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Abstract: The L-band digital aeronautical communication system (LDACS) is one of the candidate
technologies for future broadband digital aeronautical communications, utilizing the unused L-
band spectrum between distance measuring equipment (DME) channels. However, the higher
signal power of DME complicates LDACS implementation. This paper proposes an advanced DME
mitigation approach for the LDACS, integrating joint direction of arrival (DOA) estimation with
adaptive beamforming techniques. The proposed method begins by exploiting the cyclostationary
characteristics of signals, accurately obtaining the preliminary direction of the LDACS signal using
the Cyclic-MUSIC method. Subsequent precise steering vectors (SVs) are selected through Capon
spectrum search, followed by the reconstruction of the interference plus noise covariance matrix
(INCM). Using the obtained SV and INCM, the weight vector is calculated and beamforming is
performed. Simulation results validate that the proposed method not only accurately estimates the
direction of LDACS signal but also efficiently mitigates DME interference, demonstrating a superior
performance and reduced algorithmic complexity, even in scenarios with lower signal-to-noise ratios
(SNRs) and the presence of DOA estimation errors. Additionally, the proposed method achieves a
low bit error rate (BER), further validating its ability to ensure communication quality and enhance
the reliability of LDACS.

Keywords: L-band digital aeronautical communication system; cyclostationary characteristics; direc-
tion of arrival; interference plus noise covariance matrix; beamforming

1. Introduction

The civil aviation transportation industry is experiencing rapid growth, leading to
an unprecedented demand for advanced air traffic management (ATM) systems to accom-
modate the expanding aviation sector and its need for cutting-edge technologies [1-3].
However, the capability of existing communication links to support such ATM systems
is hindered by spectrum limitations [4]. To ensure the sustainable growth and safety of
aviation services, the Future Communication Infrastructure (FCI) has modernized the
existing ATM system. It proposes the LDACS, which is based on Orthogonal Frequency
Division Multiplexing (OFDM) technology [5,6]. According to the International Civil Avia-
tion Organization’s plan, the LDACS system is deployed in an embedded way between
the channels of L-band DME, which brings the problem of the interference of DME pulse
signals to the receiver of the LDACS system [7,8].

Extensive research has been conducted both domestically and internationally to re-
duce the mutual influence between LDACS and DME systems across time and frequency
domains. To mitigate DME interference, researchers have proposed pulse blanking and
clipping strategies. These techniques zero out or limit any received signal components
exceeding a predefined threshold, based on the time-domain characteristics of DME signal
waveforms [9-12]. However, in practice, setting appropriate thresholds for pulse blanking
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and clipping is challenging, leading to potential signal loss and inter carrier interference
(ICI). Thus, several studies have explored the reconstruction of DME signals, employing
methods such as compressed sensing, wavelet transform, and orthogonal transform [13-15].
However, these methods are noted to have limitations, including reconstruction errors and
residual interference.

To address the issue of multi-user interference in wireless communication systems,
researchers have adopted adaptive techniques such as power allocation, beamforming, and
sub-carrier allocation [16]. Najib A. Odhah and Emad S. Hassan have optimized the spectral
efficiency by proposing adaptive algorithms for radio resource allocation. This method
employs spatial sub-carrier and power allocation techniques to tackle the interference
experienced by system users, thereby minimizing its negative impact on overall system
performance and effectively maximizing throughput and spectral efficiency [16,17]. In
terms of array antenna interference mitigation, Liu Haitao utilized a uniform circular array
for signal reception, employing a DOA matrix algorithm to estimate incoming signals
and conduct beamforming [18]. Subsequent signal identification is achieved through the
application of a power comparator. However, this method tends to perform poorly in
scenarios with lower SNRs. To combat high-intensity DME interference, an orthogonal
projection algorithm is applied, followed by a blind beamforming method to extract the
OFDM direct path signal, as described in [19]. Nevertheless, the effectiveness of the
orthogonal projection method diminishes when the power of the interference signal is low.

