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Abstract: The need for new antimicrobial agents (AntAg) is driven by the persistent antibiotic resis-
tance in microorganisms, as well as the increasing frequency of pandemics. Due to the deficiency of
AntAg, research aimed at developing speedy approaches to find new drug candidates is relevant. This
study aims to conduct an in silico study of the biological activity spectrum as well as the molecular
binding mechanisms of four structurally different forms of levofloxacin (Lvf) with bacterial topoiso-
merases targets of type IIA (DNA gyrase and topoisomerase IV) to enable the development of drugs
with an improved characterization of the safety profile. To achieve this goal, a number of software
products were used, such as ChemicPen v. 2.6, PyMol 2.5, Avogadro 1.2.0, PASS, AutoDockTools 1.5.7
with the new generation software Autodock Vina. These software products are the first to be made
available for visualization of clusters with determination of ligand-receptor pair binding affinity, as
well as clustering coordinates and proposed mechanisms of action. One of the real structures of Lvf, a
decarboxylated derivative, was obtained with tribochemical (TrbCh) exposure. The action spectrum
of molecular ligands is described based on a Bayesian probability activity prediction model (PASS
software Version 2.0). Predicted and real (PMS and RMS) molecular structures of Lvf, with decreasing
levels of structural complexity, were translated into descriptors via Wiener (W), Balaban (Vs), Detour
(Ip), and Electropy € indices. The 2D «structure-activity» diagrams were used to differentiate closely
related structures of levofloxacin. PMS and RMS were visualized as 3D models of the ligand-receptor
complexes. The contact regions of RMS and PMS with key amino acid residues—SER-79, DT-15,
DG-1, DA-1—were demonstrated. The intra- and inter-molecular binding sites, data on free energy
(affinity values, kcal/mol), the binding constant Kb (M−1), and the number of clusters are presented.
The research results obtained from the presented in silico approach to explore the spectrum of action
find quantitative “structure-activity” correlations, and predict molecular mechanisms may be of
applied interest for directed drug discovery.

Keywords: in silico methods; topological indices; Pa/Pi ratios; molecular docking; free energy of
binding; type IIA topoisomerases targets; predicted and real molecular structures

1. Introduction

Fluoroquinolones (FlrQs) are broad-spectrum chemotherapeutic drugs effective against
Gram-positive and Gram-negative aerobic bacteria, chlamydia, and mycoplasmas. They
were first introduced into clinical practice in the 1980s [1]. Despite the fact that FlrQs are
considered important reserve drugs, their therapeutic relevance is controversial. Crucial
to this were the 2018 overviews published by the Food and Drug Administration (FDA)
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and the European Medicines Agency (EMA) on disabling adverse drug reactions (ADRs)
of FlrQs in the aorta, peripheral vessels, joints, and central nervous system [2]. However,
there was a significant surge of interest in FlrQs during the COVID-19 pandemic due to
the shortage (approximately 63%) of antimicrobial drugs that could prevent complications
after viral diseases [3].

Fluoroquinolones are classified into generations (1G–5G) based on the spectrum of
biological activity, which is determined by their structural differences (QSAR effect). The
introduction of a fluorine atom in C6 to the 1G fluoroquinolones—nalidixic, oxolinic, and
pipemidic acids—as derivatives of the antimalarial chloroquine, resulted in 2G compounds
with a broader antibacterial spectrum of activity (ciprofloxacin, norfloxacin, ofloxacin,
pefloxacin, lomefloxacin) (Figure 1) [4,5].
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Figure 1. Evolution of the core structures of quinolone class drugs. (a) chloroquine; (b) chloro−l−
ethyl−l,4−dihydro−4−oxoquinoline−3-carboxylic acid; (c) nalidixic acid; (d) FlrQs general structure.
R1 = H, OH, CH3 or −NH2; R3 = piperazine, piperidin, pyrrolidine or azepin; R4 = CCl, CF, COMe,
CHn, R5 = Alk or homocycle; R6 = COOH; R2 = Hal, CN, Alk; R4 = CCl, CF, COMe, CHn.

To date, it is known that the most crucial pharmacophore group of FlrQs consists
of a central bicyclic ring with a hydrogen at the C2 position, a carboxyl group at the C3
position, and a ketone group at the C4 position. The substituents at the C7 and C8 positions
have a significant influence on the efficacy, therapeutic spectrum, and safety of FlrQs (see
Figure 1d). It is considered [6] that the linkage of R7 and R8 with the “A” subunit in the
DNA-enzyme complex determines the direction of biological action of this class of drugs.

QSAR approaches are central to the optimization of FlrQs’ structure. The introduc-
tion of an additional fluorine atom in C8, as well as increasing the number of homo- and
heterocycles, led to the development of 3G derivatives (sparfloxacin, levofloxacin). The
structure was complexified by replacing the piperazine cycle with a pyrrolidine cycle and
introducing an ester group, resulting in 4G derivatives (moxifloxacin, gemifloxacin). These
derivatives are characterized by a longer, dose-dependent mechanism of resistance develop-
ment in microorganisms, minimal inhibitory concentrations (MIC-90 ≤ 0.25 mg·L−1), and
the potential of treating nosocomial infections [7–9]. However, the increasing complexity
of drug molecule structures is associated with discrepancies in the concept of an “ideal
drug”, which undermines the correlation between efficacy, safety, selectivity, minimizing
side effects, and broadening the therapeutic index.

