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Abstract: In the context of increasing reliance on mobile devices, robust personal security solutions are
critical. This paper presents Zero-FVeinNet, an innovative, lightweight convolutional neural network
(CNN) tailored for finger vein recognition on mobile and embedded devices, which are typically
resource-constrained. The model integrates cutting-edge features such as Zero-Shuffle Coordinate
Attention and a blur pool layer, enhancing architectural efficiency and recognition accuracy under
various imaging conditions. A notable reduction in computational demands is achieved through an
optimized design involving only 0.3 M parameters, thereby enabling faster processing and reduced
energy consumption, which is essential for mobile applications. An empirical evaluation on several
leading public finger vein datasets demonstrates that Zero-FVeinNet not only outperforms traditional
biometric systems in speed and efficiency but also establishes new standards in biometric identity
verification. The Zero-FVeinNet achieves a Correct Identification Rate (CIR) of 99.9% on the FV-USM
dataset, with a similarly high accuracy on other datasets. This paper underscores the potential of
Zero-FVeinNet to significantly enhance security features on mobile devices by merging high accuracy
with operational efficiency, paving the way for advanced biometric verification technologies.

Keywords: finger vein; convolution neural network; attention; biometrical verification; lightweight
model

1. Introduction

In recent years, deep learning has experienced tremendous growth and has been
proven to be effective across various domains including image classification [1,2], speech
recognition [3], object detection [4], semantic segmentation [5], and natural language pro-
cessing (NLP) [6]. This rapid advancement coincides with the increased adoption of mobile
and embedded devices such as smartphones, smart glasses, and smartwatches. These
devices, however, face significant limitations due to their restricted computational power,
memory capacity, bandwidth, and battery life, which are often inadequate for supporting
the complex requirements of modern deep learning models. As the reliance on mobile
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technology grows and the importance of personal data security becomes increasingly
paramount, the need for robust protection methods has intensified. Biometric recognition
technologies, which utilize unique physiological or behavioral characteristics for identity
verification, are becoming integral to enhancing security on mobile devices. This approach
not only offers a more reliable means of identification compared to traditional passwords
but also integrates seamlessly with the capabilities of current mobile devices. Chen et al. [7]
categorized biometric traits into two distinct groups: (1) external biological characteristics,
encompassing fingerprints, irises, and facial features, and (2) internal biological charac-
teristics, including finger and palm veins. Developments in the use of external biological
characteristics have recently made substantial advancements, leading to their application
in mobile payments, smartphones, and access control systems [8]. However, external
characteristics are generally more vulnerable to environmental influences. For instance, the
presence of wounds, oil, or stains on fingers can impede the accurate capture of biometric
data by sensors, thus diminishing the reliability of biometric recognition models.

Amidst these challenges, the development of finger vein recognition technology
represents a significant leap in biometric identification, offering a promising solution
particularly suited for mobile and embedded devices. Finger vein recognition leverages
the unique patterns of blood vessels inside the finger, which are nearly impossible to
replicate or forge [9], thereby providing a secure method of identification compared to more
surface-level traits such as fingerprints or facial features. The appeal of this technology lies
in its use of near-infrared light to distinctly capture vein patterns, which are not affected by
external skin conditions and thus remain stable over time.

The integration of finger vein recognition with deep learning technologies has opened
new avenues for enhancing the security features on mobile devices. By utilizing lightweight
deep learning models specifically adapted for mobile use, it is possible to deploy advanced
biometric systems that operate effectively even on devices with stringent power and
memory constraints. These models streamline the computational process, reducing the
number of necessary operations and the overall size of the model without compromising
the accuracy of vein pattern recognition. This is particularly advantageous in mobile and
embedded applications where efficiency and quick processing are priorities.

Despite the advantages, vein-based recognition systems are not without issues. The
quality of vein images can be compromised by poor NIR camera performance or improper
finger positioning during scanning, which might alter the infrared illumination on the skin
and thus the appearance of the vein patterns. These factors can introduce errors into identity
verification processes, underscoring the need for robust image acquisition techniques.

Addressing these limitations, this paper introduces a novel, lightweight Convolu-
tional Neural Network (CNN) model, named Zero-FVeinNet. This model integrates only
0.3 million parameters, which is significantly fewer than those found in typical deep learn-
ing models, thereby reducing computational demands and enhancing processing speed
without sacrificing accuracy. Key innovations of this model include the following:

• Shallow CNN network combined with a re-parameterization mechanism: by adjusting
the number of layers to a minimal yet sufficient level and re-parameterizing the system,
this approach not only reduces the amount of redundancy in parameter usage but also
retains the model’s learning capability, which is crucial for achieving a high accuracy.

• Integrating a blur pool layer into a lightweight model: this modification maintains
feature extraction consistency across translated images, thereby stabilizing recogni-
tion accuracy.

• Zero parameter channel shuffle coordinate attention block (ZSCA): this attention mech-
anism helps to reduce the computational costs associated with traditional attention
models and maintains the ability to learn important features. It is particularly effective
in extracting subtle vein characteristics.

The efficacy and versatility of Zero-FVeinNet have been rigorously tested across mul-
tiple prominent public finger vein datasets, including SDUMLA-FV [10], FV-USM [11]
from the University Sains Malaysia, SCUT-FVD [12], and THU-FVFDT [13]. The findings
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confirm that Zero-FVeinNet not only surpasses conventional methods in speed and effi-
ciency but also sets new benchmarks in biometric identity recognition, promising a new
direction for the use of biometric security technology in mobile and embedded systems.
This study’s contributions offer substantial improvements to the operational performance
of deep learning models for mobile devices, particularly in the context of personal security
and identity verification.

