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Abstract: Social recommendations typically utilize social relationships and past behaviors to predict
users’ preferences. In real-world scenarios, the connections between users and items often extend
beyond simple pairwise relationships. Leveraging hypergraphs to capture high-order relationships
provides a novel perspective to social recommendation. However, effectively modeling these high-
order relationships is challenging due to limited external knowledge and noisy feedback. To tackle
these challenges, we propose a novel framework called self-supervised hypergraph learning for
knowledge-aware social recommendation (SHLKR). In SHLKR, we incorporated three main types of
connections: behavior, social, and attribute context relationships. These dependencies serve as the
basis for defining hyperedges in the hypergraphs. A dual-channel hypergraph structure is created
based on these relationships. Then, the hypergraph convolution is applied to model the high-order
interactions between users and items. Additionally, we adopted a self-supervised learning task to
maximize the consistency between different views. It helps to mitigate the model’s sensitivity to
noisy feedback. We evaluated the performance of SHLKR through extensive experiments on publicly
available datasets. The results demonstrate that leveraging hypergraphs for modeling can better
capture the complexity and diversity of user preferences and interactions.

Keywords: knowledge-aware social recommendation; dual channel; hypergraph learning;
self-supervised learning

1. Introduction

With the rapid popularity of Amazon, Facebook, and other online platforms, recom-
mendation systems [1] have become an essential service in daily life. However, challenges
such as the cold start problem and data sparsity have consistently degraded the recom-
mendation performance. As typically used collaborative-filtering (CF)-based methods [2,3]
cannot generate effective predictions without sufficient historical interactions, social rec-
ommendation algorithms [4,5] integrate users’ relationships into representation learning
to model users’ preference for items. This integration of social relationships enhances
the capability of recommendation systems to generate more accurate and personalized
suggestions for users.

Recently, the graph neural network (GNN) [6] has shown great power in graph
representation learning. The utilization of GNNs facilitates the exploration and learning
of the complex interaction patterns between the user’s social graph and the user–item
rating graph. Consequently, integrating GNN models into the user–item representation
learning framework has emerged as a natural approach to enhance social recommendation
models [7,8]. However, in real-world applications, data structures often extend beyond
simple pairwise connections. This introduces increased complexity in processing and
modeling complex high-order data dependencies.

Electronics 2024, 13, 1306. https://doi.org/10.3390/electronics13071306 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13071306
https://doi.org/10.3390/electronics13071306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13071306
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13071306?type=check_update&version=2


Electronics 2024, 13, 1306 2 of 18

The hypergraph, as an extension of a regular graph structure, has the capability to
connect any number of nodes through hyperedges [9,10]. This unique characteristic allows
hypergraphs to more effectively capture complex relationships and high-order interactions.
Hypergraph-based methods provide a natural and intuitive way to model complex high-
order relationships between users and items [11,12]. For example, DHCF [13] was the first
proposal for a collaborative filtering framework based on hypergraphs. It leverages the
skip hypergraph convolution method to efficiently capture complex high-order correlations.
The MHCN [14] introduced a multi-channel hypergraph convolutional network to enhance
social recommendation. Compared to traditional graph models, hypergraph models have a
significant advantage in handling more complex data interactions.

Despite the exploration of hypergraph structures in handling high-order relations,
social recommendation approaches based on hypergraph neural networks still face two
primary challenges: (1) Limited external knowledge integration: In real-world recommen-
dation applications, incorporating external knowledge about the items is essential for a
more comprehensive understanding of user interests [15,16]. For instance, some movie rat-
ing platforms like Douban provide valuable information such as directors, genres, and other
related attributes. Leveraging this attribute similarity information could offer additional
dependencies to enhance the modeling of high-order interactions in social recommenda-
tions. (2) Noisy interactions: Observed relationships and interactions may contain false
positive feedback [17,18]. For example, users might mistakenly connect with irrelevant
items or form connections based on temporary interests or random actions, which may
not accurately reflect user satisfaction. Utilizing such data may amplify the effects of noisy
relationships and interactions, making the learning process more susceptible to the noise
introduced by these faulty data.

To address the aforementioned challenges, we propose a framework called self-
supervised hypergraph learning for knowledge-aware social recommendation (SHLKR),
which mainly includes three key components: (1) Local relation-aware encoder: We em-
ployed a local relation-aware encoder that captures the structure of the local neighborhood
and incorporates it into relation-aware embeddings using a graph convolutional network.
(2) Global hypergraph relation encoder: We converted the dependencies between users and
items into a hypergraph, encoding the possible high-order relationships with multiple types
of hyperedges representing different relationship patterns. Next, we employed hypergraph
convolution operators to model the high-order relationships within the hypergraph, en-
riching the latent representations of users and items. To tackle the issue of coupled intents
in user’s dynamic interests, we introduced a disentanglement layer that aims to separate
the intents, ensuring that the learned features do not contain irrelevant noisy information.
(3) Cross-view supervision optimization: We designed a cross-view supervision task as an
auxiliary task for the recommendation task, utilizing a multi-task training strategy to jointly
optimize the model’s parameter updates. The task generates contrastive views based on
explicit interactions and implicit high-order hypergraphs using an edge dropout operator.
By maximizing the mutual information between nodes in different views, it enhances the
learning patterns of relationships. These auxiliary supervisory signals can improve the
robustness of the learned node representations to cope with edge noise.

