to ASPS. IBSWHO’s Kappa coefficient is greater than 0.93, indicating that the predicted
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labels are generally consistent with the true labels, so IBSWHO has a strong optimization
ability on the Pavia University dataset. The classification graphs on this dataset are shown
in Figure 8, which show that the classification image of IBSWHO is the smoothest. For
example, the Bricks region generated by IBSWHO has the fewest misclassified pixels which
is the smoothest.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 22 
 

 

5 91.71% 81.35% 93.26% 93.26% 93.01% 93.00% 87.23% 91.24% 89.52% 94.56% 
6 97.26% 97.77% 97.43% 96.75% 98.63% 97.26% 91.95% 95.13% 95.09% 95.21% 
7 54.55% 0.00% 86.36% 72.73% 72.72% 81.82% 68.18% 84.00% 92.31% 77.27% 
8 99.21% 99.48% 97.91% 98.69% 97.38% 98.43% 98.43% 97.44% 99.34% 97.12% 
9 0.00% 0.00% 0.00% 0.00% 0.00% 18.75% 37.50% 22.22% 63.15% 43.75% 

10 49.42% 42.86% 69.24% 71.04% 67.05% 72.72% 69.50% 70.61% 82.01% 78.38% 
11 83.60% 84.93% 88.09% 87.98% 88.75% 88.75% 84.98% 81.89% 86.41% 84.32% 
12 22.15% 25.74% 74.26% 67.93% 72.57% 70.46% 67.09% 78.24% 72.82% 80.80% 
13 98.78% 95.73% 98.78% 99.39% 98.78% 94.51% 98.78% 96.20% 96.91% 98.17% 
14 96.54% 97.13% 96.74% 97.23% 97.13% 94.37% 96.34% 95.61% 94.50% 91.90% 
15 50.32% 43.83% 61.69% 57.79% 60.39% 59.74% 50.97% 48.42% 68.31% 65.91% 
16 98.65% 93.24% 97.30% 95.95% 97.30% 81.08% 93.24% 90.36% 89.78% 97.30% 

AA 61.92% 58.53% 75.45% 73.60% 73.58% 74.29% 75.20% 77.25% 81.68% 82.00% 
OA 71.69% 69.51% 81.52% 81.17% 81.06% 80.94% 79.02% 81.37% 83.18% 84.92% 

Kappa 67.07% 64.32% 78.72% 78.32% 78.17% 78.23% 75.87% 78.71% 80.76% 82.80% 
 

 
(a) (b) (c) (d) (e) 

  
(f) (g) (h) (i) (j) 

Figure 7. Plots of classification results on the Indian Pines dataset. (a–j) are the classification plots 
after band selection by MRMR, Relief, GA, PSO, GWO, WHO, ASPS, FNGBS, NGNMF and 
IBSWHO, respectively. 

The average of the experimental results on the Pavia University dataset is shown Ta-
ble 7. 

Table 7. Experimental results on the Pavia University dataset. 

Class MRMR Relief GA PSO GWO WHO ASPS FNGBS NGNMF IBSWHO 
1 91.14% 93.63% 94.27% 94.21% 93.72% 94.44% 93.93% 93.58% 96.40% 94.59% 
2 98.30% 97.96% 98.15% 98.37% 98.45% 98.49% 96.84% 97.16% 96.90% 98.46% 
3 50.74% 65.28% 75.82% 76.12% 77.01% 77.96% 73.50% 75.54% 85.61% 80.03% 
4 90.00% 88.70% 95.84% 94.94% 94.78% 94.82% 95.84% 95.18% 91.48% 95.23% 
5 99.54% 99.63% 99.44% 99.63% 99.63% 99.63% 99.81% 99.75% 99.45% 99.91% 
6 39.75% 49.39% 86.75% 86.68% 85.58% 84.61% 71.12% 89.59% 83.76% 89.49% 
7 53.95% 9.96% 84.12% 81.58% 86.28% 83.65% 76.88% 84.04% 90.34% 86.94% 
8 87.40% 91.38% 90.25% 91.10% 90.97% 90.63% 89.41% 87.99% 90.02% 91.58% 
9 100.00% 99.74% 100.00% 99.87% 100.00% 99.60% 100.00% 100.00% 99.89% 100.00% 
AA 78.98% 77.30% 91.63% 91.38% 91.82% 91.54% 88.59% 91.43% 92.64% 92.73% 

Figure 7. Plots of classification results on the Indian Pines dataset. (a–j) are the classification plots
after band selection by MRMR, Relief, GA, PSO, GWO, WHO, ASPS, FNGBS, NGNMF and IBSWHO,
respectively.