In beamforming, using the sample data matrix as the covariance matrix can mistakenly
suppress the desired signal as interference when the SNR increases. To address this issue,
a series of robust adaptive beamforming algorithms have been proposed. These include
the diagonal loading (DL) algorithm [20,21], the Eigenspace algorithm [22,23], and the
covariance matrix reconstruction (CMR) algorithm [24-27]. The diagonal loading algorithm
involves adding a diagonal matrix to the sample covariance matrix (SCM), effectively
enhancing the robustness of the beamformer by increasing the noise power. However,
selecting an appropriate diagonal loading level is challenging; too small a parameter
results in minimal performance improvement, while an excessively large parameter can
weaken the suppression of interference signals. The eigenspace algorithm divides the
signal subspaces by performing eigen-decomposition on the SCM, where the space spanned
by eigenvectors corresponding to large eigenvalues is considered to be the subspace of
desired signals plus interference, and the space spanned by eigenvectors corresponding
to small eigenvalues is considered to be the noise subspace. The actual desired signal SV
is guaranteed to fall within the subspace of desired signals plus interference. Therefore,
projecting the steering vector of the desired signal, which may contain errors, into the
subspace of desired signals plus interference can eliminate these errors, thereby enhancing
the robustness of the beamformer. However, under low SNR conditions, the eigenvalues of
the SCM are very close to each other, making it difficult to accurately distinguish between
the subspace of desired signals plus the interference and the noise subspace.

After a thorough study of robust adaptive beamforming algorithms, it was discovered
that the primary factor affecting the performance of beamformers is the inclusion of desired
signal components in the INCM. Y. Gu initially proposed the reconstruction of the INCM
by integrating the Capon spatial spectrum in the interference and noise interval [27].
However, this method estimates the SV using the reconstructed INCM, resulting in low
accuracy. An improvement was introduced in [26], where the SV is determined through a
convex optimization problem before the INCM reconstruction. This method enhances the
accuracy of the reconstruction and reduces the error to an extent, but at the cost of increased
complexity. Z. Zheng proposed a CMR algorithm based on SVs and power estimation
in [25]. The algorithm starts with peak searching in the Capon power spectrum to identify
the SVs of all signals, which are subsequently optimized. Next, it uses the approximate
orthogonality among the SVs to estimate the power of interference, thus enabling the
reconstruction of the interference covariance matrix (ICM). The reconstructed ICM by this
algorithm has the same expression form as the theoretical ICM, further eliminating the
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reconstruction error and enhancing the algorithm performance. X. Zhu suggests employing
the SCB algorithm to obtain the noise power and signal covariance matrix in [24]. Then,
after eliminating the residual noise, it employs subspace techniques to derive the desired
signal SV and reconstructs the ICM through projection transformation.

This paper addresses DME interference in LDACS signal reception by proposing a
method that combines signal direction estimation and beamforming for interference mitiga-
tion. Firstly, it distinguishes between signals and interference by their cyclic frequencies to
estimate and identify the directional information of the OFDM signal and DME interference
components in the received signal. Then, this directional information is used to estimate the
SVs and subsequently reconstruct the INCM. Finally, beamforming is performed to form a
high-gain main lobe at the direction of the OFDM signal and deep nulls at the location of
DME interference, effectively mitigating DME interference.

In our formulation, lowercase letters are used to represent scalars, lowercase boldface
letters are used for vectors, and uppercase boldface letters are used for matrices. The
symbols (-)*, (-)" and (-) denote conjugate operation, transpose operation, and conjugate
transpose operation, respectively. The variable with a superscript like 4 denotes the
estimated value of that variable.

2. System Model

Figure 1 illustrates the block diagram of the OFDM receiver employing joint signal
direction estimation and beamforming. In this system, signals received by the airborne
platform are first converted from analog to digital (A /D) before being processed by the
DOA estimation module. This module is capable of distinguishing between desired and
interfering signals. Subsequently, the data along with the DOA information are sent to
the beamforming module. Here, using the INCM reconstruction approach, the module
computes the weight vector and executes beamforming to extract the desired signal. Fi-
nally, the original data are recovered after operations such as signal demodulation and
channel decoding.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

DOA
Estimiation

OFDM

 Beamforming —» .
camiorming Demodulation

Figure 1. Block diagram of OFDM receiver for LDACS system.

The focus of this study is on using the Cyclic-MUSIC algorithm for DOA estimation
and the INCM reconstruction method for beamforming, as indicated by the dashed box in
Figure 1.