Our main contributions are summarized as follows:

• We propose a novel dual-channel hypergraph-learning architecture for knowledge-
aware social recommendation. It effectively utilizes hypergraphs guided by differ-
ent types of relationships to capture high-order interactions among users and items
through hypergraph modeling.

• We incorporated a self-supervised learning task that provides auxiliary supervision
signals from both the local and global representation spaces. By maximizing the mu-
tual information between different views, we extracted complementary information
from each to enhance feature learning through graph convolution.
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• Through extensive experiments on benchmark datasets, our proposed method, SHLKR,
exhibits significant superiority over state-of-the-art approaches. The results validate
the effectiveness and superiority of our proposed model.

2. Related Work
2.1. Graph-Based Social Recommendation

Recent research has focused on leveraging graph data and applied the graph neural
network (GNN) [19] to model user–item interactions and social relations [20–22]. As
a representative work, He et al. [23] proposed LightGCN, a model that incorporates a
lightweight graph convolution layer to capture user–item interactions. It eliminates feature
transformation and nonlinear activation to to enhance performance in recommendation
models. Due to the sparsity of rating data, many researchers address this challenge by
incorporating users’ relations as auxiliary data into recommendation models. Among these,
Wu et al. [8] introduced DiffNet, a model designed to simulate the dynamic progression
of users’ latent features through the incorporation of social diffusion. Considering the
diverse impacts of users’ social relationships, Fan et al. [24] proposed GraphRec, which
incorporates an attention mechanism to adaptively learn the influence of social relations.
Similarly, Wu et al. [25] introduced DANSER, adeptly employing a graph attention network
to effectively capture both static and dynamic preferences. Due to the inherent sparsity
of social networks, Shi et al. [26] proposed HERec, a recommendation model grounded
in heterogeneous network embedding. It adeptly integrates diverse embeddings derived
from a heterogeneous information network with a matrix factorization approach, leading
to a substantial performance enhancement. The main idea in the aforementioned studies
focused on using graph neural networks (GNNs) to enable the extraction of more complex
relationships between users and items.

2.2. Hypergraph Learning for Recommendation

Due to the capacity of hypergraphs to encompass pairwise relationships and effectively
model complex higher order dependencies, recent researchers have adopted the strategy of
constructing hypergraph structures to capture higher order relationships between users
and items [27–29]. To effectively model beyond pairwise relationships, Ji et al. [13] intro-
duced DHCF, a hypergraph collaborative filtering framework. It employs a dual-channel
learning strategy and incorporates a skip hypergraph convolution method to efficiently
capture the complex high-order correlations. Yu et al. [14] proposed a multi-channel hy-
pergraph convolutional network called the MHCN. It enhanced social recommendation
by leveraging hypergraph convolutional to model high-order user interactions. Instead of
manually designing and generating hypergraph structures, Xia et al. [30] introduced an
automatic hypergraph-structure-learning method called SHT to capture global collabora-
tive relationships. These aforementioned methods aim to improve relationship learning for
recommendation by constructing hypergraph connections, effectively capturing complex
higher order interactions between users and items.

2.3. Graph Contrastive Learning

One challenge in graph representation learning is the over-smoothing of learned rep-
resentations due to the stacking of graph message propagation layers [31]. To tackle this
issue, graph contrastive approaches integrate a self-supervised learning task to enhance
node discriminability [32–34]. In particular, You et al. [35] introduced GraphCL, a graph
contrastive learning framework. This approach utilizes data augmentation and consistency
maximization between positive and negative pairs to improve graph data representation.
Velickovic et al. [36] introduced a self-supervised graph representation learning model. It
maximizes mutual information (MI) between global and local graph embedding to enhance
graph representation capabilities. Extending self-supervised tasks to graph recommen-
dation models, Wu et al. [17] proposed an approach that supplements the traditional
recommendation task with a self-supervision task. This method first generates diverse
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node views and maximizes the mutual information across these views to reinforce the node
representation learning. In summary, the fundamental concept involves training a graph
encoder by maximizing the mutual information across various augmented perspectives.

3. Methods

In this section, we provide a detailed overview of the SHLKR model. It mainly in-
cludes three main modules: (1) A local relation-aware encoder captures the structure of the
local neighborhood and integrates it into relation-aware embeddings using a graph convo-
lutional network. (2) A global hypergraph relation encoder first converts the dependencies
between users and items into a hypergraph with various hyperedge types. Next, it utilizes
hypergraph convolution to model the high-order relationships within the hypergraph.
(3) Cross-view supervision optimization jointly optimizes the model with a self-supervised
learning task. The overall framework is illustrated in Figure 1.

User—Item Local
Interaction Graph GCNs

GCNs

Context Specific
Sub-hypergraphs

...

hyperedgenode node

Sub-H
ypergraph

Fusion Layer Global User
Embeddings

Global Item
Embeddings

(a) Local Graph Relation Learning 

(b) Global Hypergraph Relation Learning 

hyperedgenode node

HyperGCNs

Sub-H
ypergraph

Fusion Layer

...

Local User
Embeddings

Local Item
Embeddings

X BPR
 Loss

+

+

Self-Surpervised
 Loss

joint 
optimization

(c) Cross-View Local—Global  Supervision

Parameter Updating

Parameter Updating

Figure 1. The architecture of the SHLKR model.