Previously, it was found by in silico methods that, in particular, the C-3/C-4 region of
quinolone keto acids is chelated by a non-catalytic Mg2+ ion that is coordinated by four
water molecules. Common mutations in DNA gyrase observed in drug-resistant strains
are thought to occur in residues that form part of the water–metal “bridge” between the
enzyme and the drug [10].

In addition, the development of resistance to quinolones in various bacteria has
become a clinical concern: resistance has been demonstrated for Streptococcus pneumoniae,
as well as for isolates of methicillin-resistant Staphylococcus aureus (MRSA) [11].

Table 1 presents the summarized experimental and predicted data on the FlrQs’ prop-
erties of generations 1G–5G, allowing to trace the structure-dependent property evaluation.
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Table 1. Chemical, physical, and biological quinolone properties values.

Molecular Weight,
g·mol−1 Log Po/w pKa

(Strongest Acidic)

Water
Solubility,
mg·mL−1

Toxicity in
Mice LD50,

mg·kg−1

Microbiologic Activity/
Indications

NALIDIXIC ACID (FlrQ-1G)

232.2 1.6 8.60 0.1 4000
Enterobacteriaceae/Uncomplicated
urinary tract infections, not for use

in systemic infections *

CIPROFLOXACIN (FlrQ-2G)

331.3 0.3 6.10 <1.00 2000

Enterobacteriaceae, atypical
pathogens; Pseudomonas aeruginosa,

Pneumoccoci/
* and also complicated urinary tract

and catheter-related infections,
gastroenteritis

LEVOFLOXACIN (FlrQ-3G)

361.4 0.7 5.50 1.44 1800

Enterobacteriaceae, atypical
pathogens, streptococci.

Pneumoccoci MIC90:
0.25–0.5 mg·L−1/* and also

community-acquired pneumonia in
hospitalized patients or if atypical
pathogens are strongly suspected

MOXIFLOXACIN (FlrQ-4G)

401.4 2.9 5.49 1.15 100

Enterobacteriaceae, P. aeruginosa,
atypical pathogens, MSSA,

streptococci, anaerobes,
Pneumoccoci.

Consider for treatment of
intra-abdominal infections

LEVONADIFLOXACIN (FlrQ-5G)

360.4 0.87 ** 5.94 ** 0.63 ** 535 **

Anti-MDR, MRSA, MDR S.
pneumoniae, pathogenies ESKAPE,

P. aeruginosa и S. aureus
strains/hospital-acquired and

nosocomial pneumonia, diabetic
foot ulcer infections and skin and
soft tissue infections, acute otitis

eterna (swimmer’s ear)

*—uncomplicated urinary tract infections, not for use in systemic infections, **—predicted.

Progress in combinatorial chemistry has led to the development of new FlrQs (5G), ap-
proved by the FDA and EMA in the last decade—nemonoxacin, finafloxacin, zabofloxacin,
levonadifloxacin, lascufloxacin, delafloxacin. These fluoroquinolones have demonstrated
potent activity against penicillin-resistant and multi-drug-resistant (MDR) pneumococcus
and anaerobes, while maintaining their activity against aerobes [12]. The structure of FlrQs
and quinolones QNs (5G) differs from other generations by the content of 1 to 3 fluorine
atoms (lascufloxacin), the combination of halogens—fluorine and chlorine (delafloxacin)—
the complete absence of halogen atoms, for example, in nemonoxacin, as well as several
chiral centers, which determine the optical and pharmacological activity of the isomers
(Figure 2) [13].



Sci. Pharm. 2024, 92, 1 4 of 19
Sci. Pharm. 2023, 91, x FOR PEER REVIEW 4 of 20 
 

 

 
 

 

(a) (b) (c) 

Figure 2. Chemical structure of newer approved antibacterial QN (5G). (a)—lascufloxacin, (b)—

delafloxacin, (c)—nemonoxacin. 

In connection with the discovery of new FlrQs, cases of manifestation by the consid-

ered drug group have been reported, showing “non-classical” biological activities such as 

anti-HIV-1 integrase [14], cannabinoid receptor-2 agonist/antagonist [15], anxiolytic 

agents, antiischemic activities, antiviral effects, etc., are continually injecting new enthu-

siasm towards this scaffold of drug [16]. This highlights the significance of the question 

regarding the correlation between the “structure-activity” relationship. This relationship 

is based on different mechanisms of low molecular biological activity of xenobiotics in the 

quinolones group. The activity depends on the nature and spatial arrangement of func-

tional groups. 

It is known that one approach to developing new drugs with improved pharmacoki-

netic and pharmacodynamic characteristics is to isolate and study the properties of me-

tabolites produced through drug biotransformation. In this case, the original drug sub-

stance functions as a prodrug. Fluoroquinolones undergo biochemical modification to a 

lesser extent. The main metabolites are demethylated structure, N-oxide, and formyl de-

rivatives, which do not have significant pharmacological activity. Levofloxacin is mainly 

excreted unchanged in the urine [17]. 

In this task, the importance of new strategies in modeling the biological activity of 

substances is increasing. These strategies include direct modeling to recreate the structure 

of the ligand-receptor complex, as well as evaluating conformation and mutual affinity 

using in silico QSAR and molecular docking methods. De novo design, which aims to 

recreate the hypothetical structure of target molecules, enables the design of the poses of 

low-molecular-weight ligands in the active binding site with the receptor. This is achieved 

by minimizing the repulsion energy of groups (steric factor) and maximizing the binding 

energy [18]. 