2.1. Signal Model

The forward link of the LDACS system is modulated by OFDM. Assuming the subcar-
rier modulation scheme is QPSK, the baseband OFDM signal can be expressed as follows

N/2 N/2

r(t) = Z ri(t) = Z Z cl,nq(t —nTy — to)ejzﬂlAf(t_”TO_fO), (1)

I=—N/2 n l=-N/2

where N represents the number of subcarriers, Ty denotes the length of the OFDM symbol
as well as the pulse width, and Ty = Ts + T,. Here, Ts is the useful symbol length of
the OFDM signal, and T is the length of the cyclic prefix. Additionally, Af = 1/Tj is
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the subcarrier frequency interval, g(t) is the shaping pulse, and fy is the initial time. c;,,
represents the nth modulation symbol on the [th subcarrier, assumed to be a zero-mean
independently and identically distributed source with a variance of ¢?2.

The modulated OFDM signal is then represented as

xo(t) = Re{r(t) - ef2rfet )
— L (e P (1))

2.2. Array Model

Consider an antenna array consisting of a uniform linear array (ULA) with M elements
spaced d distance apart. The array receives one OFDM signal and L DME signals at time k.
The received data of the array can be obtained as

x(k) = xo(k) + x;(k) +x (k), 3)

where xy(k) = agso(k), x;(k) = Z a;si(k), x, (k) represent the OFDM signal, DME signals

and Gaussian white noise, respectlvely so(k), ap, respectively, represents the waveform
and SV of the OFDM signal. s;(k), i =1, -- , L is the waveform of the ith DME signal at
time k,and a;, i = 1,- - -, L is the SV associated with the ith DME signal. Assuming that
the DOA of the mth signal is 6,,, and the speed of light is ¢, then the time delay caused by
the signal impinging on adjacent array elements is

Ty = (dsinby)/c, m=0,1,---,L. 4)

The output of the beamformer is y(k) = w!x(k), where w = [wy,wy, ..., wpy] T

denotes the weight vector of the beamformer. The optimal weight vector can be obtained

by maximizing the output signal-to-interference-plus-noise ratio (SINR) of the beamformer.
This optimization problem can be expressed as

min wHRi+nw s.t.wflag =1, (5)
w

where R;,, = Z (7 a;a;" + 021 = R; + R,, is the theoretical value of the INCM, (T and o7

represent the zth DME signal power and noise power, while R; and R;, are the theoretical
ICM and noise covariance matrix (NCM), respectively. As a result, the optimal weight
vector can be expressed as

-1
M 6)

Wopt =
HR
i+n4

which is called the minimum variance distortionless response (MVDR) beamformer.
In practical applications, the SCM R, = K Z x(k)xH (k) is often used in place of the

theoretical INCM, where K represents the number of snapshots of the sample data. When
the number of snapshots is small and the DOA estimation is inaccurate, the conventional
beamforming algorithm based on INCM reconstruction suppresses the desired signal
as interference, especially at high SNRs, resulting in a degradation of the beamformer’s
performance.

3. DOA Estimation Based on Cyclostationary Characteristics
3.1. Cyclostationary Properties of OFDM Signals

Based on the signal model described in Section 2.1, the mathematical expectation and
autocorrelation function of OFDM signals can be derived as

E{xo(t)} =0, 7)
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Rugx (£,7) = E{xo(t + T)x0" (1)}
N/2

Y Y q(t4+T—nTy—to)g(t — nTy — to)e 2TUA )T
_ 2| ni=2N/2 8)
— N/2 ‘ :
+L L g(t+7—nTo—to)q(t —nTo — to)el2mIAFHfo)T
nJ=—N/2

According to the definition of the cyclic autocorrelation function, with the help of the
LPTV model, the cyclic autocorrelation function of the OFDM signal can be derived as [28]:

[Tor2
RY (1) = =4 OTO/szUxU t, T)e 12 dt
o N/2 e “RRUAf+fT 4 o2 (IAf+Hfe)T fTO/Z Z (t+1—nTy —to)q(t — nTy — to)e /2 dt, 0 = Z )
4T0 N/2 Tos2 24( 0—t)q 0% , Ty
0,a ;é T

where z represents an integer and « represents the cyclic frequency. Equation (9) indicates
that the cyclic autocorrelation function of the OFDM signal exhibits discrete spectral
lines specific to the cyclic frequency, appearing at « = z/Ty. When z = 0, the cyclic
autocorrelation function reaches its maximum value, which is equivalent to the standard
autocorrelation function. When z = 1, « is referred to as the base cyclic frequency at which
point the cyclic autocorrelation function attains its second-largest value.