2. Literature Review

Significant advancements have been made in the field of finger vein recognition in
recent years, categorized primarily into conventional and deep learning approaches.

Conventional finger vein recognition involves two primary stages: pattern extraction
and identification. Initially, the pattern is extracted from an input image, followed by
identification of the vein’s identity. Miura introduced algorithms for pattern detection
such as Repeated Line Tracking and Maximum Curvature [14,15]. Later, Huang developed
the Wide Line Detector for enhanced pattern extraction [16]. These algorithms utilize
the cross-sectional profiles of finger veins, in which the veins are visibly darker than the
surrounding tissues. The Repeated Line Tracking algorithm randomly initializes positions
and iteratively tracks vein lines, whereas the Maximum Curvature algorithm identifies
vein patterns by detecting peaks in curvature across these profiles. Unlike these, the Wide
Line Detector focuses on the width of vein lines. Subsequently, Ma et al. combined oriented
gradient and local phase quantization techniques with pyramid histograms to refine the
texture features of veins for better identification [17]. Identification is then performed
by matching these extracted patterns against a database using Structural Matching or
Template Matching [18,19]. Meng et al. introduced a zone-based method that segments
the matching process into smaller areas, which speeds up the process while increasing the
accuracy of pinpointing authentic matches [20]. These traditional methods often require
manual calibration and can yield inconsistent results. They are also difficult to develop
into end-to-end systems and are highly susceptible to variations in image quality such as
contrast, scale, and orientation.

Conversely, deep learning techniques, which utilize extensive training datasets, are
adept at capturing high-dimensional features and global contextual information from
images. This approach is generally more resilient to quality variations in input images.
Remarkable successes have been noted in biometric recognition using deep learning, partic-
ularly in finger vein recognition [21]. For example, the adoption of the VGG-16 architecture,
which has outperformed traditional algorithms [22]. Zeng et al. proposed a fully convo-
lutional neural network that extends U-Net with an embedded conditional random field,
creating an efficient end-to-end system for accurate vein pattern segmentation [23]. R.S.
Kuzu enhanced the DenseNet-161 architecture with a custom embedder module, leading
to promising outcomes on standard finger vein datasets [24]. Furthermore, Generative
Adversarial Networks (GANs) have been effectively used to address issues of low image
quality and limited data availability. These networks employ convolutional layers over
fully connected layers, reducing computational demands and optimizing feature extrac-
tion [25]. Hou and Yan implemented a triplet-classifier GAN that generates synthetic
data to bolster the training process of triplet loss-based CNN classifiers, thus mitigating
overfitting and improving recognition accuracy [26]. Departing from traditional single
biometric identification methods, reference [27] presents an innovative biometric approach
combining finger vein and facial features using a CNN enhanced by a self-attention mech-
anism and a ResNet structure. Extensive tests with AlexNet and VGG-19 show that this
multimodal method significantly improves identification accuracy, which has exceeded
98.4% in complex scenarios.

Recently, with advancements in embedded AI devices [28], research has pivoted
towards AI models optimized for mobile and embedded applications. Zhao introduced a
lightweight CNN that incorporates a center loss function and dynamic regularization to
tackle image quality issues and expedite convergence, demonstrating decreased error rates
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and enhanced computational efficiency [29]. Furthermore, Hsia’s [30] improved lightweight
CNN (ILCNN) addresses translation-induced accuracy problems and enhances parameter
efficiency using diverse branch blocks (DBB) [31], adaptive polyphase sampling (APS) [32],
and a coordinate attention mechanism (CoAM) [33]. This model not only achieves high
accuracy but does so with a minimal parameter count of just 1.23 million.

3. Methodology

Enhancing a model’s capabilities to encapsulate complex features and intricate re-
lationships within datasets constitutes a fundamental strategy to augment performance
metrics in deep learning. Specifically, in the domain of finger vein recognition, research
delineated in reference [22] employs the VGG16 architecture, which encompasses approx-
imately 138 million parameters, to achieve elevated performance levels. Concurrently,
another study cited in references [24,34] implements the DenseNet-161 architecture as a
feature extraction model, boasting nearly 20 million parameters. Despite the promising
outcomes demonstrated by these models in finger vein recognition tasks, their substantial
size poses significant challenges for their deployment on mobile or embedded devices.

The objective of our research is to develop a lightweight convolutional neural network
(CNN) for a finger vein recognition system. Recent advancements in the design and
deployment of efficient deep learning architectures for mobile platforms [35–38] have
consistently reduced both computational costs and parameter sizes, thereby enhancing
model efficiency. Nonetheless, a minimal parameter count does not solely define a model’s
lightweight nature; for instance, parameter sharing can reduce model size but increase
computational load. Additionally, operations that do not involve parameters, such as
skip connections [39] and branching [40], may lead to significant costs that are associated
with memory access. These challenges are further complicated by the presence of custom
accelerators in efficient architectures.

To address these challenges, we propose Zero-FVeinNet, a novel architecture incorpo-
rating a shallow CNN equipped with a re-parameterization mechanism to minimize model
size. Moreover, the proposed the ZeroBlur-DBB, a modified version of DBB [31] with an
integrated blur pool layer and ZSCA mechanism.