The aim of this work is to apply in silico methods to study the biological activity and 

patterns of changes in the properties of various molecular graphs, and to predict the mo-

lecular mechanisms of binding of levofloxacin structural derivatives to bacterial type IIA 

topoisomerase.  

2. Materials and Methods 

2.1. Fluoroquinolone Samples 

In this work, the high purity (≥99, 9%) levofloxacin hemihydrate (Lvf·1/2 H2O) phar-

maceutical substance produced by the Jiangsu Aimi Tech Co., Ltd. (Jiangsu China) is pre-

sented (Figure 3).  

Figure 2. Chemical structure of newer approved antibacterial QN (5G). (a)—lascufloxacin,
(b)—delafloxacin, (c)—nemonoxacin.

In connection with the discovery of new FlrQs, cases of manifestation by the considered
drug group have been reported, showing “non-classical” biological activities such as anti-
HIV-1 integrase [14], cannabinoid receptor-2 agonist/antagonist [15], anxiolytic agents,
antiischemic activities, antiviral effects, etc., are continually injecting new enthusiasm
towards this scaffold of drug [16]. This highlights the significance of the question regarding
the correlation between the “structure-activity” relationship. This relationship is based on
different mechanisms of low molecular biological activity of xenobiotics in the quinolones
group. The activity depends on the nature and spatial arrangement of functional groups.

It is known that one approach to developing new drugs with improved pharma-
cokinetic and pharmacodynamic characteristics is to isolate and study the properties of
metabolites produced through drug biotransformation. In this case, the original drug
substance functions as a prodrug. Fluoroquinolones undergo biochemical modification
to a lesser extent. The main metabolites are demethylated structure, N-oxide, and formyl
derivatives, which do not have significant pharmacological activity. Levofloxacin is mainly
excreted unchanged in the urine [17].

In this task, the importance of new strategies in modeling the biological activity of
substances is increasing. These strategies include direct modeling to recreate the structure
of the ligand-receptor complex, as well as evaluating conformation and mutual affinity
using in silico QSAR and molecular docking methods. De novo design, which aims to
recreate the hypothetical structure of target molecules, enables the design of the poses of
low-molecular-weight ligands in the active binding site with the receptor. This is achieved
by minimizing the repulsion energy of groups (steric factor) and maximizing the binding
energy [18].

The aim of this work is to apply in silico methods to study the biological activity
and patterns of changes in the properties of various molecular graphs, and to predict the
molecular mechanisms of binding of levofloxacin structural derivatives to bacterial type
IIA topoisomerase.

2. Materials and Methods
2.1. Fluoroquinolone Samples

In this work, the high purity (≥99, 9%) levofloxacin hemihydrate (Lvf·1/2 H2O)
pharmaceutical substance produced by the Jiangsu Aimi Tech Co., Ltd. (Jiangsu China) is
presented (Figure 3).
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2.2. QSAR

Biological activity was predicted based on Quantitative Structure-Activity Relation-
ships (QSAR) analysis of PMS and RMS structures in CHP и MOL, ChemDesk using the
software ChemicPen v. 2.6 (https://cetramax-chemicpen.software.informer.com, accessed
on 21 October 2022) [20]. Real and predicted molecular structures (RMS and PMS) were
translated into unified characteristic structural descriptors through numerical (topological)
indices (TI): Wiener (W), Balaban (Bc), Detour (Ip) and Electropy (E), describing various
physicochemical and biological properties of molecular graphs (Tables 2 and S1) [21].

Table 2. Topological indices.

Topological Index Definition Equation

Wiener (W)
the shortest distances sum

between all pairs of
vertices in G graph

W = 0.5
n
∑

i=1

n
∑

j=1
(d)ij

where dij is the shortest distance between
vertices i and j

Balaban (J) the average distance-sum
connectivity index

J = m
m−n+2 ∑

uvϵE(G)

1√
w(u)·w(v)

where n and m are the cardinalities of the
vertex and the edge set of G, respectively,
and w(u) (resp. w(v)) denotes the sum of
distances from u (resp. v) to all the other

vertices of G

Detour (Ip)
the sum of the upper
triangle of the detour

∆ matrix

Ip = ∑ ∆ij
where the i,j-th entry ∆ij denotes the

longest path between vertices i and j of
the underlying graph (i, j = 1, 2, ... N)

where N denotes the number of vertices

Electropy (Ie)

the sum of the squares of
the atomic nuclear charges
divided by the square of
the number of atoms in
the molecule minus one

ε = 1b
(

pa
pi

)
pa and pi represent the probabilities for
the occurrence of an a priori event and

i—posteriori event.
The larger the Ie index value, the more

electropositive the molecule is.

The topological (W) index allowed us to compare the size and shape of the graph–
carbon skeletons of saturated hydrocarbon fragments in the studied Lvf structures [22]. The
(J) index of a connected graph G was used to calculate the distance matrix for molecules
containing multiple bonds [23]. The longest distances between atoms of the molecular

https://cetramax-chemicpen.software.informer.com
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graph were considered in the traversal matrix Ip, while the matrix Ie accounted for the
influence of spatial and electronic factors [24].