3.2. DOA Estimation Based on the Cyclic-MUSIC Algorithm

In this paper, the Cyclic-MUSIC algorithm is used to process data received by the
antenna array, based on the distinct base cyclic frequencies of OFDM and DME signals and
the fact that noise does not exhibit cyclostationary characteristics.

Based on the definition of cyclic cross-correlation and the received data of the array
elements, the cyclic cross-correlation function between element p and element g can be
obtained as follows

L+1
i RE . (7)e o+ (p=1)~2fo-a) =) (10)

xpxq
where R§ ; (T) represents the cyclic autocorrelation function of the signal.
By combining different values of p and g, an M x M-dimensional data matrix R{ ()

is constructed
Re iz (TR 2, (T) - RY 5, (T)

X1X1 X1X2 X1XM
Riw (TR, (T) -+ R, (T)
%(T) _ szl: X2X2 X2XM ) (11)

RtJXCMxl( )Rzsz( ) RﬁMxM( )

After obtaining R{ (7), the pseudo-data matrix R(«) is constructed by combining the
different T for the next correction:

. D
R(&) = 55— 1T:§m R (7). (12)

For the M x M dimensional matrix R(«) formed by the above equation, the signal
subspace and noise subspace can be obtained using singular value decomposition or
eigenvalue decomposition on R(oc)R(zx)H by the MUSIC algorithm. Subsequently, by
employing spectral peak searching, the DOA of the OFDM signal can be estimated.
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4. Beamforming Based on INCM Reconstruction
4.1. Steering Vector Estimation

The nominal SVs a are constituted by the directions of each signal obtained from the
DOA estimation module. The actual SV can be expressed as the sum of the nominal SV
and the error

a=d+te, (13)

where e = e +e). e, is the orthogonal component and e is the parallel component. The
latter component does not affect the beamforming performance, so the corrected SV can be
obtained as

a=dad+e]. (14)

A uniform division is performed within a small range around the nominal SV to obtain
the SV neighborhood A

A = [a(6 — PAB),--- ,a(6),---a(6 + PAO)), (15)

where Af represents the interval of adjacent angles chosen and 2P + 1 represents the
number of selected SVs. Therefore, the dimension of the matrix A is M x (2P +1). To
ensure that the array manifold A is an underdetermined matrix, the size of P should satisfy
2P +1 < M.

Based on the properties of the matrix rank, it can be deduced that

r(AA") <r(B) <2P+1< M. (16)
Thus, an eigenvalue decomposition of AA" can be obtained as
AN =uzu” = Y ceueul!, (17)
e=1

By arranging the eigenvalues in descending order, since A is an underdetermined
matrix, the eigenvectors corresponding to eigenvalues from 2P + 2 to M are orthogonal

to A
M

u= Y u. (18)

e=2P+2

That is, u can be regarded as the vertical error vector e orthogonal to the nominal SV
a. In practical calculations, although this part is not strictly zero, it can still be treated as
zero. Therefore, the error neighborhood of the direction 6 can be expressed as follows

E = (a(6) — Quu,---,a(6), - ,a(6) + Qyul, 19)

where 77 is the adjustment variable. The smaller its value is, the higher is the estimation
accuracy. Q in Equation (19) is used to limit the search range.

Combine A with E to obtain the SV error neighborhood table [29]

[a-P=Q ) ... a®=Q) ... alP—Q (9]

T= ﬁ(*P:O)(Q) e a0y .. aPogy |. (20)

d(fP,'Q)(g) ,;(O,Q)(g) a(P,Q)(g)
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The (pth, gth) point in the SV error neighborhood can be expressed as:
alP) () = a(6 + pAd) + qyu. (1)

To ensure that the SV has the same norm as the actual SV [30], normalize each element
in T according to v/ M, that is

—(pa)

- _ ti(9+pA9) + qnu
2 O = VMG a0 anuly @)

Based on the initial directions of the OFDM signal 0y and DME signals 0y,0,,---,0;
obtained by the DOA estimation module in the system, the corresponding SV error table
can be constructed, respectively, and the (pth, gth) Capon power at angle 8, is

5(pa) _ 1
o = - (23)
LU

a  (6w) Roa  (6m)
=)
The closer the estimated SV @ (6),) is to the real SV a(6,,), the larger the value

of the Capon power spectrum. Therefore, the SVs for each signal can be estimated by
maximizing the corresponding Capon power, which is

ay = argmaxpc(f,;q). (24)
2
a  (6m)