The proposed finger vein recognition system illustrated in Figure 1 includes two pri-
mary phases: training and inference. In the training phase, a lightweight model architec-
ture is employed. The optimal weight parameters are iteratively refined to enhance the
model’s performance. The culmination of this phase is the selection and storage of the best-
performing weight parameters, which represent the trained model. In the inference phase,
the pretrained model from the training phase applies a re-parameterization mechanism to
generate a lightweight model, facilitating its deployment in finger vein recognition tasks.
The model processes an input finger vein image by comparing it with pre-registered finger
vein features stored in a database. A match is determined based on the highest similarity
score. If this score surpasses a predefined threshold, the model confirms the identity as
correct. Conversely, scores below this threshold are deemed misclassifications.
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Figure 1. The finger vein recognition system proposed in this research.

3.1. Shallow CNN Network with a Re-Parameterization Mechanism

Convolutional neural networks (CNNs) are highly effective for image classification
tasks due to their ability to extract features hierarchically, mimicking human perceptual
processes. These networks start by identifying simple, low-level features such as edges
and textures and progressively learn to recognize complex, high-level representations. This
capability makes them particularly adept in applications ranging from medical imaging to
autonomous driving. In finger vein recognition, the structure comprises the blood vessels
in a finger, which form vascular patterns visible on the skin’s surface. These patterns
appear as lines and points against a black and white background in images, presenting a
simpler structure compared to more complex objects like human faces or vehicles, which
include intricate features such as ears, eyes, noses, mouths, lights, doors, windows, and
tires. Consequently, vein detection does not require the high-level processing necessary for
recognizing faces or vehicles.

Figure 2 illustrates the varying layer depths required for different objects within CNNs.
It shows that, while complex structures like human faces and vehicles necessitate deeper
layers for effective feature extraction and classification, simpler structures such as finger
veins can be effectively recognized with shallower layers.
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To further contribute to the model’s efficiency, we integrated a re-parameterization
mechanism. Reparameterization, a technique outlined in the research in [31], utilizes the
DBB to perform structural reparameterization, which effectively reduces the network’s pa-
rameters while maintaining the model’s expressive power. Re-parameterization recalibrates
the parameter space to optimize the network’s representational capacity, thereby enabling a
more compact model with reduced computational demands. Consequently, the integration
of a shallow CNN architecture with re-parameterization promotes a lightweight yet potent
model for finger-vein recognition, achieving the dual goals of minimizing parameter count
and computational expense.

This paper proposes adopting a shallow CNN architecture combined with a re-
parameterization mechanism for finger vein recognition tasks. Characterized by fewer
convolutional layers, this architecture is designed to maintain high accuracy while ensur-
ing computational efficiency. By reducing the network’s depth, this approach not only
conserves computational resources but also optimizes parameter usage, meeting the de-
mands of real-world applications in which efficiency is crucial. Figure 3 displays the initial
model structure of the shallow CNN integrated with DBB for reparameterization. In the
subsequent section, we will explore a modified version of DBB, termed ZeroBlur-DBB,
which is intended to enhance model performance without increasing the number of model
parameters.
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Figure 3. The Shallow CNN network with diverse branch block (DBB).

3.2. ZeroBlur-DBB Module: Diverse Branch Block with Blur Pool and Zero Shuffle
Coordinate Attention

To further enhance model performance, we have integrated the DBB with a blur pool
and zero parameter channel shuffle coordinate attention, creating the ZeroBlur-DBB. The
detailed structure of the ZeroBlur-DBB is depicted in Figure 4.
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Figure 4a illustrates the detailed structure of ZeroBlur-DBB itself, highlighting the
additions of the blur pool and ZSCA, whereas Figure 4b presents the ZeroBlur-ConvBlock,
which executes the re-parameterization by replacing the multi-branch convolutional layer
in the DBB block with a single-layer convolutional layer. This adjustment reduces the
number of parameters while maintaining performance.

To elucidate how ZeroBlur-DBB contributes to improved performance, we will further
explore the functionalities of the blur pool layer and ZSCA.

3.2.1. Blur Pool Layer

The blur pool, as proposed in [41], enhances the shift-equivariance—or alternatively,
promotes shift-invariance—of convolutional neural networks (CNNs). In CNNs, a slight
positional shift of features within input images can variably alter the resulting output
feature maps. These feature maps are crucial for classification tasks, as CNNs extract these
maps from input images to identify and classify objects.

Traditional pooling layers aim to downsample these feature maps to diminish their
sensitivity to positional changes in features. However, the variance issue persists due to the
downsampling process itself. For example, a pooling layer with a stride of 2 handles even-
pixel shifts effectively, yet it inaccurately processes odd-pixel shifts. This condition implies
that, if an input shift impacts the output feature map, the CNN exhibits shift variance;
conversely, if there is no effect, it demonstrates shift invariance. Equations (1) and (2) [41]
illustrate these cases of shift variance and shift invariance, respectively.

Shi f t∆x, ∆y

(∼
G(I)

)
=

∼
G
(

Shi f t∆x, ∆y(I)
)
∀(∆x, ∆y) (1)

∼
G(I) =

∼
G
(

Shi f t∆x, ∆y(I)
)
∀(∆x, ∆y) (2)

In this representation, I ∈ RH×W×3 denotes the input image. The feature map pro-
duced by the CNN model, denoted as G(I) ∈ RHi+Wi+Ci , has a spatial resolution of

Hi × Wi and contains Ci channels. The original resolution
∼
G(I) ∈ RH×W×Ci is obtained by

upsampling this feature map. The terms ∆x and ∆y represent the horizontal and vertical
shift distances, respectively.