3.1. Problem Definition

Let U = {u1, u2, . . . , uI} denote the user set and V = {v1, v2, . . . , vJ } denote the item
set, where |I| and |J | are the number of users and items, respectively. Let Gr = {U ,V , Er}
denote the user–item interaction graph, where E is the rating edge set. Additionally, the
user’s social graph is represented as Gs = {U , Es}. Es denotes the set of social edges.
Similarly, the item’s attribute graph is denoted as Ga = {V , Ea}, where Ea represents the
set of attribute edges. The objective of knowledge-aware social recommendation task is to
predict the probability ŷu,v that a given item v will be recommended to the target user u
based on Gr,Gs,Ga. It can be formulated as

ŷu,v = f (u, v,Gr,Gs,Ga; Θ). (1)

Here, Θ is the model learning parameter.
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3.2. Local Graph Relation Encoder

According to the prevalent collaborative filtering model, we define Eu ∈ RI×D and
Ev ∈ RJ×D to denote the user and item embedding matrices, respectively. Here, I
and J denote the numbers of users and items, correspondingly, while D represents the
dimensionality of the latent embeddings. We further define a local-graph-relation-encoding
layer that captures the local neighborhood structure and incorporates it into the relation-
aware embeddings. Let eu

i,l and ev
j,l be the embeddings of user ui and item vj at the l-th

layer, respectively. We can define the local graph relation encoding layer as follows:

eu
i,l = ∑

j∈Ni

1√
|Ni|

∣∣Nj
∣∣ ev

j,l

ev
j,l = ∑

i∈Nj

1√∣∣Nj
∣∣|Ni|

eu
i,l ,

(2)

where Ni and Nj are the neighbor sets of user ui and item vj, respectively. 1√
|Ni ||Nj|

represents the normalization term. Feature transformation and nonlinear activation were
eliminated in alignment with LightGCN [23] to streamline the computational costs. Finally,
we obtain the user–item local-aware topology embeddings eu

i /ev
j as the sum of the user–item

embedding at each layer:

eu
i =

L

∑
l=0

eu
i,l ; ev

j =
L

∑
l=0

ev
j,l . (3)

By stacking multiple local-graph-propagation layers, we enhance user–item represen-
tation through the aggregation of local neighborhood information. This process generates
contextual embeddings aimed at alleviating the over-smoothing issue inherent in graph
neural networks.

3.3. Global Hypergraph Relation Encoder

Motivated by the inherent capability of hypergraphs to capture relationships beyond
pairwise connections, we integrated dual-channel hypergraph encoders to effectively model
high-order interactions during hypergraph message propagation and aggregation.

3.3.1. Dual-Channel Hypergraphs’ Construction

Given user–item rating graph Gr, users’ social graph Gs, and items’ attribute graph
Ga, we initially constructed two channels of homogeneous hypergraphs for users and
items separately. Our research is primarily based on three main types of interactions:
behavior, social, and attribute context relationships. Based on these three primary types,
we can generate different hyperedge structures. By leveraging these hyperedges, we can
comprehensively model and capture the complex high-order relationships between users
and items.

Figure 2 showcases examples of hyperedge construction in the Douban dataset. As-
sume, in the user channel, for each pre-defined association rule ri in the pre-defined
list {r1, · · · , rk}, we generate a hyperedge set Eri . The hyperedges in Er1 encompass
all nodes u ∈ U directly connected to each node v. For example, if item i2 is rated by
three users u1, u2, u3, this corresponds to a hyperedge that connects these three users in
a homogeneous sub-hypergraph Gu

Er1
within the behavior context. Similarly, in the social

context, we can create a sub-hypergraph Gu
Er2

, which specifically captures the connections
between each user and his/her immediate 1-hop social neighbors. Thus, the relations con-
structed within a sub-hypergraph are capable of capturing high-order interactions, rather
than just pairwise relationships. Following this, we construct sub-hypergraph dependency
matrices

{
Hu
Er1

, Hu
Er2

, · · · , Hu
Erk

}
capturing high-order correlations by utilizing distinct sets

of hyperedges.
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Analogically, in the item channel, we apply the same approach to form hyperedges,
resulting in the sub-hypergraph adjacency matrices denoted as

{
Hv
Er1

, Hv
Er2

, · · · , Hv
Erk

}
.

Each matrix Hv
Eri

represents the dependency relationships among items that are either
purchased by the same user or share the same attributes. Additionally, this hypergraph
structure is extensible, allowing for the addition of new hyperedges to capture more
complex patterns of dependencies and interactions as more relationships arise. As a result,
this model can generalize to a broader range of data relationships.

Hyperedge Groups of Users

Hyperedge 
(similar social relation)

Hyperedge 
 (similar interaction)

Hyperedge 
 (similar interaction)

Hyperedge 
 (similar director)

Hyperedge Groups of Items

Hyperedge 
 (similar category)

Hyperedge 
(similar group)

User Hypergraph

Item Hypergraph

Figure 2. Illustration of diverse hyperedges from both the user and item channel.