4.2. INCM Reconstruction
The ICM can be reconstructed using the SVs of the DME signals obtained above

R - L . L ama
i — ZPC 2 . (25)
m=1 m=1 R

However, in the Capon power spectrum of the DME sector, the residual noise power
exists, and direct reconstruction will result in a larger error. According to Zhu's statement
that the power of the residual noise is ﬁ times the actual, the ICM can be corrected as [26]

- 1 ) H
=Y | e T | Amit, (26)
m=1 \ 4, R

where 72 represents the average power of the noise sector

5 1

5 _1¢
SREEIOTSO)

F represents the number of sampling points in the noise sector.
Define the estimated signal SV matrix A = [dg, &1, ..., ar]. According to x = As, the
signal vector §(k) is obtained using the least squares method

(27)

s(k) = (AHA) APk, (28)

Noise can be expressed as

A) 1AH} x(k). (29)
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Furthermore, the NCM can be reconstructed as
. 1 & H )
R, ==Y #.(k)%, (k) + 7L (30)
Kkzl
Therefore, the INCM obtained from the reconstruction is
RiJrn = Ri —+ Rn' (31)

4.3. Weight Vector Calculation

Using the SV of the OFDM and the reconstructed INCM deduced in the previous
section, the corrected weight vector is obtained by reapplying Equation (6)

71 N
Priﬂlao. (32)

ag R ,a0

w =

Om W)

Throughout the above analysis, the proposed algorithm can be summarized as below:

(1) Construct the M x M dimensional data matrix R} (7) using Equation (11) and the
pseudo data matrix R(«) using Equation (12);

(2) Perform singular value decomposition or eigenvalue decomposition on R(a)R(a)"
to obtain the signal and noise subspace. Then, use the MUSIC algorithm for DOA
estimation to determine the directions of signals;

(3) Based on the preliminary SVs obtained in step (2), construct the corresponding error
neighborhood (19), and perform the Capon spectral peak search within the neighbor-
hood to obtain the corrected SVs of each signal;

(4) Directly reconstruct the ICM using Equation (25), then use the least squares method
to obtain the signal and noise vectors, reconstruct the NCM, and combine ICM and
NCM to obtain the reconstructed INCM;

(5) Calculate the weight vector w using the OFDM signal SV obtained in step (3) and the
reconstructed INCM obtained in step (4).

4.4. Complexity Analysis of Beamforming

This beamforming method mainly includes SV estimation and INCM matrix re-
construction. The computational complexity of obtaining the SV by Equation (24) is
O(LPQM?). In the INCM reconstruction part, eigenvalue decomposition has a complexity
of O(M?), and matrix inversion has a complexity of O(L3). Consequently, the overall
complexity for reconstruction according to Equation (31) is O(LM? + ML? + L3 + M3).
Usually, L < M, so the complexity simplifies to O(M?3). Similarly, the complexity for
computing the weight vector is O (M?). To improve the performance of the algorithm, PQ
is usually greater than M, resulting in an overall algorithm complexity of O (LPQM?).

In our comparison, the proposed method is evaluated against several established algo-
rithms: INCM-subspace algorithm [31], INCM-linear algorithm [27], INCM-volume algo-
rithm [32], INCM-projection 1 algorithm, and INCM-projection 2 algorithm [26]. The com-
plexity comparison is summarized in Table 1. The main complexity of the INCM-volume
algorithm lies in INCM reconstruction problem and convex problem. Therefore, it has the
computation complexity of O (max(SM?, M3?)), where S is the sampling point of the annu-
lus surface. For the INCM-linear algorithm, the complexity is dominated by the solution of
the convex problem, which is O (M3?). Similarly, the INCM-subspace algorithm has a com-
plexity of O(LM?). Besides, INCM-projection 1 has a complexity of O (max(SM?, JM?))
and INCM-projection 2 has a complexity of O (max(TM?, LM3°, SM?, JM?)) in [26], where
S, ], T stand for the number of sampling points in the desired signal region, noise region,
and interference region, respectively. It can be observed that the proposed algorithm has a
lower complexity than INCM-volume, INCM-linear, and INCM-projection2. Despite hav-
ing a similar complexity to INCM-subspace and INCM-projectionl, the proposed method
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performs better performance. Therefore, compared to other algorithms, the algorithm
proposed in this paper has certain advantages.