In our proposed model, blur pool layers are utilized to replace the traditional pooling
layers. These layers blur the input features before the downsampling step, significantly
reducing the impact of positional shifts on the input features. This blurring technique
smooths out the details in the feature map, thereby improving shift-equivariance and
enhancing the model’s overall robustness against positional variations in the input data.

This strategic integration of blur pool layers into our model ensures greater consis-
tency in feature map extraction, which is essential for maintaining high accuracy in object
classification regardless of minor shifts in input image positioning.

3.2.2. Zero Parameter Channel Shuffle Coordinate Attention (ZSCA)

To enhance the model’s ability to extract effective features for finger vein recognition,
we incorporated an attention mechanism into our lightweight model architecture. How-
ever, conventional attention mechanisms like SENet [42] and CBAM [43] are unsuitable
for mobile networks due to their substantial computational demands and large model
sizes. Instead, Hou et al. [33] developed the Coordinate Attention Mechanism (CoAM),
which embeds positional information into channel attention to cover larger regions effi-
ciently. This mechanism compresses spatial information using two directionally oriented
average pooling layers, and the resulting vectors are concatenated and processed through a
convolutional layer to capture channel-specific information. The process ensures shared
convolutional weights between the two vectors, facilitating feature encoding. The vectors
are then independently transformed through additional convolutional layers, while a Sig-
moid function normalizes these features, which are multiplied back with the original input
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to apply the attention mechanism effectively. This structure allows CoAM to detect the
precise location of relevant features within the map, enhancing the model’s finger vein
recognition capabilities over SENet and CBAM.

Inspired by the creation of lightweight CNNs that employ an attention module without
extra parameters, we have innovated the Coordinate Attention block into a zero-parameter
version by removing the convolutional layers and retaining the activation function. This
adjustment ensures the attention mechanism still learns significant features. Additionally,
we introduced a channel shuffle [44] at the block’s end to improve information flow across
feature channels, reducing computational costs while preserving model accuracy. The
architectural differences between the traditional Coordinate Attention and our ZSCA are
depicted in Figure 5.
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3.3. Evaluation Metrics and Loss Function
3.3.1. Evaluation Metrics

To thoroughly evaluate the lightweight model, we assess not only its performance in
terms of accuracy but also its complexity, which includes model size, speed, and computa-
tional cost.

• Model Complexity: We calculate the model size by counting the number of parameters.
We measure the model’s speed in terms of inference time (millisecond), and we assess
computational costs (FLOPs) associated with the model’s multiply operations.

• Model Performance: We utilize the Correct Identity Rate (CIR) as the evaluation
metric. The CIR measures the model’s security efficacy; a higher CIR value signifies
greater security and improved recognition performance, making it ideal for one-to-
many finger vein recognition tasks. The method for calculating the CIR is detailed in
Equation (3).

CIR =
Correct identity prediction
Total number o f identity

(3)



Electronics 2024, 13, 1751 9 of 14

3.3.2. Loss Function

In our system, a CNN model is employed to derive embedding vectors from input
images for classification purposes. This model is designed to reduce intra-class distances
and increase inter-class distances. To boost the accuracy of identity recognition, we im-
plemented Elastic Margin Loss (EML) [45]. EML enhances class separability by using
margin values randomly selected from a normal distribution in each training cycle. This
dynamic adjustment of the decision boundaries allows for more adaptable learning of
class distinctions. Demonstrably, EML outperforms other margin losses like ArcFace and
CosFace [45]. The computational formula used for EML is detailed in Equation (4).

L = − 1
N ∑i∈N log

es(cos (θyi+E(m, σ)))

es(cos (θyi+E(m, σ))) + ∑n
j=1, j ̸=yi

escos(θyi )
(4)

where E(m, σ) is a normal function that returns a random value from a Gaussian distribution
with the mean m and the standard deviation σ.

4. Experiments
4.1. Finger-Vein Public Datasets

To assess our methodology, we utilized four publicly available datasets specifically
focused on finger veins: SDUMLA-FV [10], FV-USM [11], SCUT-FVD [12], and THU-
FVFDT [13]. The detailed properties of these datasets are discussed in the subsequent section.

• The SDUMLA-FV dataset [10]: This dataset has been compiled by Shandong University
and includes data from 106 participants. Each participant provided images of their
index, middle, and ring fingers from both hands, constituting 636 unique finger classes
in total. In a single collection session, each finger was imaged six times, summing up
to 3816 images. The original images have a resolution of 320 × 240 pixels. For our
study, we implemented basic image processing techniques, including edge detection
combined with image contrast enhancement, to extract Regions of Interest (ROI) from
finger vein images with dimensions of 300 × 150 pixels, as the dataset does not
originally include ROI images.

• The FV-USM dataset [11]: Developed by the University Sains Malaysia, this dataset
involves images from 123 individuals, capturing the index and middle fingers of both
left and right hands. The cohort includes 83 males and 40 females, aged 20 to 52 years.
Each finger was photographed six times across two sessions, and the dataset provides
pre-extracted ROI images with a resolution of 100 × 300 pixels that are suitable for
finger vein recognition.