3.3.2. Hypergraph Learning in Item Channel

After acquiring sub-hypergraphs with diverse relationship patterns, we introduced
a global-aware relation encoder utilizing hypergraph convolution [37]. Formally, the k
sub-hypergraph for items is denoted as Hv

Erk
∈ RJ×E . Hv

Erk ,l
∈ RJ×D represents the

hyper-embeddings of items in the k-th sub-hypergraph representation space at the l-th
propagation layer. Our hypergraph message propagation and aggregation layer is formu-
lated as follows:

Hv
Erk ,l

= Pv
Erk

(Ev
Erk

)−1Pv
Erk

THv
Erk ,l−1

. (4)

Here, Pv
Erk

corresponds to the hypergraph convolution operation, which can be cal-

culated as Pv
Erk

= (Dv
Erk

)−1/2Hv
Erk

.
{

Dv
Erk

, Ev
Erk

}
represent the degree matrix for the node

and hyperedge, respectively. This allows us to independently learn high-order features of
items from each sub-hypergraph. Figure 3 illustrates the hypergraph convolutional layer.
The hypergraph convolution involves a two-stage refinement: initially, aggregating node
features based on the hyperedge to create the hyperedge feature, implemented through
low-rank multiplication with Hv

Erk

T ; subsequently, aggregating related hyperedge features
into node features by multiplying with Hv

Erk
. Similar to local convolutional operations, we

eliminate feature transformation and nonlinear activation in the hypergraph convolutional
layer to reduce the model’s complexity.

Node Embedding Hyperedge Embedding Node Embedding

Hyper
Conv

Hyper
Conv

Hyper Incidence Matrix

X

Hyper Incidence Matrix

X

Figure 3. Illustration of the hypergraph convolutional layer in SHLKR.
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3.3.3. Hypergraph Learning in User Channel

Analogously, we denote the dependency matrix of the k-th sub-hypergraph for users
as Hu

Erk
∈ RI×E , where I represents the number of users and E represents the number

of hyperedges. Hu
Erk ,l

∈ RI×D represents the hyper-embeddings of users in the k-th sub-

hypergraph representation space at the l-th propagation layer. The hypergraph message
propagation and aggregation layer in item channel is defined in a way that aligns with the
user channel:

Hu
Erk ,l

= Pu
Erk

(Eu
Erk

)−1Pu
Erk

THu
Erk ,l−1

. (5)

Here, Pu
Erk

= (Du
Erk

)−1/2Hu
Erk

represents the hypergraph convolution operator for
users. Directly using the initial embedding as the input for hypergraph learning may
contain irrelevant feature information.

To improve the global preference encoder’s effectiveness, we further introduce a
disentangled preference encoding layer fϖ(·). It is designed to address the limitations of
the global module in capturing multiple intents thoroughly, refining the encoding process
for a clearer representation of user preferences and reducing the impact of noisy signals
in the interaction data. Suppose that a user’s overall preference can be partitioned into m
potential preference intents, represented as qu,m ∈ Rd, where m denotes the specific user
preference order. The user’s embedding Hu∗

Eri ,l
is initially mapped to a specific intent vector

through an embedding transformation layer:

qu,1:m = σ(Hu∗
Eri ,lwu,q + bu,q) (6)

where wu,q ∈ Rd×M∗d and bu,q ∈ Rd represent the trainable transformation matrix and
bias for user u, respectively. The activation function σ(·) is defined as LeakyReLU(),
specifically as σ(x) = max(x, αx). To calculate the user’s attention vector for a specific
intent, we utilized a key vector pu,1:m = {pu,1, pu,2, · · · , pu,m} ∈ RM×d to learn the user’s
attention across feature intents. Here, we calculated the weight through a linear dot-product
qT

u,m · pu,m. Subsequently, the attention scores are computed using the softmax function:

au,m =
exp(LeakyReLU(qT

u,m · pm,k))

∑M
m=1 exp(LeakyReLU(qT

u,m · pu,m))
. (7)

Then, we incorporate a memory unit via a memory matrix zu,1:k =
{

zu,1, zu,2, · · · , zu,k
}

∈ RM×d. zu,1:k, which serves as a storage block. It is used to capture unique preferences
across various latent aspects. Through a weighted sum of all disentangled factors, the
learned disentangled representations Hu

Eri
can effectively preserve diverse latent factors

associated with different intents in the graph. Specifically, Hu
Eri ,l

is calculated as

Hu
Eri ,l = ∑K

k=1 au,m · zu,m. (8)

Here, zu,k represents the m-th memory unit of the disentangled factor. It assists the
model in capturing diverse user preferences and enhances the learning representation of
the global relation encoder.

3.3.4. Sub-Hypergraph Fusion and Prediction Layer

To incorporate the semantics of distinct sub-hypergraphs, we introduce a semantic-
level attention layer. This layer aggregates node embeddings from different sub-hypergraphs
to generate comprehensive representations. Let HErk ,l denote either user or item embed-
dings for simplicity. The final aggregated representation Hl is obtained by taking the
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weighted sum of the embeddings from various sub-hypergraphs. Specially, HErk ,l is com-
puted as follows:

αErk ,l =
exp(WT

a · fϕ(HErk ,l ; Wϕ))

∑
Ert∈Er|k|

exp(WT
a · fWϕ

(HErt ,l ; ϕ))
,

Hl = ∑
Ert∈Er|k|

αErk ,l · HErk ,l .