2.3. PASS

PASS (Prediction of Activity Spectra for Substances) Online (http://www.way2drug.
com/passonline/ accessed on 21 June 2022)—is a software product that allows predicting
the biological activity of loaded PMS and RMS using Pa criteria (to be active) и Pi (to
be inactive) [25]. The maximum activity value is taken as the ratio Pa/Pi = 1, while a
quantitative property value close to zero (Pa/Pi → 0) was considered “inactive”. PASS is
based on the analysis of molecular structure profiles based on MNA descriptors (Multilevel
neighborhoods of atoms) and a Bayesian probabilistic model for predicting the biological
activity of molecular ligands [26]:

P (Ak|C) = P (C|Ak)·P (Ak)/P(C), (1)

where P(Ak|C) is the probability of structure C provided that the chemical compound has
activity Ak, P(Ak) is the a priori probability of activity Ak, P(C) is the a priori probability
of structure C.

In PASS, the notion of equivalence is of particular importance: structures are consid-
ered equivalent if they are described by the same set of MNA descriptors [27,28].

2.4. Software of Molecular Docking

Generation of real molecular structures of the leader compound—levofloxacin—as
well as predicted molecular structures, including various bioisosters and degradation
products, was performed using the molecular editor Avogadro 1.2.0 (https://avogadro.cc/
releases/avogadro_120/, accessed on 15 June 2016) [29]. Using this improved molecular
editor based on quantum mechanical structure calculation, further geometric optimization
of small ligand molecules was carried out.

The identified interactions between low-molecular-weight ligands and the structure
of topoisolmerase IIA were visualized using PyMol 2.5 (https://pymol.org/2/, accessed
on 1 October 2022) [30,31].

The crystal structure of the topoisomerase IIA-DNA-6-FQ complex originating from a
bacterial species (Streptococcuc pneumoniae topo IV-DNA-levofloxacin, PDB ID:3k9F) were
utilized based on the available validation protocol wwPDB X-ray Structure Validation Sum-
mary Report (https://pdbj.org/emnavi/disp.php?a=arch.valrep_pdb_sum.3k9f, accessed
on 15 October 2009).

The preliminary preparation of the protein model included removal of the solvate
environment, addition of polar hydrogen molecules and was performed in the AutoDock-
Tools 1.5.7 program [32,33]. Adding hydrogen atoms to the protein structure taken from
the PDB and optimizing their positions were the most crucial steps [34].

Achilles Blind Docking Server (https://bio-hpc.ucam.edu/achilles/, accessed on 25
January 2023), whose working framework is Autodock Vina, was used to determine the
pose of the crystallographic structure of topoisomerase IIA with Lvf structure derivatives
ligand and to calculate the binding energy values [35,36].

AutoDock Vina achieves a speed up of approximately two orders of magnitude com-
pared to the molecular docking software previously developed, while also significantly
improving the accuracy of the binding mode predictions. Further speed up is achieved
from parallelism, by using multithreading on multicore machines. AutoDock Vina auto-
matically calculates the grid maps and clusters the results in a way that is transparent to
the user [37,38].

2.5. Equipment for Tribochemical Processing

The one of the real (6-decarboxylated) Lvf chemical structure derivatives were obtained
by tribochemical method based on the intensive impact and cutting loads on the solid [39].
For this purpose, a Stegler LM-250 milling mechanoactivator with a brush motor (Shenzhen

http://www.way2drug.com/passonline/
http://www.way2drug.com/passonline/
https://avogadro.cc/releases/avogadro_120/
https://avogadro.cc/releases/avogadro_120/
https://pymol.org/2/
https://pdbj.org/emnavi/disp.php?a=arch.valrep_pdb_sum.3k9f
https://bio-hpc.ucam.edu/achilles/
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Bestman Instrument CO., Ltd., Shenzhen, China), rotation speed 28,000 rpm, power 13 kW,
was used. The steps of tribochemical impact on the levofloxacin powder included loading
of the substance suspension into the grinding vessel about ½ volume and discharging of
the sample substance after 21 min of continuous mechanical impact (Figure S1).

2.6. Fourier Transform IR Spectroscopy

To obtain the vibrational spectra of the levofloxacin RMS, a Fourier transform in-
frared spectroscopy (FTIR) (Agilent Cary 630, Santa Clara, CA, USA) with a transmission
attachment was used in the spectral range from 4000 to 400 cm−1.

2.7. Optical Microscopy (OM)

The microscope with a special binocular attachment (Altami BIO 2, Saint Petersburg
Russia) with magnification 10× (linear field of view 20 mm) was used to determine the
particles’ morphologies.

2.8. Statistical Data Processing

All statistical data processing was performed using Student’s t-test, as well as using
the one-way analysis of variance (ANOVA) in the Origin Pro 2021 software (https://
www.originlab.com/2021, accessed on 15 January 2021)). The differences were considered
statistically significant at p < 0.05.

3. Results and Discussion
3.1. Structure-Activity Relationship Study

To predict the biological activity profile of levofloxacin derived structures, the follow-
ing approaches were used: in silico modification to obtain derivatives of predicted Lvf
structures and tribochemical effects on the drug substance powder to obtain various Lvf
real derivatives.

Experimenting In Silico (Chemicpen, PASS Online, ChemDescript)

Table 3 presents the «structure-activity» analysis for a sample of homogeneous pre-
dicted Lvf derivatives, presented in decreasing order of complexity of the investigated
FlrQ-3G structures. For this purpose, we applied the approach of sequentially detaching
the most important functional groups from the basic structure to determine the spectrum
of antimicrobial activity (Figures S2 and S3, Scheme S1).

Table 3. In silico prediction of the biological activity spectrum of levofloxacin derivatives.