• The SCUT-FVD dataset [12]: Introduced by the South China University of Technology
(SCUT), this dataset is designed for both finger vein recognition and spoof detection
tasks. It comprises over 7000 images, evenly split between genuine and spoof images.
For the purposes of this research, only the genuine images were utilized, involving
101 subjects each with six distinct finger vein identities. Each identity was documented
in six separate data samples, resulting in a total of 3636 genuine samples.

• The THU-FVFDT dataset [13]: The THUFV2 dataset, released by Tsinghua University
in 2014, includes ROIs of finger veins and dorsal textures. It features 610 subjects, with
each providing one image of each type, captured in two sessions. The ROIs have been
standardized to a resolution of 200 × 100 pixels. The participants were predominantly
students and staff from the Tsinghua University’s Graduate School at Shenzhen.

Table 1 shows a summary of the four different finger vein datasets.
All of the finger vein images employed in our experiments utilize Regions of Interest

(ROIs) either extracted directly from the dataset or identified using basic image processing
techniques as specified in the SDUMLA-FV dataset. The ROI extraction stage is crucial in
practical applications. The finger vein ROI extraction methodology can adopt the technique
detailed in reference [46], which proposes a novel method for finger vein images. This
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method includes a weighted horizontal Sobel operator, a contour-based edge detection
method, and a gradient detection operator with a large receptive field. Evaluated against
public finger vein datasets, this method has shown a substantial reduction in processing
time and enhancements in robustness and accuracy.

Table 1. Summary of finger vein datasets.

Database # of Classes # of Samples per Class Total Samples

SDUMLA-FV 636 6 3816
FV-USM 492 12 5904

SCUT-FVD 606 6 3636
THU-FVFDT 610 2 1220

4.2. Experimental Configuration

This study utilized the Zero-FVeinNet architectural framework for the recognition of
finger veins. The preprocessing involved zero-padding the finger vein images’ ROIs to
convert them into square formats that were then resized to align with the prescribed input
dimensions of the model. The training phase of the model incorporated EML as the loss
function and employed AdamW for optimization purposes. The set hyperparameters were
as follows: an image size of 112 pixels, a batch size of 64, a training duration of 300 epochs,
and an initial learning rate set at 0.0001. The training operations were executed within the
PyTorch deep learning environment. Computational support was provided by an Intel
Core™ i7-9800X CPU and an Nvidia RTX 3060 GPU.

4.3. Experimental Results

In our system, the model processes an input finger vein image by comparing it
with pre-registered finger vein features in a database, using a similarity score relative
to a set threshold of 0.5. This threshold is critical for validating the authenticity of the
finger vein data, where a score exceeding 0.5 confirms the identity as correct, and scores
below this mark indicate misclassification. This recognition threshold was established
empirically through a detailed analysis of similarity scores for both genuine and impostor
matches. During the testing of vein identities not recorded in the database, it was observed
that the similarity scores for these unidentified entries fell below 0.5, whereas scores for
accurately identified veins were above this threshold, thereby justifying the employment of
a 0.5 threshold for robust identity verification.

To evaluate the effectiveness of our proposed model, its performance was com-
pared with other lightweight models focusing on the Correct Identity Rate (CIR) and
model parameters. The comparative analysis included the following baseline models:
ResNet-50 [47], which represents a deep model architecture; Inception V3 [2], exempli-
fying a wider model architecture; and other state-of-the-art mobile networks such as
MobileNet [36,37], MobileViT [38], EfficientNet [48], and ILCNN [30]. All of the models
underwent evaluation under uniform conditions to ensure a fair comparison. The evalua-
tion criteria were designed to assess not only the accuracy (CIR) of each model but also
their operational efficiency, encompassing model size (parameters), inference time, and
computational cost (FLOPs). These experimental findings are detailed in Table 2.

Table 2 shows that our proposed method achieves the best Correct Identification Rate
(CIR) on three different datasets (FV-USM, SCUT-FVD, and SDUMLA-FV), despite having
only 0.3 million parameters. This is significantly fewer parameters: up to 82 times less
compared to the largest model size in the table (ResNet50), and three times smaller than
the smallest model size listed (MobileNetV3_small_050). Additionally, it also records the
shortest inference time at 0.49 ms, compared to the other models which ranged from 0.7 to
1.13 ms on our testing hardware.
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Table 2. The experimental comparison of the proposed model with others on finger vein datasets.

Model
CIR (%) Params

(M)
Inference
Time (ms)

FLOPs
(G)FV-USM SCUT-FVD SDUMLA-FV THU-FVFDT

resnet50 [47] 99.70 97.17 95.44 70.10 24.81 1.13 2.18
inception_v3 [2] 99.59 96.67 95.75 60.33 22.8 1.03 1.082

mobilenetv2_035 [36] 99.09 82.17 84.28 31.80 1.21 0.77 0.035
mobilenetv3_small_050 [37] 99.19 90.17 84.91 60.57 1.07 0.69 0.024

mobilevit_xxs [38] 99.29 89.33 84.28 50.98 1.16 0.92 0.115
mobilevitv2_050 [38] 99.39 83.17 82.08 28.20 1.24 0.83 0.196
efficientnet_b0 [48] 99.24 93.83 88.52 46.56 4.64 0.82 0.218

ILCNN [30] 99.80 95.50 97.48 51.31 1.23 0.88 0.198
Proposed 99.90 97.83 97.80 68.69 0.365 0.49 0.149

The bold numbers represent the best results from the experiment.