Table 7. Experimental results on the Pavia University dataset.

Class MRMR Relief GA PSO GWO WHO ASPS FNGBS NGNMF IBSWHO

1 91.14% 93.63% 94.27% 94.21% 93.72% 94.44% 93.93% 93.58% 96.40% 94.59%
2 98.30% 97.96% 98.15% 98.37% 98.45% 98.49% 96.84% 97.16% 96.90% 98.46%
3 50.74% 65.28% 75.82% 76.12% 77.01% 77.96% 73.50% 75.54% 85.61% 80.03%
4 90.00% 88.70% 95.84% 94.94% 94.78% 94.82% 95.84% 95.18% 91.48% 95.23%
5 99.54% 99.63% 99.44% 99.63% 99.63% 99.63% 99.81% 99.75% 99.45% 99.91%
6 39.75% 49.39% 86.75% 86.68% 85.58% 84.61% 71.12% 89.59% 83.76% 89.49%
7 53.95% 9.96% 84.12% 81.58% 86.28% 83.65% 76.88% 84.04% 90.34% 86.94%
8 87.40% 91.38% 90.25% 91.10% 90.97% 90.63% 89.41% 87.99% 90.02% 91.58%
9 100.00% 99.74% 100.00% 99.87% 100.00% 99.60% 100.00% 100.00% 99.89% 100.00%

AA 78.98% 77.30% 91.63% 91.38% 91.82% 91.54% 88.59% 91.43% 92.64% 92.73%
OA 85.14% 86.10% 93.91% 93.92% 93.94% 93.88% 91.05% 93.46% 93.64% 94.75%

Kappa 79.63% 81.01% 91.89% 91.89% 91.92% 91.83% 88.01% 91.32% 91.54% 93.02%

The average result on the Salinas dataset is shown Table 8.
It is observed from Table 8 that the OAs of the BS methods using optimization algo-

rithms are all above 90%, indicating that the optimization algorithms have a good band
selection effect on the Salinas dataset. Furthermore, the results of IBSWHO are still the best.
For instance, the accuracy of Class 14 (Lettuce7 wk) was 3.85% higher than that of PSO, and
Class 15 (Vinyarduntrained) improved by 16.33% over PSO. Compared to the performance
of the three advanced methods, IBSWHO demonstrates the best performance, indicating
that IBSWHO is the most feasible BS method for the Salinas dataset. Classification plots are
shown in Figure 9, which show that the plot of IBSWHO is the smoothest and clearest.
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IBSWHO, respectively.

Table 8. Experimental results on the Salinas dataset.

Class MRMR Relief GA PSO GWO WHO ASPS FNGBS NGNMF IBSWHO

1 98.01% 98.13% 99.07% 98.94% 99.32% 99.32% 99.32% 99.61% 99.00% 99.56%
2 99.77% 99.93% 100.00% 99.90% 99.83% 99.80% 99.97% 99.88% 100.00% 100.00%
3 95.32% 93.54% 99.11% 99.18% 99.24% 99.30% 99.43% 99.94% 99.43% 99.94%
4 99.55% 99.64% 99.55% 99.46% 99.64% 99.55% 99.78% 99.44% 98.83% 99.82%
5 94.58% 94.91% 97.57% 97.85% 97.43% 97.29% 99.49% 98.71% 99.35% 99.44%
6 99.46% 99.84% 99.81% 99.87% 99.87% 99.91% 99.78% 99.94% 99.84% 99.94%
7 99.55% 99.76% 99.69% 99.72% 99.41% 99.51% 99.69% 99.25% 99.79% 99.93%
8 91.39% 90.59% 91.60% 92.20% 91.34% 91.65% 88.78% 90.20% 90.88% 90.24%
9 97.42% 99.19% 99.88% 99.52% 99.96% 99.94% 99.92% 99.96% 99.97% 99.92%