№ Lvf Structure
Derivatives

Prediction Spectra of Biological Activity (Pa)

Ing
TopII 1*

Ing
DNAS 2* SDAc 3* QnAnMc 4* AntBc 5* AntTt 6*

Ing CYP1
A2 7*

1

basic
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Table 3. Cont.

№ Lvf Structure
Derivatives

Prediction Spectra of Biological Activity (Pa)

Ing
TopII 1*

Ing
DNAS 2* SDAc 3* QnAnMc 4* AntBc 5* AntTt 6*

Ing CYP1
A2 7*

3
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1*—type II DNA topoisomerase inhibitor that prevents ATP-dependent cleavage of both DNA chains of microbial
cells. 2*—inhibitor of reparative and replicative DNA synthesis of microbial cells. 3*—smart drug activities
(Nootropics). 4*—quinolone antimicrobial agent. 5*—antibacterial agent. 6*—antitumor activity. 7*—cytochrome
P-450 CYP1A2 isofor inhibitor.

As can be seen from the data tables, with probability Pa > 0.8, the basic structure 1
predictably demonstrates quinolone antimicrobial activity, conditioned by the mechanisms
of type IIA topoisomerase inhibition and DNA synthesis of the bacterial cell. According
to [40], this proves that with a probability of 80% an error will be made rejecting the
assumption that the molecule of analyzed Lvf exhibits this type of activity.

The prediction of the biological activity spectrum for structures 2–4, in the absence of a
carboxyl group at C6, a covalently bound fluorine atom at C9, and methylpiperazine at C10,
is of significant interest. There is a persistent high probability (Pa ≥ 0.7) of antibacterial
activity due to the properties of Ing TopII and Ing DNA synthesis. Additionally, the PASS
software prediction suggests the manifestation of smart drug (nootropics) and cytochrome
P-450 CYP1A2 inhibitor properties, which are not typical for FlrQ, with 0.5–0.8 of Pa range.
Moreover, the predicted activities for quinolone structures 2 and 3 demonstrate consistent
quantitative confidence for all species listed in the Table 3. This may indicate the importance
of the identical contribution of structural descriptors in the form of -COOH and -F groups
to the «structure-activity» relationship for fluoroquinolones, which was confirmed in the
literature by the example [41], as well as their MNA equivalence.

Further extensive modification of Lvf (structures 5 and 6) with variants only pre-
serve the basic 4-benzoxazine-BCS results in the highest probability of completely losing
of quinolone antimicrobial activity (Pa < 0.1), as well as all presented tabular species
mentioned, except for the smart drug properties (Pa~0.7). The results of the nootropic
activity prediction for the basic oxa-azatricyclo structure of quinolone obtained by PASS
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may serve as a foundation for the development of novel drugs that enhance the metabolism
of neuronal cells of the central nervous system [42].

In order to establish the dependence between the predictive spectrum of biological
activity and the structure of related Lvf predicted compounds, we calculated integral and
differential topological indices that are known for their high discriminating ability.

Figure 4 shows two-dimensional (2D) diagrams demonstrating the regularities in the
character of changes in properties when considering different molecular graphs.
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Figure 4. 2D diagrams of «structure-biological activity» relationship for the considered levofloxa-
cin’s predicted (№ 2–№6) derivatives relative to the real (№1) Lvf’s structure. (a) Wiener index; (b) 
Balaban index; (c) Detour index; (d) Electropy index. The area structures: red—basic, blue—9-
defluorinated, yellow—6-decarboxylated, violet—10-depyperazine. On the inserts—biological ac-
tivity spectrum of predicted levofloxacin derivatives. 

Figure 4. 2D diagrams of «structure-biological activity» relationship for the considered levofloxacin’s
predicted (№ 2–№6) derivatives relative to the real (№1) Lvf’s structure. (a) Wiener index; (b) Balaban
index; (c) Detour index; (d) Electropy index. The area structures: red—basic, blue—9-defluorinated,
yellow—6-decarboxylated, violet—10-depyperazine. On the inserts—biological activity spectrum of
predicted levofloxacin derivatives.

As can be seen, structures №1 (basic/real) and №3 (9-defluorinated) correspond to a
cluster of points that are responsible for the manifestation of different types of biological
activity; they occupy the same area relative to the OX axis (Figure 4a). Taking into con-
sideration the fact that the calculation of the Wiener index (W) is based on the distance
matrix related to the size and shape of the graph, we can assume that, from a quantita-
tive characterization perspective of molecular structures, there are no differences between
structures №1 and №3. The structure №2, corresponding to the 6-decarboxylated deriva-
tive of Lvf, occupies a distinct region, indicating the specificity of the invariant set of the
molecular graph.
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The consecutive destruction of the fluoroquinolone molecule (structures №4 and №5)
leads to the formation of stable dots in a distinct region that does not intersect with the
basic Lvf structure when the nitrogenous base is removed in FlQns molecules. Structure
№ 6 is characterized by a scattering of dots over regions without any specific positions
being manifested. This directly indicates a violation of the «structure-activity» relationship.
A comparable result for all analyzed structures was obtained when calculating the Detour
(Ip) indices (Figure 4c). The use of indices that are the sum of simpler indices (see Table 2)
leads to a lower degree of degeneracy and improves efficiency in identifying chemical
structures [43].