Regarding computation cost (FLOPs), MobileNetV3_small_050 has the lowest, at
0.024 GFLOPs, whereas the proposed method has a cost of 0.149 GFLOPs. Most mobile-
oriented models have GFLOPs ranging from 0.024 to 0.218, in contrast to the more ba-
sic models like Inception_v3 and ResNet50, which have costs of 1.082 GFLOPs and
2.18 GFLOPs, respectively.

In the THU-FVFDT dataset, the best CIR is 70.1%, compared to 68.69% achieved by
our proposed method. This indicates that larger models still perform better in extracting
higher levels of features. Moreover, the THU-FVFDT is an insufficient dataset with only
two samples per class, which restricts us to using just one sample per class for training
and evaluation. This limitation is why the performance of the model on this dataset is
relatively lower compared to its performance on the other finger vein datasets. To enhance
its performance on this dataset, one could apply augmentation techniques; however, in
our experiments, we wanted to evaluate the performance of the model even on datasets
without any data enhancement techniques.

Since our objective is to design a lightweight finger vein recognition model suitable
for mobile embedded devices, our system can be converted into ONNX format, enabling
full deployment on devices such as Arduino and other mobile platforms. Additionally,
our approach allows for the direct extraction of image regions on the embedded device
during the collection of finger vein images. Importantly, our system does not require any
preprocessing steps, such as image enhancement, thus facilitating the complete deployment
of the model directly on the device.

4.4. Ablation Study

To explore the effects of various techniques within the proposed Zero-FVeinNet model
on finger vein recognition, an ablation study was carried out to evaluate their efficacy.
The integration of the Zero Shot Channel Attention (ZSCA) mechanism and the blur pool
layer in the model facilitates the preservation of original characteristics while concurrently
extracting features across multiple scales and translations. This approach enhances the
diversity of the features learned. The empirical findings indicate that incorporating the
ZSCA into the model significantly improves its ability to capture the textural features of
finger vein images.

Table 3 indicates that the proposed model in (2), without blur pool layers, will ex-
perience decreased performance across all four finger vein datasets. However, it will
maintain the same model parameters, inference time, and computational cost (FLOPs).
Conversely, removing the ZSCA from proposed model (3) leads to a significant decrease in
its performance on the THU-FVFDT dataset. This change also results in increased model
parameters, inference time, and computational cost (FLOPs). These findings demonstrate
that the ZSCA module significantly enhances the model’s performance, particularly on
datasets with insufficient data such as THU-FVFDT, achieving a Correct Identification Rate
(CIR) of 60.33%, compared to 57.05% with the blur pool layer. The proposed model with
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both ZSCA and blur pool layers (1) achieves the best results in terms of model performance
and complexity.

Table 3. The ablation study on the proposed model.

Model
CIR (%) Params

(M)
Inference
Time (ms)

FLOPs
(G)FV-USM SCUT-FVD SDUMLA-FV THU-FVFDT

(1) Proposed (ZSCA + Blur) 99.9 97.83 97.8 68.69 0.365 0.498 74.58
(2) Proposed (ZSCA) 99.8 96.67 97.43 60.33 0.365 0.498 74.58
(3) Proposed (Blur) 99.9 97.17 97.64 57.05 0.371 0.512 74.73

The bold numbers represent the best results from the experiment.

5. Conclusions

This study presents the Zero-FVeinNet model, developed for finger vein recognition,
with an architectural design aimed at enhancing feature diversity learning during training.
It proficiently captures essential global features and demonstrates shift-invariance by
incorporating a blur pool layer. Furthermore, the integration of a ZSCA block in the model
serves to enhance its performance while reducing complexities such as model size, inference
speed, and computational expenses, thereby addressing common challenges related to
feature extraction stability. Empirical evaluations of the Zero-FVeinNet model show a
Correct Identification Rate (CIR) of 99.9% on the FV-USM dataset, 97.83% on SCUT-FVD,
97.8% on SDUMLA-FV, and 68.69% on THU-FVFDT datasets, surpassing the performance
of recent methodologies cited in the literature. The lower performance on the THU-FVFDT
dataset, attributed to data insufficiency, suggests potential enhancements through methods
like data augmentation or self-supervised learning, which are considerations for future
research. Additionally, the model’s compatibility with the ONNX format facilitates its
deployment on devices such as Arduino and other mobile platforms without the need for
preprocessing steps like image enhancement. Future investigations will focus on assessing
the model’s performance on mobile platforms to develop a comprehensive, lightweight
solution for finger vein recognition, particularly improving outcomes on datasets with
limited data.

Author Contributions: Conceptualization, J.-C.W.; Methodology, N.C.T., B.-T.P.; resources, V.C.-M.C.,
K.-C.L., P.T.L., S.-L.C., A.Z.K.F., Y.-H.L.; writing—original draft preparation, N.C.T.; writing—review
and editing, B.-T.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: a. The datasets collected and analyzed during this work are accessible
from the SDUMLA dataset repository [10], available at https://tsapps.nist.gov/BDbC/Search/
Details/420 (accessed on 29 April 2024). b. The datasets collected and analyzed during this work are
accessible from the THUFV2 dataset repository [11], available at https://www.sigs.tsinghua.edu.cn/
labs/vipl/thu-fvfdt.html (accessed on 29 April 2024). c. The datasets collected and analyzed during
this work are accessible from the FV-USM dataset repository [12], available at http://drfendi.com/
fv_usm_database (accessed on 29 April 2024). d. The datasets collected and analyzed during this
work are accessible from the SCUT-FVD dataset repository [13], available at https://github.com/
BIP-Lab/SCUT-SFVD (accessed on 29 April 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the