(9)

Here, fϕ is implemented by a multi-layer perceptron network with learnable weights
Wϕ and a tanh activation function. Wa is the learning weight. It is used to determine the
importance of each sub-hypergraph’s contribution to the final aggregated representation.
By aggregating the node features obtained from sub-hypergraphs in the user and item
domains separately, we can obtain versatile representations for both users and items. These
representations are denoted as Hl

u and Hl
v. Then, the embeddings from multiple layers are

added together to comprehensively capture features and patterns at different levels. This
effectively reveals the complex relationships and semantics in the hypergraph. The final
user and item embedding are updated by combining the hypergraph-based representations
with the local-aware graph relation embeddings, refined as P = Eu +Hu, Q = Ev +Hv.
Finally, the prediction of user ui liking item vj is determined by computing the inner
product, ŷi,j = pT

i ∗ qj.

3.4. Cross-View Local–Global Dependency Supervision

To address the impact of edge noise in graphs, we propose integrating self-supervised
learning with the main recommendation task. By maximizing the node mutual information
between the generated hypergraph view and the local collaborative view, these auxiliary
supervisory signals can improve the robustness of learned node representations. We created
self-supervisory signals by considering different views that encode distinct relationship pat-
terns of users. The local collaborative view captures user preference features from explicitly
displayed relationship patterns, while the higher order view captures implicit higher order
dependency relationships. We have designed an edge dropout operator that randomly
drops edges in both local and hypergraph structures with a certain probability, generating
different augmented views. Then, we can establish the cross-view contrastive task.

Especially, given a sub-hypergraph embedding hu
Erk ,i and a local-aware topology

embedding eu
i for a specific user i, we employed a shared linear transformation function

Υ(·) to map them into a common latent space. This transformation is defined as

δu
k,i = fΥ(hu

Erk ,i; γ); ηu
i = fΥ(eu

i ; γ), (10)

where γ is the shared learning parameters. Then, we can formulate the cross-view con-
trastive loss to maximize the agreement between the representations of positive pairs while
minimizing the agreement between the representations of negative pairs. Mathematically,
the cross-view contrastive loss for user i can be defined as follows:

Lu
k,i = − ln

exp(s(δu
k,i, ηu

i )/τ)

∑I
i∗=0 exp(s(δu

k,i, ηu
i∗)/τ)

, (11)

where s(·) is used to compute vector similarity, such as the cosine function. The temperature
parameter τ adjusts the scaling of the softmax function to increase the discrimination
between samples. The positive pairs are defined as nodes that exist in both views, while
negative pairs are sampled from different nodes within a batch. For SHLKR, we have
k types of guided hypergraphs, the total learning objective for user i can be computed
as follows:

LU
ssl =

1
I ∑I

i=1∑K
k=1L

u
k,i (12)
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In the same way, we can also generate the cross-view contrastive loss LV
ssl for the item

channel. The final loss function is defined as the sum of the two losses: Lssl = LU
ssl + LV

ssl .

3.5. Model Training

In our training process, we utilized the Bayesian Personalized Ranking (BPR) loss
function to optimize the main recommendation task. The BPR loss function is widely used
in training ranking models. The definition of the BPR loss function is as follows:

Lbpr = ∑
(i,j+ ,j−)∈D

− ln σ(ŷi,j+(Θ)− ŷu,j−(Θ)). (13)

Here, σ(·) is the sigmoid function, Θ includes the whole learning parameters em-
ployed in SLHKR, and D := (u, i, j|i ∈ I+u , j ∈ I−u ) denotes the set of training samples. To
collaboratively guide the parameter updates, we integrated the cross-view self-supervised
loss with the BPR loss. The overall objective function is defined as:

Ltotal = Lbpr + λsslLssl + λΘ||Θ||2, (14)

where λssl is used to balance the recommendation task and the cross-view self-supervised
task and λΘ serves as a regularization parameter to prevent overfitting. The learning
algorithm for optimizing the proposed model is summarized in Algorithm 1.

Algorithm 1 Learning algorithm of SHLKR.

Require: user–item rating graph, Gr; user’s social graph, Gs; item’s attribute graph, Ga.
Ensure: user and item embedding matrix, P ∈ RI×D, Q ∈ RJ×D; model parameters, Θ.

1: Hypergraphs’ construction,
{

Hu
Erk

, Hv
Erk

}
;

2: Initialize P, Q, Θ;
3: for epoch in max_epoch do
4: Sample minibatch training instances;
5: for (i, j+, j−) in minibatch do
6: for l = 1, . . . , L do
7: Update eu

i,l , ev
i,l using Equation (2);

8: for each sub-hypergraph do
9: Update Hv

Erk ,l
using Equation (4);

10: Hu
Eri ,l

= fϖ(Hu∗
Eri ,l

);
11: Update Hu

Erk ,l
using Equation (5);

12: end for
13: Update Hl

u,Hl
v using Equation (9);

14: pi,l = Hl
u + eu

i,l ,qj,l = Hl
v + ev

j,l ;
15: end for

16: pi =
L
∑

l=0
pi,l , qj =

L
∑

l=0
qj,l ;

17: Calculate Lbpr,Lssl ;
18: Ltotal = Lbpr + λsslLssl + λΘ||Θ||2;
19: end for
20: Update P and Q and Θ via backward();
21: end for
22: return P, Q;
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4. Experimental Settings
4.1. Datasets

We evaluated our proposed method using three widely used datasets in social recom-
mendation systems, namely Yelp, CiaoDVD [15], and Douban [38]. Douban is a prominent
social media network in China. This dataset consists of multiple types of information,
including user ratings for movies, users’ social relations, user’s group affiliations, and
movie attributes such as directors and genres. The Yelp dataset contains user ratings,
movie categories, and user social relations. It is derived from a well-known American user
review website. The CiaoDVD dataset is collected from a consumer review platform. It
contains user ratings for movies and their corresponding categories. Moreover, similar to
the previous datasets, the CiaoDVD dataset also provides information about user social
relationships. Table 1 provides an overview of the data statistics.