Table 1. Comparison of algorithm complexity.

Algorithm Theoretical Complexity
Proposed O(LPQM?)
INCM-volume O(max (S M2, M3'5) )
INCM-linear O(M3?)
INCM-projectionl O (max (S M2, ] MZ) )

INCM-projection2
INCM-subspace

O (max(TM?, LM3%,SM?, JM?))

O(LM3)

5. Simulation and Analysis
5.1. LDACS System Parameters

The simulation platform is designed and built according to the LDACS technical
specifications, and Table 2 shows the specified simulation technical parameters.

Table 2. Simulation parameters.

Parameters Value
Transmission Bandwidth 498.05 kHz
FFT Length 64
Subcarrier Spacing 9.765625 kHz
Cyclic Prefix Time 17.6 ps
Effective Symbol Time 1024 us
OFDM Symbol Period 120 us
Number of Effective Subcarriers 50
Channel Coding RS + Convolutional Coding
Modulation Method QPSK
DME Carrier Offset 500 kHz
Array Type Uniform Linear Array
Number of Array Elements 10
Element Spacing Half-wavelength
Channel Type AWGN Channel

In all simulation experiments, the LDACS system OFDM signal incoming direction is
set to 10°. Two DME signals are considered, each with a signal-to-interference ratio (SIR) of
—5 dB, and their directions are set at —30° and 40°, respectively. The noise is modeled as
Gaussian white noise, and the simulation parameters used in the algorithm are # = 0.001,
P=4,Q=10.

In the beamforming experiments, this paper simulates five other INCM reconstruction-
based algorithms mentioned in Section 4.4 to validate the performance of the proposed
algorithm.

5.2. DOA Estimation Performance

Figure 2 illustrates the spatial spectrum generated by the Cyclic-MUSIC algorithm
at both zero cyclic frequency and base cyclic frequency, with an SNR of —5 dB. It can
be seen from the figure that, when a« = 0, the Cyclic-MUSIC algorithm estimates three
peaks, corresponding to the directions of one OFDM signal and two DME signals, while it
cannot distinguish the desired from the interfering signals. When a = 1/Tj, the algorithm
estimates the only peak, which is the DOA of the OFDM signal.
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Cyclic-MUSIC

Magnitude

-80  —60 —40  —20 0 20 10 60 80
Angle/(°)

Figure 2. Power spectrum of Cyclic-MUSIC algorithm at SNR = —5 dB.

Figure 3 presents the spatial spectrum produced by the Cyclic-MUSIC algorithm at
an SNR of 20 dB. By analyzing and comparing the simulation results in Figures 2 and 3, it
can be observed that the Cyclic-MUSIC algorithm can accurately estimate the direction of
OFDM signals at both high and low SNRs. Moreover, the DOA estimation performance is
better when SNR = 20 dB, with a more distinct normalized spectral peak.

Cyclic-MUSIC

T T T T T T
—&—a=1/Ts
09} o

Magnitude

0.1+ W

(

-80  —60 —40 —20 0 20 40 60 80
Angle/(°)

Figure 3. Power spectrum of Cyclic-MUSIC algorithm at SNR = 20 dB.

To further investigate the relationship between DOA estimation performance with
SNR, root mean square error (RMSE) is introduced with the equation

1 MC 2
RMSE = Wk;(e’”k — Ok (33)

where MC represents the number of Monte Carlo experiments, 6, represents the estimated
angle of the mth signal in the kth Monte Carlo simulation, and 6,,; represents the actual
angle of the mth signal.

Figure 4 depicts the simulation of the RMSE variation curve relative to the SNR for
OFDM signal estimation using the Cyclic-MUSIC algorithm. It can be clearly seen that the
RMSE of DOA estimation is small at both high and low SNRs, proving that the algorithm
can accurately estimate the direction of the OFDM signal in both scenarios. Additionally, the
RMSE decreases as the SNR increases, indicating that the performance of the Cyclic-MUSIC
algorithm improves with increasing SNR.
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RMSE versus SNR curve

T
—*— OFDM

SNR/dB

Figure 4. RMSE versus SNR curve.