10 92.49% 94.16% 94.24% 94.97% 93.94% 94.47% 95.61% 97.73% 97.36% 97.75%
11 79.39% 89.70% 92.51% 94.03% 93.01% 94.03% 92.15% 98.54% 98.71% 99.30%
12 99.94% 100.00% 99.94% 99.81% 99.94% 99.94% 99.94% 99.65% 100.00% 99.94%
13 97.13% 97.54% 98.09% 97.81% 98.09% 97.13% 99.73% 99.15% 98.77% 99.73%
14 95.21% 93.34% 95.79% 94.51% 95.56% 95.56% 98.13% 97.20% 94.86% 98.36%
15 49.09% 51.34% 58.69% 57.96% 59.44% 59.37% 60.60% 63.43% 70.57% 74.29%
16 98.69% 98.41% 98.82% 99.03% 98.89% 98.75% 99.38% 96.62% 99.58% 99.52%

AA 92.94% 93.89% 95.27% 95.30% 95.31% 95.35% 95.70% 96.20% 96.69% 97.34%
OA 89.41% 90.06% 91.80% 91.84% 91.89% 91.91% 91.75% 92.53% 93.68% 94.23%

Kappa 88.17% 88.90% 90.85% 90.89% 90.95% 90.97% 90.79% 91.66% 92.95% 93.57%
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best. For instance, the accuracy of Class 14 (Lettuce7 wk) was 3.85% higher than that of 
PSO, and Class 15 (Vinyarduntrained) improved by 16.33% over PSO. Compared to the 
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Figure 9. Plots of classification results on the Salinas dataset. (a–j) are the classification plots after band
selection by MRMR, Relief, GA, PSO, GWO, WHO, ASPS, FNGBS, NGNMF and IBSWHO, respectively.

In summary, in terms of classification, compared with the basic ranking and filtering
methods, the wrapper based on an optimization algorithm is the most effective. The
reason is that the basic ranking and filtering methods use mutual information as the
indicator of selecting band subset rather than a classifier system, so the filter has a short
time but a low accuracy. Compared with other optimization algorithms and advanced
band selection techniques, although the accuracy of IBSWHO is lower than that of the
comparison algorithm in some classes, the overall accuracy is the highest, which can
reflect the effectiveness of the added modification strategies. Moreover, the performance of
IBSWHO in the three datasets is the best, which also shows the robustness of IBSWHO.

In terms of convergence performance, curves for the variation in fitness with iterations
are displayed in Figure 10. As can be observed, the initial fitness of IBSWHO is the lowest in
all datasets, indicating that the Sobol sequence used in the initialization phase can enhance
population diversity and provide a better solution. With the increase in iterations, the
iterative curves of GA, PSO, GWO and WHO tend to stabilize, while IBSWHO maintains a
declining trend, which indicates that the mutation strategy and dynamic random search
technique are helpful to improve the exploration and development ability of IBSWHO and
help to find a better band subset. Thus, IBSWHO has an excellent optimization ability to
find the best band subset with the best classification accuracy.
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Figure 10. Convergence plot of optimization algorithms for different datasets: (a) Indian Pines,
(b) Pavia University, (c) Salinas.

3.2.4. Comparison of the Number of Selected Bands

Due to the adaptive selection of bands based on the task, both the selected bands and
the number of bands are not fixed. In the above band selection experiments, we present the
average number of bands selected by the optimal band subset in Table 9.

Table 9. The number of bands in the optimal band subsets selected by different optimization algorithms.

Dataset IBSWHO GA PSO GWO WHO

Indian pines 98 112 108 96 115

Pavia University 61 63 66 59 65

Salinas 110 131 124 111 118

From the table, it can be observed that GWO selects the smallest number of band
subsets. This is because GWO is an efficient search algorithm with diverse search strategies,
allowing it to effectively explore different band subsets and find the optimal solution with
the minimum number of bands. However, although GWO selects the smallest number
of bands, as shown in Tables 6–8, its classification accuracy is not high. This indicates
that GWO may lose bands with high information content, and the features are not well
preserved. In addition to GWO, the proposed IBSWHO selects the smallest number of
bands, and its classification accuracy is the highest. This suggests that IBSWHO can select
the most critical and effective features, and the small number of bands indicates the strong
generalization of the algorithm.