Of some interest is the 2D diagram that describes the distribution of prognostic
biological activity values depending on the index. These calculations are based on the
concept of the center of the graph J(G) (Figure 4b). It can be seen that each of the predicted
structures presented occupies a distinct position in the diagram field. At the same time, in
one area, there are close equivalent structures №1–№3, while the 10-depyperazine structure
(№4) occupies a separate area. The Balaban index (J) indicates a relatively low level
of degeneracy.

Topological indices correlate satisfactorily with both steric parameters (such as molec-
ular volume, molecular surface area, etc.) and electronic parameters (including ionization
potentials, electron affinity, polarizability, spin densities, etc.). With the assistance of
quantum chemical calculations, one can acquire supplementary information regarding the
electron density distribution in a molecule by utilizing the Ie electropy index (Figure 4d).

Thus, the comparison of topological indices for analyzing related modified fluoro-
quinolone structures has not only revealed the presence of a «structure-activity» correlation,
but also the functional interdependence of topological indices (TIs) among themselves. The
Balaban and Electropy indices are the most informative, low degenerate TIs for describing
the structures and properties of Lvf derivatives.

All the presented 2D diagrams demonstrate the similarity of the structure and proper-
ties to the basic structure of the defluorinated derivative. Decarboxylation and defluorina-
tion of the Lvf structure significantly reduce the prognostic FlQns antimicrobial activity
by twofold. Additionally, these processes result in the emergence of other “non-classical”
biological activities, such as inhibition of the cytochrome P-450 CYP1A2 isoform. However,
the best model for effectively differentiating predicted equivalent structures of levofloxacin
is the decarboxylated derivative (dLvf), based on the representation of topological indices
of TI (see Figures 1 and 4).

To obtain the real 6-decarboxylated structure of Lvf, we utilized the method that relies
on tribochemical processes.

3.2. Experimentation Using Tribochemical Processes

High local temperatures created at surface friction contacts lead to the formation of
catalytic centers that determine chemical activity. According to the catalytic approach
described in [44], there are sequential processes of low-energy electron emission, their
interaction with molecules at the surface friction boundary, combined with thermionic
emission. Obviously, a specific combination of physical and chemical phenomena leads to
the initiation of a heterogeneous chemical reaction (Scheme 1).

Based on the patterns observed in non-thermal chemical reactions, which are accom-
panied by high-intensity friction, deformation, and static mechanical stress applied to the
solid, the resulting product, a decarboxylated derivative of Lvf, was analyzed using optical
methods of physicochemical analysis (Figures 5 and S4).
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13 kW of mechanical activator power.

The results of this study demonstrate changes in solid-state properties after the tribo-
chemical impact. Specifically, degeneration of the needle shape of crystals is observed, a
large fraction of particles falls within the size group d = 5 µm. Covalent bonds that have
been deformed due to high-intensity tribochemical impact exhibit a bathochromic shift
of maxima in the FT-IR spectrum. The vibration erosion is manifested by the complete
disappearance of the characteristic high-frequency valence vibrations of -OH-hydroxyl in
the carboxyl group in the 3250 cm−1 region.
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Figure 5. A series of methods for qualitative, morphometric and granulometry analysis of Lvf sub-
stance samples before and after tribochemical treatment. (a) FT− IR spectrometry, black—Lvf native, 
red—tribo-activated Lvf (on a separate inset − region of O−H bond vibrations in the carboxyl group); 
(b,c) − optical microscopy (OM) of Lvf native and triboactivated substances, respectively; (d) OM 
granulometry for: black—Lvf native, red—triboactivated Lvf. 

The results of this study demonstrate changes in solid-state properties after the tri-
bochemical impact. Specifically, degeneration of the needle shape of crystals is observed, 
a large fraction of particles falls within the size group d = 5 μm. Covalent bonds that have 
been deformed due to high-intensity tribochemical impact exhibit a bathochromic shift of 
maxima in the FT-IR spectrum. The vibration erosion is manifested by the complete dis-
appearance of the characteristic high-frequency valence vibrations of -OH-hydroxyl in the 
carboxyl group in the 3250 cm−1 region. 

3.3. Binding Modes Prediction and Molecular Modeling 
Molecular docking was performed to predict the binding of real and predicted deriv-

atives of levofloxacin to specific regions of type IIA topoisomerase target proteins [45]. 
The inhibitor molecule was docked in the quinolone resistance determining region 
(QRDR) of genes, which is attributed to a high frequency of substitutions in the QRDR 
region of the GyrA subunit of DNA gyrase [46–48].  

Visualization between RMS, Compounds of PMS, and DNA Gyrase II 
The most advantageous orientations and conformations of low-molecular-weight lig-

ands in the active center of protein-receptor binding for the formation of stable supramo-
lecular complexes were demonstrated. The fixed spatial (3D) positions of the ligand-re-
ceptor pair for structures №1–№4 (see Table 3), which demonstrated a satisfactory QSAR 
dependence according to the results of the in silico experiment, are presented in Figure 6. 

Figure 5. A series of methods for qualitative, morphometric and granulometry analysis of Lvf
substance samples before and after tribochemical treatment. (a) FT− IR spectrometry, black—Lvf
native, red—tribo-activated Lvf (on a separate inset − region of O−H bond vibrations in the carboxyl
group); (b,c) − optical microscopy (OM) of Lvf native and triboactivated substances, respectively;
(d) OM granulometry for: black—Lvf native, red—triboactivated Lvf.