5.3. INCM Beamforming Performance

The performance of a beamformer is typically assessed in terms of its beampattern
and output signal-to-interference-plus-noise ratio (SINR). The beampattern is a function
directly related to spatial information, giving a more intuitive understanding of how the
beamformer receives signals from different spatial directions. Ideally, the major lobe
of the array pattern should be aligned with the direction of the desired signal, with all
interference falling into nulls, and the deeper the nulls, the stronger the interference
suppression capability. The output SINR is the ratio of the desired signal power to the total
power of the interference plus noise in the beamformer’s output, which is a primary metric
for evaluating beamformer performance. Under the same conditions, a beamformer with a
higher output SINR has better capability to suppress interference and noise.

5.3.1. Beampattern

The following Figures 5 and 6 present the simulated beampattern of various algorithms
under an input SNR of 20 dB and an SIR of —3 dB, respectively. The black dotted lines in the
figures represent the actual DOA of the DME signals, and the pink dotted line represents
the actual DOA of the OFDM signal. The arrows in Figure 6 indicate magnified views
of specific areas. Figure 5 illustrates the beampattern of the proposed algorithm based
on 50 Monte Carlo trials, and Figure 6 contrasts the beampattern between the proposed
and other algorithms. These simulations demonstrate that the proposed algorithm can
accurately align its main lobe with the OFDM signal. In contrast, the main lobes of the
INCM-subspace and INCM-volume algorithms do not precisely align with the direction of
the OFDM signal. Furthermore, the proposed algorithm forms deeper nulls in the directions
of the two DME signals compared to the other two algorithms.

_—

I L L I i
—20 0 20 40 60 80
Angle/(°)

L L L
—80  —60  —40

Figure 5. Beampattern diagram.
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Figure 6. Gain comparison of different algorithm beamformers.

5.3.2. Relationship between Output SINR and Input SNR

In order to further compare and study the performance of the beamformer proposed
in this paper, the output SINR under a different OFDM signal input SNR is simulated,
and 100 Monte Carlo experiments are conducted independently for each SNR, and the
simulation results are shown in Figure 7. To more intuitively analyze the performance
gap of each algorithm compared to the optimal beamformer, Figure 8 makes the deviation
graph of the output SINR of each beamformer from that of the optimal beamformer.

Optimal
—#— Proposed
—6— INCM-subspace
—4A— INCM-volume

25 | —@— INCM-linear
—— INCM-projection1
20 INCM-projection2

Output SINR/dB

-5 0 5 10 15 20 25 30
Input SNR/dB

Figure 7. Output SINR versus SNR.

—#— Proposed
—4A— INCM-volume
351 —&— INCM-linear
—p— INCM-projection1
3l INCM-projection2
—6— INCM-subspace

[ o——bo——o5 —

Deviation from optimal output SINR/dB

-5 0 5 10 15 20 25 30
Input SNR/dB

Figure 8. Deviation of different algorithms from the optimal output SINR.

As can be seen from Figures 7 and 8, the algorithm proposed in this paper is the closest
to the optimal algorithm under both high and low SNR conditions. In addition to this, the
INCM-subspace algorithm also has a better performance, but at higher SNRs, it starts to
suppress the desired signal, leading to a performance decline. The INCM-volume algorithm
and the INCM-linear algorithm are more stable but with relatively poor performance, and
the INCM-projection]l and INCM-projection2 algorithms have a sharp drop in performance
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at SNRs greater than 0 due to the incomplete removal of OFDM signal components. Thus,
it can be seen that the algorithm in this paper not only has a better performance but also
has stronger robustness.

5.3.3. Relationship between Output SINR and DOA Estimation Error

To verify the impact of DOA estimation accuracy on each beamforming algorithm,
simulations are conducted to compare the output SINR under different error conditions.
Figure 9 below compares the performance of various algorithms with the OFDM signal
DOA estimation errors within [—4°, 4°] conditions, where the SNR is set to 20 dB and
each group undergoes 100 Monte Carlo experiments. The figure shows that algorithms
like INCM-subspace, INCM-volume, INCM-linear, INCM-projection2, and the algorithm
proposed in this paper maintain a linear relationship between SINR and DOA error, which
indicates that these algorithms can effectively resist the DOA estimation error in a certain
range. In contrast, the INCM-projectionl algorithm has a sharp decrease in performance
after the DOA estimation error, in the absolute value, exceeds 2°.

Output SINR/dB

7L Optimal
—#— Proposed
—A— INCM-volume
—&— INCM-linear

INCM-projection1

INCM-projection2
| ) | | —©— INCM-subspace
—4 -3 —2 -1 0 1 2 3 1
DOA error/®

Figure 9. Output SINR versus DOA error angles.