3.2.5. Statistical Significance Evaluation

In order to evaluate the statistical significance of the differences between IBSWHO and
other comparison algorithms for classification, we carried out a nonparametric McNemar
test [55]. It is based on a standardized normal test statistic:

z =
f12 − f21√

f12 + f21
, (13)

where f12 indicates the number of samples correctly classified by Method 1 but incorrectly
classified by Method 2, and f21 is the number of samples correctly classified by Method
2 but incorrectly classified by Method 1. For a 5% significance level, if |z| > 1.96, there
is a significant performance difference between the two methods. Table 10 presents the
value of |z| comparing IBSWHO with the other comparison methods. The results of the
McNemar test show that the performance of IBSWHO is statistically different from other
methods, and only has no significant difference from the NGNMF method on the Salinas
dataset. The reason for this is that the Salinas dataset contains a large area of land cover
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and a sufficient number of samples. The strategy of selecting similar pixels in NGNMF
can adaptively extract land-cover features, thus demonstrating a stronger robustness for
complex land-cover scenarios. Therefore, NGNMF can achieve better classification results,
but the proposed IBSWHO method still outperforms it.

Table 10. Values for each optimization algorithm at the 5% significance level, considered significant if
|z| > 1.96.

Indian Pines Pavia University Salinas

IBSWHO IBSWHO IBSWHO

|z| significant? |z| significant? |z| significant?

MRMR 16.08 yes 25.16 yes 15.75 yes
Relief 19.92 yes 20.41 yes 12.76 yes

GA 4.48 yes 22.52 yes 7.12 yes
PSO 5.02 yes 2.20 yes 6.99 yes

GWO 5.07 yes 2.18 yes 6.76 yes
WHO 5.53 yes 2.13 yes 6.72 yes
ASPS 7.75 yes 12.09 yes 7.27 yes

FNGBS 4.89 yes 4.46 yes 5.10 yes
NGNMF 2.59 yes 2.29 yes 1.59 no

3.2.6. Effect of Hyperparametric Population Size N on Accuracy

The population size N is defined at the initial stage of the algorithm. In this paper, N
is set to 20, the value of which has a large impact on the convergence speed and solution
accuracy of the algorithm. In this subsection, we discuss the effect of N on the accuracy of
all algorithms on the Indian Pines dataset. The relationship among different numbers of
N, OA, running time on the Indian Pines dataset is shown in Figure 11. According to the
graph, when the number of populations is 20 and 30, the classification accuracy reaches
the maximum.
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then the results were averaged. The results of experiments are shown in Table 11. 

Table 11. Classification performance in ablation experiments on the three datasets. 

Da-
taset 

Metric WHO Sobol-
WHO 

Cauchy-
WHO 

Dynamic-
WHO 

SobolCau-
chyWHO 

SobolDynamic-
WHO 

CauchyDynam-
icWHO 

IBSWHO 

Indian 
Pines 

OA 80.94 81.82 81.29 81.09 82.11 81.06 81.01 84.92 
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Figure 11. Effects of different populations sizes on the Indian Pines dataset. (a) OA curves, (b) running
time curves.

However, when population size is 30, the time complexity increases a lot, but there
is little difference in classification accuracy, so the population size of 20 was selected in
this experiment.

3.2.7. Ablation Analysis of IBSWHO

For the sake of further proving the effectiveness of incorporating different strategies,
we conducted ablation experiments on three datasets. The three strategies are denoted by
Sobol, Cauchy and dynamic, respectively. Each experiment was performed ten times and
then the results were averaged. The results of experiments are shown in Table 11.
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Table 11. Classification performance in ablation experiments on the three datasets.

Dataset Metric WHO SobolWHO CauchyWHO DynamicWHO SobolCauchyWHO SobolDynamicWHO CauchyDynamicWHO IBSWHO

Indian
Pines

OA 80.94 81.82 81.29 81.09 82.11 81.06 81.01 84.92
AA 74.64 76.12 73.50 74.04 78.05 74.86 72.76 82.00

Kappa 78.05 79.04 78.46 78.26 79.42 78.23 78.15 82.80

Pavia
University

OA 93.88 94.11 94.58 94.29 94.60 93.87 94.39 94.75
AA 91.54 91.97 92.49 92.16 92.69 91.77 92.35 92.73

Kappa 91.83 92.15 92.71 92.39 92.75 91.82 92.52 93.02

Salinas
OA 91.91 92.17 91.90 92.54 92.30 91.95 92.54 94.23
AA 95.35 95.53 95.23 95.85 95.74 95.47 96.12 97.34

Kappa 90.97 91.26 90.95 91.52 91.40 91.01 91.64 93.57

The Indian Pines dataset suffers from limited training data and unbalanced category
distribution. As shown in Table 11, the inclusion of the Sobol strategy resulted in a relatively
significant improvement, with OA improving by 0.88% and AA improving by 1.48% over
WHO. This is due to the fact that the Sobol sequence is a non-overlapping, low-bias random
number generation method that allows for more accurate results with small sample sizes.