International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.
2. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

https://tsapps.nist.gov/BDbC/Search/Details/420
https://tsapps.nist.gov/BDbC/Search/Details/420
https://www.sigs.tsinghua.edu.cn/labs/vipl/thu-fvfdt.html
https://www.sigs.tsinghua.edu.cn/labs/vipl/thu-fvfdt.html
http://drfendi.com/fv_usm_database
http://drfendi.com/fv_usm_database
https://github.com/BIP-Lab/SCUT-SFVD
https://github.com/BIP-Lab/SCUT-SFVD


Electronics 2024, 13, 1751 13 of 14

3. Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-dependent pre-trained deep neural networks for large-vocabulary speech
recognition. IEEE Trans. Audio Speech Lang. Process. 2011, 20, 30–42. [CrossRef]

4. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In
Proceedings of the Conference on International Conference on Neural Information Processing Systems, Montreal, QB, Canada,
7–12 December 2015; pp. 91–99.

5. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

6. Mikolov, T.; Karafiát, M.; Burget, L.; Cernocký, J.; Khudanpur, S. Recurrent neural network based language model. In Pro-
ceedings of the Conference of the International Speech Communication Association, Makuhari, Japan, 26–30 September 2010;
pp. 1045–1048.

7. Chen, Y.-Y.; Hsia, C.-H.; Chen, P.-H. Contactless multispectral palm-vein recognition with lightweight convolutional neural
network. IEEE Access 2021, 9, 149796–149806. [CrossRef]

8. Algarni, M. An Extra Security Measurement for Android Mobile Applications Using the Fingerprint Authentication Methodology.
J. Inf. Secur. Cybercrimes Res. 2023, 6, 139–149. [CrossRef]

9. Syazana-Itqan, K.; Syafeeza, A.; Saad, N.; Hamid, N.A.; Saad, W. A review of finger-vein biometrics identification approaches.
Indian J. Sci. Technol. 2016, 9, 1–9. [CrossRef]

10. Yin, Y.; Liu, L.; Sun, X. SDUMLAHMT: A multimodal biometric database. In Chinese Conference on Biometric Recognition; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 260–268.

11. Asaari, M.S.M.; Suandi, S.A.; Rosdi, B.A. Fusion of band limited phase only correlation and width centroid contour distance for
finger based biometrics. Expert Syst. Appl. 2014, 41, 3367–3382. [CrossRef]

12. Qiu, X.; Kang, W.; Tian, S.; Jia, W.; Huang, Z. Finger vein presentation attack detection using total variation decomposition. IEEE
Trans. Inf. Forensics Secur. 2017, 13, 465–477. [CrossRef]

13. Yang, W.; Qin, C.; Liao, Q. A database with ROI extraction for studying fusion of finger vein and finger dorsal texture. In Chinese
Conference on Biometric Recognition; Springer: Berlin/Heidelberg, Germany, 2014; pp. 266–270.

14. Miura, N.; Nagasaka, A.; Miyatake, T. Feature extraction of finger-vein patterns based on repeated line tracking and its application
to personal identification. Mach. Vis. Appl. 2004, 15, 194–203. [CrossRef]

15. Miura, N.; Nagasaka, A.; Miyatake, T. Extraction of finger vein patterns using maximum curvature points in image profiles.
IEICE TRANSACTIONS Inf. Syst. 2007, 90, 1185–1194. [CrossRef]

16. Huang, B.; Dai, Y.; Li, R.; Tang, D.; Li, W. Finger vein authentication based on wide line detector and pattern normalization.
In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; IEEE:
Piscataway, NJ, USA, 2010; pp. 1269–1272.

17. Ma, H.; Hu, N.; Fang, C. The biometric recognition system based on near-infrared finger vein image. Infrared Phys. Technol. 2021,
116, 103734. [CrossRef]

18. Zhang, W.; Wang, Y. Core based structure matching algorithm of Finger Vein verification. In Object Recognition Supported by User
Interaction for Service Robots; IEEE: Piscataway, NJ, USA, 2002; Volume 1, pp. 70–74.

19. Nagao, M. Methods of Image Pattern Recognition; Corona: San Antonio, TX, USA, 1983.
20. Meng, X.; Zheng, J.; Xi, X.; Zhang, Q.; Yin, Y. Finger vein recognition based on zone-based minutia matching. Neurocomputing

2021, 423, 110–123. [CrossRef]
21. Minaee, S.; Abdolrashidi, A.; Su, H.; Bennamoun, M.; Zhang, D. Biometrics recognition using deep learning: A survey. arXiv 2019,

arXiv:1912.00271. [CrossRef]
22. Hong, H.G.; Lee, M.B.; Park, K.R. Convolutional neural network based finger vein recognition using nir image sensors. Sensors

2017, 17, 1297. [CrossRef] [PubMed]
23. Zeng, J.; Wang, F.; Deng, J.; Qin, C.; Zhai, Y.; Gan, J.; Piuri, V. Finger vein verification algorithm based on fully convolutional

neural network and conditional random field. IEEE Access 2020, 8, 65402–65419. [CrossRef]
24. Kuzu, R.S.; Maioranay, E.; Campisi, P. Vein-based biometric verification using transfer learning. In Proceedings of the 2020 43rd

International Conference on Telecommunications and Signal Processing (TSP), Milan, Italy, 7–9 July 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 403–409.