Table 1. Statistics of the datasets.

Dataset # of Users # of Items # of
Interactions

# of
Relations Density

Douban 3022 6977 195,493 1366 0.79%
Yelp 14,085 14,037 194,255 150,532 0.46%
CiaoDVD 7375 105,114 216,563 111,781 0.0379%

4.1.1. Baselines

We selected several representative baselines to evaluate the performance of our pro-
posed methods:

• BPR [3]: A ranking model for implicit feedback. It utilizes triplet ranking loss instead
of MSE loss, prioritizing target items in the ranking result.

• SBPR [39]: SBPR, an extension of BPR, introduces social relations into the rank-
ing model.

• HERec [26]: A recommendation model based on heterogeneous network embedding
that efficiently merges various embeddings derived form a heterogeneous information
network with a matrix factorization model.

• DiffNet [8]: A deep influence diffusion model for social recommendation that simulates
user’s preference diffusion process using a hierarchical-influence-propagation structure.

• LightGCN [23]: A light graph convolution model that eliminates feature transfor-
mation and nonlinear activation. It derives the final representation by aggregating
multiple layers to mitigate over-smoothing.

• SGL [17]: A self-supervised graph learning model that incorporates auxiliary self-
supervised tasks for multi-task learning.

• GraphRec [24]: An attention-based graph model for social recommendation that jointly
captures the interactions between the social graph and rating graph, considering the
heterogeneous strengths of social relations.

• MHCN [14]: A multi-channel hypergraph convolutional network that enhances social
recommendation by leveraging high-order user relations. It integrate self-supervised
learning to regain connectivity with hierarchical mutual information maximization.

• DHCF [13]: DHCF introduces a dual-channel learning strategy along with a skip
hypergraph convolution method to form a robust hypergraph collaborative filtering
framework that efficiently models the complex high-order correlations.

4.1.2. Evaluation Metrics

The experiment employed Recall@K and NDCG@K to assess the algorithm’s effec-
tiveness [40]. Recall@K indicates the percentage of accurate predictions present in the
Top-K list compared to all predictions. NDCG@K is utilized to assess how well the Top-K
recommendations are ranked. Users typically focus on the initial items in the recommended
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results, aiming for correct predictions to prominently feature in the Top-K prediction list.
These two metrics are formulated as follows:

Recall@K =
Number of Hits@K

|GT| , (15)

NDCG@K = Zk

K

∑
i=1

( 2ri − 1
log2(i + 1)

)
. (16)

4.1.3. Hyper-Parameter Settings

The implemented model utilizes Tensorflow. To ensure a fair experimental compar-
ison, we applied uniform parameter settings across all methodologies. The embedding
dimension d was standardized at 64, the regularization coefficient λ fixed at 0.001, and the
batch size b maintained at 1500. Additionally, we further explored the model’s sensitivity
to various hyper-parameters in the experiments. We dynamically adjusted the learning
rate to expedite the convergence by employing the Adam optimizer. For graph-based
neural network models, the model depth L was consistently set to 2. We employed five-fold
cross-validation to obtain the results. The temperature parameter was set at 0.01. The
experimental results were obtained using a five-fold cross-validation strategy.

5. Results and Discussion
5.1. Overall Performance Comparisons

In this section, we conduct experimental comparisons on three publicly available
datasets to validate the performance of SHLKR and assess its superiority over other
benchmark methods. The results are presented in Table 2. The results obtained from
the experiments led us to the following observations: (1) SHLKR consistently outperforms
other benchmark methods across all three datasets, with improvements of 10.57% and
7.52% on average for the Recall@20 and NDCG@20 metrics, respectively. These results
provide strong evidence for the effectiveness of SHLKR. This superiority can be attributed
to several key factors. (i) SHLKR transforms the dependency between users and items into
a hypergraph representation. It allows SHLKR to encode multiple collaboration pattern and
capture more fine-grained interaction modes. (ii) SHLKR parameterizes the global intent
of users to separate different intents. It could reduce the impact of noise signals and en-
hance the representation learning capability of the global relationship encoder. (iii) SHLKR
introduces a cross-view supervision task to maximize the mutual information between
nodes in different views. It enables the model to learn robustness node embedding against
adversarial edge noise. (2) Compared to GNN-based methods such as LightGCN, DiffNet,
and GraphRec, SHLKR exhibits superior performance. This is because the hypergraph
can leverage hyperedges to connect more nodes, surpassing the limitations of pairwise
relationships. In real-world scenarios, the relationships between users and items often
involve multiple interaction patterns, including direct interactions, shared interests, social
connections, and more. SHLKR is flexible in modeling and representing these complex
interaction patterns. (3) Compared to hypergraph methods such as the MHCN and DHCF,
SHLKR introduces a greater variety of relationship patterns. In SHLKR, we primarily focus
on three main types of interaction: behavioral, social, and attribute context relationships.
By incorporating different interaction patterns as additional knowledge, SHLKR is able to
more comprehensively capture the complex collaborative signals, thus alleviating sparsity
issues. As considering auxiliary interaction relationships may also introduce noise and ir-
relevant semantics, we additionally propose a disentanglement layer to separate the intents
within the learned features, ensuring that irrelevant noisy information is not retained.
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Table 2. Overall performance comparison of SHLKR with baselines (Top-k Evaluation).