5.3.4. Relationship between Output SINR and Number of Snapshots

Figure 10 shows the output SINR of each algorithm with the number of snapshots
at an input SNR of 20 dB, with 100 Monte Carlo experiments for each group, and it can
be seen that most of the algorithms have a stable performance with varying numbers of
snapshots. Although the proposed algorithm'’s performance at fewer snapshots is slightly
lower than the INCM-subspace algorithm, it approaches the optimal algorithm most closely
when the number of snapshots reaches 170 and above.

24.5 T T T T T T T T T 24.5

24 4 24 <
—- —— - [ o
A ——a— ey & ]
2351 } 23.5T 3
g 23 -+ g 23
o4 4
Zoh—t—a A A A, o, oA A 2o A .
w 225 q 0 225 A A A A
5 5
= Optimal =3 Optimal
3 22t —#— Proposed S 22t —#— Proposed
—A— INCM-volume —A— INCM-volume
sk —— INCM-linear a5l —&— INCM-linear
- —6— INCM-subspace o —6— INCM-subspace
. T’H—"-*’M—Mﬁ " W_Q_Q_H—H
205 . . . . . . . . . 205 . . . . . . . .
100 110 120 130 140 150 160 170 180 190 200 100 200 300 400 500 600 700 800 900 1000
Number of snapshots Number of snapshots
(a) (b)

Figure 10. Output SINR of the adaptive beamformer for (a) 100~200 snapshots and (b) 100~1000 snapshots.

5.4. BER Performance

To thoroughly evaluate the effectiveness of the proposed method for LDACS, we
conducted BER simulations and contrasted its performance with that of other algorithms.
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BER quantifies the ratio of error bits to total transmitted bits, serving as a direct indicator of a
system’s reliability and communication quality, making it a vital metric for a comprehensive
evaluation of communication systems.

Figure 11 simulates the BER variation with SNR for various algorithms. Using the
curve, which lacks interference suppression, as a baseline, it is clear that all simulated algo-
rithms demonstrate improvements in BER to varying extents across different SNR levels.
Notably, as shown in Figure 11, the proposed method consistently outperforms the other
methods across a broad range of SNR values. Furthermore, the figure reveals a significant
improvement in BER performance at lower SNRs, highlighting the proposed method’s
enhanced capability to maintain signal integrity in challenging noise environments. These
results demonstrate that the proposed method not only improves signal detection and
suppression but also significantly improves the overall reliability and quality of LDACS
communications.

i p—— ‘Without suppression
—#— Proposed

—&— INCM-linear
—6— INCM-subspace
—A— INCM-volume

SNR(dB)

Figure 11. BER versus SNR curve.

5.5. Comparison of Running Time of Each Algorithm

Table 3 summarizes the average runtime of a single Monte Carlo simulation for the
six INCM reconstruction-based beamforming algorithms mentioned above. All simulations
are conducted under the same conditions. Combining Tables 1 and 3, it is evident that,
among these similarly performant beamforming algorithms, such as INCM-projection2
and INCM-volume, the algorithm proposed in this paper has lower complexity. Although
the complexity of INCM-subspace and INCM-projection1 is lower, the proposed algorithm
is easier to implement and has a better performance.

Table 3. Average running time for a single Monte Carlo simulation.

Algorithm Running Time/Second
Proposed 0.063519
INCM-volume 0.690478
INCM-linear 0.263194
INCM-projectionl 0.022785
INCM-projection2 0.528757
INCM-subspace 0.018252

6. Conclusions

In this paper, the proposed method significantly mitigates the DME interference
in LDACS signal reception, as verified by comprehensive simulation experiments. By
employing the Cyclic-MUSIC algorithm for precise DOA estimation and using the INCM
reconstruction method for beamforming, our approach effectively suppresses the impact
of DME signals on OFDM receiver. Quantitative analysis reveals the algorithm’s superior
performance in forming a high-gain main lobe towards the OFDM signal and deep nulls at
interference points, which is evident in the improved output SINR across various scenarios.
Compared to existing algorithms based on INCM reconstruction, the proposed method not
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only demonstrates lower computational complexity and higher beamforming robustness
but also achieves a lower BER, making it a promising solution for advanced interference
mitigation in aeronautical communications.
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