3.3. Binding Modes Prediction and Molecular Modeling

Molecular docking was performed to predict the binding of real and predicted deriva-
tives of levofloxacin to specific regions of type IIA topoisomerase target proteins [45]. The
inhibitor molecule was docked in the quinolone resistance determining region (QRDR) of
genes, which is attributed to a high frequency of substitutions in the QRDR region of the
GyrA subunit of DNA gyrase [46–48].

Visualization between RMS, Compounds of PMS, and DNA Gyrase II

The most advantageous orientations and conformations of low-molecular-weight lig-
ands in the active center of protein-receptor binding for the formation of stable supramolec-
ular complexes were demonstrated. The fixed spatial (3D) positions of the ligand-receptor
pair for structures №1–№4 (see Table 3), which demonstrated a satisfactory QSAR depen-
dence according to the results of the in silico experiment, are presented in Figure 6.

The validation of molecular docking results was conducted using the RMSD method.
For the structure of 3K9F, native docking was successful: the RMSD between the docked
lowest energy ligand pose and its crystallized pose is 0.986 Å. This value indicates a low
deviation (less than 2 Å) between the predicted and reference structures, suggesting that
the docking method applied in this study effectively predicts the spatial conformation of
molecular complexes.

According to data (see Figure 6), the contact regions of the RMS and PMS low-molecular-
weight ligands with key amino acid residues in the protein-receptor structure—SER-79 (serine),
DT-15 (deoxythymidine), DG-1 (deoxyguanosine), DA-1 (deoxyadenosine)—are represented
by intra- and inter-molecular binding sites of -OH and C=O of the carboxyl group at C6,
C=O at C7, and C-O-C in 4-benzoxazine-BCS residue by hydrogen bonding.
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Figure 6. Docking conformations obtained for different molecular structures of Lvf with specific 
regions of type IIA topoisomerase target proteins (with distances Å). H-bonds shown as yellow 
lines; non-polar hydrogen atoms have been removed for clarity [49]. (a)—basic Lvf; (b)—6-decar-
boxylated derivative; (c)—9-defluorinated derivative; (d)—10-depyperazine derivative. 

Figure 6. Docking conformations obtained for different molecular structures of Lvf with specific
regions of type IIA topoisomerase target proteins (with distances Å). H-bonds shown as yellow lines;
non-polar hydrogen atoms have been removed for clarity [49]. (a)—basic Lvf; (b)—6-decarboxylated
derivative; (c)—9-defluorinated derivative; (d)—10-depyperazine derivative.

As can be seen from the presented 3D models, the pair with the native carboxylated
ligand exhibits the largest number of bonds in spatial positions (see Figure 6a). Also,
a number of amino acid residues are involved in the complexes formed between the
target protein—bacterial type IIA topoisomerases—and the 9-defluorinated derivative and
10-depyperazine derivative of Lvf (see Figure 6c,d). All these factors contribute to stronger
binding of the ligand to the active site of the receptor protein [50].

At the decarboxylated RMS position, the carbonyl group of the ligand and the de-
oxythymidine residue (in lactim form) participate in the formation of inter-molecular
bonds in the complex. The oxygen atom -O- in the 4-benzoxazine-BCS residue forms an
intra-molecular bond with hydrogen at C2 in the 4-methylpiperazin-1-yl substituent.

For geometry-based ligand-receptor binding, the Autodock Vina employs an empirical
scoring function, including two Gauss terms and repulsion, hydrophobic, and hydrogen
bonds [51,52]. Table 4 shows the scoring functions of characterization to approximately pre-
dict the binding affinity of a ligand-receptor pair after they dock. The average contribution
of each interaction to the final predicted binding energy (affinity, kcal/mol) is expressed in
parts of a percent.

In the scoring function, a weighted sum of steric interactions are in the first three
terms in Table 4, and hydrophobic interaction between hydrophobic atoms and hydrogen
bonding (the last two terms in Table 4).
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Table 4. Empirical scoring function weights and terms.

Ligand
Steric Interaction Non-Steric Interaction

Affinity Values,
kcal/molGauss 1 Gauss 2 Repulsion Hydrophobic

Attraction
Non-Directional
Hydrogen Bond

basic Lvf 7.50 91.97 0.16 0.29 0.08 −9.7

9-defluorinated 7.67 91.74 0.17 0.31 0.11 −9.4

6-decarboxylated 7.35 92.17 0.12 0.33 0.03 −8.9

10-depyperazine 8.66 90.84 0.19 0.19 0.12 −8.6

The binding constants of the protein-ligand system is predicted via AutoDock Vina
software (autodock.scripps.edu. Date of access: 15 May 2016) that converts the affinity
energy values (kcal/mol) into Kb according to the following equation:

∆G0
bind = −RTlnKb (2)

Kb = exp exp
(
−∆Gbind

RT

)
(3)

Kb = K−1
d (4)

where ∆G0
bind represents the free energy of “protein-ligand” binding, kcal/mol, R is

the universal gas constant (8.314 ×10−3 kJ/K·mol,), T is 298 K (25 ◦C), Kb is the binding
constant, M−1, and Kd is the dissociation constant, M.

For solved docking positions, clustering results are available in the form of coordinates
of the ligand position in the active center of the target protein near the global minimum of
the energy of the formed complex. The binding poses characterized by the lowest docking
energy in order to identify the highest ranked clusters were analyzed after docking using
the AutoDockTools 1.5.7 program (see Section 2.4). These results allow for the prediction of
the binding mechanism (Figure 7, Table 5).

The clustering histogram shows the number of binding conformations at different
binding energies. A number of clusters with high population indicates, as a rule, that
docking has been successfully performed [53,54].