Dataset Metrics Algorithms
BPR SBPR HERec DiffNet LightGCN SGL GraphRec MHCN DHCF SHLKR (Ours)

Douban
Recall@20 3.98 4.12 4.28 4.31 4.47 4.62 4.57 4.69 4.79 5.28 (10.2↑)
NDCG@20 3.25 3.37 3.41 3.58 3.60 3.76 3.65 3.92 4.02 4.39 (9.2↑)
Recall@50 4.43 5.12 5.83 6.20 6.95 7.24 7.58 7.65 7.61 8.27 (8.1↑)
NDCG@50 4.55 4.97 5.33 5.87 5.92 6.29 6.37 6.45 6.23 7.04 (9.4↑)

CiaoDVD
Recall@20 4.02 4.31 4.82 4.45 4.62 4.89 4.97 5.68 5.03 6.12 (7.8↑)
NDCG@20 3.07 3.10 3.41 3.29 3.60 3.89 3.96 4.25 3.87 4.57 (7.5↑)
Recall@50 5.93 6.14 6.52 7.33 8.61 9.13 8.91 9.32 9.27 9.69 (6.1↑)
NDCG@50 3.60 4.09 4.29 4.21 4.78 5.02 5.36 5.47 5.33 5.82 (6.9↑)

Yelp
Recall@20 5.16 5.41 6.37 7.06 7.24 7.58 7.78 8.28 7.72 8.83 (6.6↑)
NDCG@20 3.15 3.68 4.40 4.78 5.03 5.12 5.31 5.47 5.28 5.79 (5.9↑)
Recall@50 8.55 9.97 10.33 10.92 11.87 12.67 13.29 13.41 13.37 14.17 (5.6↑)
NDCG@50 3.95 4.21 4.82 5.39 5.92 6.23 6.58 6.79 6.61 7.24 (6.8↑)

↑: Increment of classification accuracy for the corresponding backbone model.

5.2. Model Robustness Analysis
5.2.1. Robustness to Data Sparsity

To further validate the model robustness, we conducted experiments across multiple
data splits to ensure the replicability and consistency of the study results across different
training data scenarios. Specifically, we partitioned the dataset into subsets with different
interaction ratios and trained the model with varying levels of sparsity. The x-axis ticks of
Figure 4 provide specific sparsity settings. We then compared SHLKR with the hypergraph-
based method DCHF and GNN-based method LightGCN. Additionally, we assessed the
performance differences between SHLKR and these two baselines. The results are depicted
in Figure 4. We observed that SHLKR’s performance is consistently superior to LightGCN
and DCHF across datasets with different sparsity levels. This result validated the robustness
of SHLKR in handling sparse data in the training data. The reason is that our hypergraph
learning model can learn high-order relationships through global relation learning, thereby
alleviating the impact of sparsity in the observed user–item interaction data. Additionally,
the self-supervised learning task extracts knowledge from refined graph views, providing
additional supervised signals to enhance embedding learning.
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Figure 4. Performance comparison of SHLKR with baselines with respect to different data sparsity
levels. The lines represent Recall@20 and NDCG@20, while the bars indicate performance differences
between the baselines with SHLKR.
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5.2.2. Robustness to Noise Data

In SHLKR, we introduced a self-supervised learning task to enhance node representa-
tion learning and improve the model’s robustness against noise. To evaluate the effect of the
self-supervised learning task on model performance, we introduced different proportions
of noise data to the training set. Specifically, the ratio was set to 5%, 10%, 15%, 20%, and
25%. We then compared the performance of our proposed SHLKR model with a variant
model without the self-supervised learning task (SHLKR-SSL) using the metric Recall@20.
The experimental results are shown in Figure 5. We found that noise data had a negative
impact on model performance. However, SHLKR consistently outperformed SHLKR-SSL.
This observation indicated that SHLKR consistently demonstrates robust performance at
different noise levels. The reason is that the auxiliary task can help SHLKR learn valuable
data patterns from cross-view supervision signals. It will enhance the model’s stability to
noisy edges in graph learning. Figure 6 illustrates the distance distribution of user and
item embeddings in two-dimensional space achieved through t-SNE visualization. We
observed distinct clusters and a clear separation in the embeddings’ distribution generated
by SHLKR. This further validates the advantage of the self-discrimination task in SHLKR.
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Figure 5. Performance comparison of SHLKR with SHLKR-SSL with respect to the noise ratio.

Figure 6. Visualization of embedding using t-SNE: (a) User and (b) Item. Each data point represents
a node and is visually distinguished by color. The color reflects its membership in specific clusters
identified from Yelp.

5.3. Hyper-Parameter Sensitivity Analysis

To gain insight into how the hyper-parameters affect model performance, we con-
ducted experiments on the Yelp dataset to compare results with different hyper-parameter
values. This allows us to determine the optimal hyper-parameters to balance the model
complexity and performance.