25. Yang, W.; Hui, C.; Chen, Z.; Xue, J.; Liao, Q. FV-GAN: Finger vein representation using generative adversarial networks. IEEE
Trans. Inf. Forensics Secur. 2019, 14, 2512–2524. [CrossRef]

26. Hou, B.; Yan, R. Triplet-classier gan for finger-vein verification. IEEE Trans. Instrum. Meas. 2022, 71, 212–223. [CrossRef]
27. Yang, W.; Shi, D.; Zhou, W. Convolutional neural network approach based on multimodal biometric system with fusion of face

and finger vein features. Sensors 2022, 22, 6039. [CrossRef] [PubMed]
28. Lin, H.Y. Embedded Artificial Intelligence: Intelligence on Devices. Computer 2023, 56, 90–93. [CrossRef]
29. Zhao, D.; Ma, H.; Yang, Z.; Li, J.; Tian, W. Finger vein recognition based on lightweight CNN combining center loss and dynamic

regularization. Infrared Phys. Technol. 2020, 105, 103221. [CrossRef]
30. Hsia, C.H.; Ke, L.Y.; Chen, S.T. Improved Lightweight Convolutional Neural Network for Finger Vein Recognition System.

Bioengineering 2023, 10, 919. [CrossRef]
31. Ding, X.; Zhang, X.; Han, J.; Ding, G. Diverse branch block: Building a convolution as an inception-like unit. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.

https://doi.org/10.1109/TASL.2011.2134090
https://doi.org/10.1109/ACCESS.2021.3124631
https://doi.org/10.26735/EPZF6556
https://doi.org/10.17485/ijst/2016/v9i32/99276
https://doi.org/10.1016/j.eswa.2013.11.033
https://doi.org/10.1109/TIFS.2017.2756598
https://doi.org/10.1007/s00138-004-0149-2
https://doi.org/10.1093/ietisy/e90-d.8.1185
https://doi.org/10.1016/j.infrared.2021.103734
https://doi.org/10.1016/j.neucom.2020.10.029
https://doi.org/10.1007/s10462-022-10237-x
https://doi.org/10.3390/s17061297
https://www.ncbi.nlm.nih.gov/pubmed/28587269
https://doi.org/10.1109/ACCESS.2020.2984711
https://doi.org/10.1109/TIFS.2019.2902819
https://doi.org/10.1109/TIM.2022.3154834
https://doi.org/10.3390/s22166039
https://www.ncbi.nlm.nih.gov/pubmed/36015799
https://doi.org/10.1109/MC.2023.3280397
https://doi.org/10.1016/j.infrared.2020.103221
https://doi.org/10.3390/bioengineering10080919


Electronics 2024, 13, 1751 14 of 14

32. Chaman, A.; Dokmanic, I. Truly shift-invariant convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.

33. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.

34. Noh, K.J.; Choi, J.; Hong, J.S.; Park, K.R. Finger-Vein Recognition Based on Densely Connected Convolutional Network Using
Score-Level Fusion with Shape and Texture Images. IEEE Access 2020, 8, 96748–96766. [CrossRef]

35. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

36. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018.

37. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Searching for mobilenetv3. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019.

38. Mehta, S.; Rastegari, M. Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv 2021,
arXiv:2110.02178.

39. Wu, D.; Wang, Y.; Xia, S.T.; Bailey, J.; Ma, X. Skip connections matter: On the transferability of adversarial examples generated
with resnets. arXiv 2020, arXiv:2002.05990.

40. Zhu, X.; Bain, M. B-CNN: Branch convolutional neural network for hierarchical classification. arXiv 2017, arXiv:1709.09890.
41. Zhang, R. Making convolutional networks shift-invariant again. In Proceedings of the International Conference on Machine

Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019.
42. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
43. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference

on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19.
44. Zhang, Q.-L.; Yang, Y.-B. Sa-net: Shuffle attention for deep convolutional neural networks. In Proceedings of the ICASSP

2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June
2021; IEEE: Piscataway, NJ, USA, 2021.

45. Boutros, F.; Damer, N.; Kirchbuchner, F.; Kuijper, A. ElasticFace: Elastic margin loss for deep face recognition. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, New Orleans, LA, USA, 18–24 June 2022;
pp. 1578–1587.

46. Lu, H.; Wang, Y.; Gao, R.; Zhao, C.; Li, Y. A novel roi extraction method based on the characteristics of the original finger vein
image. Sensors 2021, 21, 4402. [CrossRef] [PubMed]

47. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

48. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.2996646
https://doi.org/10.3390/s21134402
https://www.ncbi.nlm.nih.gov/pubmed/34199052

	Introduction 
	Literature Review 
	Methodology 
	Shallow CNN Network with a Re-Parameterization Mechanism 
	ZeroBlur-DBB Module: Diverse Branch Block with Blur Pool and Zero Shuffle Coordinate Attention 
	Blur Pool Layer 
	Zero Parameter Channel Shuffle Coordinate Attention (ZSCA) 

	Evaluation Metrics and Loss Function 
	Evaluation Metrics 
	Loss Function 


	Experiments 
	Finger-Vein Public Datasets 
	Experimental Configuration 
	Experimental Results 
	Ablation Study 

	Conclusions 
	References