The clustering results reveal significant differences between the predicted molecular
structure of 10-depyperazine and the original structure of levofloxacin and other PMS
derivatives. The highest value of the Gibbs free energy, along with a larger number of
clusters and conformations of low-molecular-weight ligands in the binding center, indicate
unsatisfactory outcomes in locating the low-energy minimum of the complex. The 9-
defluorinated structure closely resembles the initial levofloxacin structure in terms of the
spectrum of low-energy minima and the Kb values. Here, we can observe a correlation
with the QSAR results of the in silico experiment (see Figure 4).

As expected, the structure of the 6-decarboxylated derivative obtained by the TrbCh
method, which has the fewest number of bonds to the single amino acid residue DT-15, is
characterized by lower docking accuracy (see Table 4). This indicates that the properties of
fluoroquinolones depend on the carboxylated structure (see Figures 1 and 2).
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Figure 7. Clustering diagrams. (a) basic levofloxacin; (b) 6−decarboxylated derivative;
(c) 9−defluorinated derivative (d) 10−depyperazine derivative (the purple areas of the diagrams
show the number of low population clusters). On the upper insets—the ligands images after process-
ing the molecular editor Avogadro 1.2.0; atoms of elements are highlighted by color: dark gray—C,
light gray—H, blue—N, red—O.

Table 5. Clustering data.

Poses in Cluster Best Pose Binding Site Coordinates Kb·105, M−1

basic levofloxacin

1.31
24 592 (−22.18, 50.92, −37.92)
33 1201 (−39.00, 54.45, −38.88)
69 232 (−18.02, 26.50, −36.81)

9-defluorinated

1.30
36 982 (−22.25; 51.62, −38.84)
39 591 (−39.10, 54.89, −38.22)
68 173 (−18.43, 27.23, −36.66)
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Table 5. Cont.

Poses in Cluster Best Pose Binding Site Coordinates Kb·105, M−1

6-decarboxylated

1.29
41 1228 (−39,16, 54.97, −38.91)
41 1001 (−22.00, 51.04, −38.77)
66 258 (−17.54, 26.57, −36.31)

10-depyperazine

1.28
54 1223 (−38.84, 54.74, −37.11)
45 592 (−22.03, 51.80, −37.31)
37 985 (−18.27, 55.28, −25.49)

4. Conclusions

In this work, we demonstrate the use of in silico approaches for searching for quantita-
tive structure-activity correlations using the example of real (RMS) and predicted (PMS)
structures of levofloxacin. The biological activity profile of levofloxacin derivatives was
evaluated in descending order of complexity of their structure in comparison with the orig-
inal levofloxacin based on a Bayesian probabilistic model. It was shown that the absence of
a carboxyl group in the structure of the molecule significantly reduces the prognostic an-
timicrobial activity of FlQns by twofold. In addition, these processes lead to the appearance
of other “non-classical” biological activities, such as inhibition of cytochrome P-450 isoform
CYP1A2. Balaban and Electropy indices are shown to be the most informative and weakly
degenerate topological indices to describe and distinguish between RMS and PMS deriva-
tives of Lvf. Judging from the presented 2D diagrams, the structures that closely resemble
each other are the basic and defluorinated Lvf. Using new generation molecular docking
software products (AutoDockTools 1.5.7 with the new generation software Autodock Vina),
the biologically active candidate molecules of levofloxacin selected by QSAR analysis were
visualized as 3D models of ligand-receptor complexes. On the basis of the empirical scoring
function, the final predicted binding energy (affinity, kcal/mol), the binding constants
Kb (M−1), as well as data from the clustering diagrams, the proximity of the structure of
9-defluorinated Lvf to the initial structure of levofloxacin was demonstrated. The results
obtained are of practical importance for the introduction of drugs into pharmacy with
predetermined properties derived from a known lead drug and a certain active center of
the target protein [55].
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elements in powders on aluminum foil (e), and FA appearance (f), respectively; Figure S3: The Pa
for the RMS of. Figure S4: Optical Microscope granulometry of RMS of Lvf. Table S1: Standard
deviations of the results of measurements of the fluorescence of the FA solution; Scheme S1: PASS
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Abbreviations

AntA antimicrobial agents
ANOVA one-way analysis of variance
MCh mechanochemistry
MAct mechanoactivation
TrbCh tribochemical
QNs quinolones
FlrQs fluoroquinolones
SMComplex supramolecular complex
FDA Food and Drug Administration
EMA The European Medicines Agency
ADR adverse drug reactions
TrbCh tribochemical
Lvf·Hh levofloxacin hemihydrate
QSAR quantitative structure-activity relationship
QRDR Quinolone resistance determining region
MIC minimal inhibitory concentrations
MRSA Methicillin-Resistant Staphylococcus aureus
MDR Penicillin-resistant and multi-drug-resistant Streptococcus pneumonia
RMS real molecular structures
PMS predicted molecular structures
PLD predicted levofloxacin derivatives
dLvf 11-decarboxylated levofloxacin
TI topological index
FT-IR Fourier transform IR spectroscopy
PASS Prediction of Activity Spectra for Substances
MNA Multilevel neighborhoods of atoms
LALLS low-angle laser light scattering
OM optical microscopy
DSA dynamic strain aging
2D-LS two-dimensional dynamic backscattering
ChRS chemometric reference sample
ETEC enterotoxigenic Escherichia coli
RMSD Root Mean Square Deviation
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