Initially, we changed L from 1 to 4 to assess the influence of graph model depth on
SHLKR. The results of Figure 7a,b indicate that the model achieves its best performance
when L = 2. This result suggest that a relatively shallow graph model is capable of
extracting valuable high-order semantics. However, as the model depth increases further,
its performance deteriorates. This decline may be due to the over-smoothing caused by the
stacking of propagation layers. It will further amplify the impact of edge noise. Figure 7c,d
demonstrate that the model achieves its highest performance with a Recall@20 of 0.09251
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and a NDCG@20 of 0.0604 when the embedding size is set to D = 128. This means setting
a small embedding size may prevent the model from capturing sufficient features. As a
result, it will affect the generalization capacity of the model to unseen data. Figure 7e,f
show the affect of λssl on the model performance. The optimal performance is achieved
when λssl = 0.001, striking a balance between the main recommendation task and the
auxiliary task. When λssl is too large, the auxiliary task will have a stronger influence on
parameter learning, thus affecting the main task. On the contrary, it may lead to insufficient
learning on the auxiliary task.
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Figure 7. Impact of hyper-parameters on SHLKR Performance: L (a,b), D (c,d), and λssl (e,f) on
Yelp Dataset.

5.4. Ablation Study

To evaluate the effects of different components in SLHKR on model performance, we
individually removed each key component and conducted an ablation study. By comparing
the variant models to SLHKR, we can assess the contribution of different components to
SLHKR’s performance. The following provides a detailed description of these variant models:

• SLHKR-HG: This variant model removes the global hypergraph relation encoder
module and relies only on the existing pairwise relationships to learn the local repre-
sentations of users and items.

• SLHKR-KHG: This variant removes the hypergraph learning in the item channel and
relies only on a single channel for learning user representation.

• SLHKR-SSL: This variant removes the self-supervised learning task and only considers
the influence of the main task on the model optimization.

The results of the ablation experiment on three datasets are shown in Figure 8. From
the results, it can be observed that each module contributes positively to the model’s per-
formance. When only using pairwise relationships, the performance significantly decreases
compared to the complete model. These results confirmed the effectiveness of utilizing
hypergraph structures to capture high-order relationships. This further validates that ag-
gregating high-order semantic information from different hyperedge types can effectively
improve the model’s performance. Compared to the dual-channel learning, the contribu-
tion of the single channel is relatively small. But, it still brings improvements on model
performance. This suggests that aggregating high-order information of all items based on
hypergraph convolution can alleviate the impact of data sparsity on model performance,
especially under sparse data conditions. Lastly, the self-supervised learning task provides
additional benefits to the model’s performance. One reason is that maximizing the mutual
information between similar nodes and distinguishing different nodes in graph learning
can reduce the influence of noise interactions on embedding learning. Simultaneously, max-
imizing the mutual information between different views can leverage supervised signals to
complement representation learning.
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Figure 8. Performance comparisons of different variant models of SHLKR across three datasets:
(a,b) Yelp, (c,d) Douban, and (e,f) CiaoDVD.

5.5. Effect of Multi-Type Hyperedges

To analyze the effects of different hyperedge types in the user and item channels on
SLHKR’s performance, we designed the following ablation experiments. We gradually re-
moved different hyperedge types, generating three variants of SLHKR. The variant SHLKR-
s has social context-based hyperedges in the user channel removed. This means that the
model cannot leverage high-order relationships from social connections. SHLKR-b has
the behavior-context-based hyperedges in both the user and item channels removed. This
means that the model cannot utilize high-order relationships from user–item interaction
behaviors. SHLKR-a has the attribute-context-based hyperedges eliminated. As a result, it
loses the ability to leverage external knowledge derived from the attribute graph.

Figure 9 illustrates the effect of each hypergraph guided by different hyperedge types
on the model’s performance. From the results, we can draw the conclusion that each hyper-
graph structure contributes positively to the model’s performance. This result demonstrates
the effectiveness of hypergraphs in modeling high-order relationships. Typically, when
the hyperedges generated from the social and behavior context are removed, the model’s
performance is most affected. However, the variants still outperform the scenario when
only utilizing the observed graph. These high-order relationships can provide valuable
data patterns for modeling users’ preferences. Removing the hypergraph generated from
the attribute context type has a relatively smaller impact on performance. While these at-
tributes can provide valuable features, they may not capture the direct interactions between
users and items.
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Figure 9. Effect of multi-type hyperedges on model performance with respect to Top@K across three
datasets: (a) Yelp, (b) CiaoDVD, and (c) Douban.
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6. Conclusions and Future Work

In this paper, we propose a self-supervised hypergraph learning framework for
knowledge-aware social recommendation. It constructs hyperedges in hypergraphs by in-
tegrating three main types of connections: user behavior, social relationships, and attribute
context. By employing a dual-channel hypergraph structure and hypergraph convolu-
tion, we effectively modeled high-order relationships between users and items, presenting
a novel and powerful approach for knowledge-aware social recommendation systems.
Additionally, we introduced a self-supervised learning task to mitigate the sensitivity to
noisy feedback. Extensive experiments on public datasets have demonstrated the effec-
tiveness of SHLKR. In our further research, we plan to utilize the timestamps of user–item
interactions to encode temporal context and better understand the dynamic nature of
user behavior. Specifically, we will consider the following temporal contexts: short-term
dynamics, long-term preferences, and trends in popular items. By incorporating these
temporal contexts, we aim to enhance the model’s capability for modeling the dynamic
changes in user interests. This enables SHLKR to better adapt to shifts in user preferences
across temporal contexts.
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