The Pavia University and Salinas datasets have a large scale and high band correlation,
making it difficult to remove redundant information. The Cauchy variation and the
dynamic random search technique can speed up the algorithm to jump out of the local
optimum and expand the search range to select band subsets more efficiently. The Cauchy
variation is more effective for the Pavia University dataset, which improves the OA by
0.7% compared to WHO. The dynamic random search technique is more effective for the
Salinas dataset, which improves the OA by 0.63% compared to WHO. Moreover, different
combinations of these strategies have different effects for different datasets, and only when
the three strategies are added at the same time are the classification results the best in
different datasets, which shows that the combination of the three strategies increases the
robustness of the proposed IBSWHO.

In summary, the combination of three strategies allows IBSWHO to achieve excellent
results in both band selection and classification, and the absence of strategy reduces
classification accuracy.

4. Summary and Prospects

BS is a non-transformational feature selection method, which is important for improv-
ing the classification accuracy of HSI, removing redundant bands with high correlation
and reducing computational complexity. In this paper, a new HSI BS method based on
an enhanced wild horse optimizer (IBSWHO) is proposed. IBSWHO improves the perfor-
mance of jumping out of local optimum by increasing population diversity and mutation
to expand search ranges, and it automatically selects the most appropriate band subset for
HSI classification task. To verify the effectiveness of IBSWHO, we use SVM as a classifier
to compare IBSWHO with advanced band selection methods and other optimization al-
gorithms on three commonly used hyperspectral datasets, and we use overall accuracy,
average accuracy, Kappa coefficient and individual class accuracy as evaluation indicators.
In accordance with experimental results, IBSWHO’s classification accuracy is satisfactory,
and for some classes with complex spectral features, it is also the best in comparative
methods. Therefore, IBSWHO can select excellent bands for classification tasks, separate
classes well and improve classification accuracy. Moreover, IBSWHO has a small number
of parameters, which do not easily fall into the local optimum and converge stably to the
global optimum solution. With fixed parameters, IBSWHO achieves good results both for
the benchmarking function and for the hyperspectral band selection task, so this algorithm
is a generally applicable and robust algorithm that does not involve a large number of
hyperparameter adjustments.

However, as only classification accuracy is used as an objective function, the relation-
ship between classification accuracy and the number of bands selected is not well balanced.
At the same time, improved strategies increase the time complexity of the algorithm to
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some extent. Therefore, in future work, we will explore higher-quality objective functions
and improve the execution efficiency of the algorithm.
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Appendix A

OA, AA and Kappa are commonly used indicators for evaluating the classification
performance of HSI, and their values are calculated based on the confusion matrix. The
confusion matrix C is a square matrix of size N × N, where N represents the number of
classes in the given dataset. Cii represents the number of pixels correctly classified as class
i, while Cij represents the number of pixels of class i classified as class j. The columns of
the matrix represent the number of true pixels in each class, while the rows represent the
number of predicted pixels in each class.

OA represents the proportion of correctly classified samples to the total number of
samples, calculated as follows:

OA =
∑N

i=1 Cii

∑N
i=1 ∑N

j=1 Cij
(A1)

AA represents the average accuracy for each class, calculated as follows:

AA =
∑N

i=1 CAi

∑N
i=1 Ti

(A2)

where Ti is the total number of test samples for class i and CAi =
∑N

i Cii
Ti

.
Kappa provides mutual information about the strong consistency between the ground

truth image and the classification image. The calculation method is as follows:

Kappa =
OA − Fe

1 − Fe
(A3)

where Fe = ∑N
i=1 Fi.F.i

(∑N
i=1 Ti)

2 , Fi. and F.i represent the sum of the ith row and column of the

confusion matrix, respectively.
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