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Abstract: In the world of human–robot coexistence, ensuring safe interactions is crucial. Traditional
logic-based methods often lack the intuition required for robots, particularly in complex environments
where these methods fail to account for all possible scenarios. Reinforcement learning has shown
promise in robotics due to its superior adaptability over traditional logic. However, the exploratory
nature of reinforcement learning can jeopardize safety. This paper addresses the challenges in
planning trajectories for robotic arm manipulators in dynamic environments. In addition, this paper
highlights the pitfalls of multiple reward compositions that are susceptible to reward hacking. A
novel method with a simplified reward and constraint formulation is proposed. This enables the
robot arm to avoid a nonstationary obstacle that never resets, enhancing operational safety. The
proposed approach combines scalarized expected returns with a constrained Markov decision process
through a Lagrange multiplier, resulting in better performance. The scalarization component uses the
indicator cost function value, directly sampled from the replay buffer, as an additional scaling factor.
This method is particularly effective in dynamic environments where conditions change continually,
as opposed to approaches relying solely on the expected cost scaled by a Lagrange multiplier.

Keywords: safe reinforcement learning; constrained Markov decision process; Lagrangian multiplier;
scalarized expected return; UR5 arm robot

1. Introduction

The world of human and robot coexistence is expanding. Without intuitive behavior
from the robot, shared space between the machine and the human becomes dangerous [1].
Unfortunately, intuition cannot be constructed with traditional logic approaches because
they require an explicit representation of all possible states and actions. This is not feasible
in complex environments [2] and is unattainable at the design phase [3]. Reinforcement
learning (RL) with neural networks, which is referred to as RL throughout this paper, has
demonstrated outstanding results and can generalize actions from possible states [4,5].
However, the caveat is that most RL approaches learn policies that progressively improve
the reward criteria through exploratory actions, which can be problematic [4,6,7]. This
can compromise safety in the Markov decision process (MDP), where MDP represents
the sequential decision process in RL, and random, non-strategic exploratory actions can
inadvertently lead the system into hazardous or non-functional states [8]. To mitigate such
risks, it is important to engage in strategic exploration, meaning that exploration should not
be random, but rather guided by strategies that consider the safety and operational integrity
of the system. Hence, integrating strategic exploration becomes imperative for balancing
the dual objectives of effective learning and ensuring safety within the RL paradigm.

There is a taxonomy of safety definitions aligned with obstacle avoidance. For instance,
fulfilling ergodicity is the ability to reach any other state from a given state [8], implying
that the system must remain operational and adaptable across all states. Another definition
of safety requires humans to label states of environments as either safe or unsafe. An agent
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is considered safe if it never enters any of the uncontrolled states labeled unsafe where no
policy can make a permissible recovery [9], thereby aligning its operational parameters
with human-defined safety constraints. This aligns with constraining the agent from unsafe
states [10]. In the RL literature, this approach is known as the constrained Markov decision
process (CMDP), which incorporates these constraints directly into the decision-making
framework. Garcia and Fernandez [11] have tabulated other approaches to achieving safety.
Among those that involve modifying the optimization criterion, the CMDP approach is used
on a single-arm manipulator to integrate safety at a fundamental level in decision-making.
This study aimed to achieve motion planning with a simulated UR5 arm manipulator while
avoiding collision with a nonstationary object that does not reset.

Figure 1 shows the UR5 arm, a simulated industrial robot with six rotating joints
designed for automating repetitive tasks in various settings. From an initial state, the
objective is for the arm to reach a goal state without colliding with a moving object, a
challenge that requires precise and adaptive control strategies. Much of the work that
addresses planning problems with an arm manipulator simply shapes the reward function
as a composition of different scenarios. This can lead to the occurrence of reward hacking,
which is the result of the designer misspecifying the intended objective function [12]. In
complex environments, particularly when the reward function is sophisticated and may
not adequately capture all nuances of the dynamics for a specific task, such a compositional
approach is susceptible to reward hacking.

Note that a real robot raises more complications than one that is simulated. Although
simulation may simplify the task, it is a safeguard against sensor and motor component
burnout because of the long duration of RL training. This makes it adequate for testing RL
algorithms without damaging the robot components. Therefore, the initial step towards
safety in motion planning on the UR5 robot was carried out by simulation, where simulated
obstacles in the real world are modeled with floating spheres.

E

B

A D

C

Figure 1. Configuration setup for the UR5 and the moving object. UR5 arm moving from point A to
B and learning how to avoid collision with an object moving from point D to E.

The contribution of this paper is approaching arm manipulation with CMDP using
the Lagrange multiplier (LM) combined with scalarized expected return (SER). The distin-
guishing portion of the proposed method is combining the indicator cost function values
sampled from the replay buffer as the scaling component of SER. This acts as an adaptive
mechanism that toggles the objective based on the label of the region. The results indicate
a significant improvement over the CMDP strategy based solely on LM, particularly in
dynamic environments where the object does not reset to an initial position. Moreover, this
approach simplifies the reward function by reducing the number of terms, making it more
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attractive and effective for addressing the reward hacking problem that is often encountered
in complex manipulative tasks.

The sections of this paper are structured as follows. Section 2 begins with a background
presentation that introduces the mathematical notations used throughout the paper, laying
the foundation for subsequent discussions. This is followed by Section 3, which reviews
related work, focusing on various approaches to safety and examining studies that involve
shaping the reward for obstacle avoidance in robotic arm manipulators by considering
multiple scenarios. Section 4 details the proposed methodology. The results, presented
in Section 5, offer a detailed comparative analysis, highlighting the effectiveness of the
method compared with using only LM in CMDP formulation. Finally, Section 6 concludes
the paper, summarizing the findings given in the contributions and outlining possible
future directions.

2. Background

This section outlines the foundational background that is needed for the proposed
method. It begins with an overview of traditional MDP and progressively builds towards
the concept of combining scalarization with Lagrangian methods in CMDP.

2.1. Markov Decision Process

Reinforcement learning is a machine learning paradigm that uses the MDP framework
modeled by (S, A, T , r, γ) [13,14]. In the MDP, in each timestep, t, the system provides
all necessary information for a decision-maker to take an action, at ∈ A, at time t, with
A being the action space. The information provided by the system corresponds to the
system’s state, st ∈ S , at time t, with S being the state space. The action, at, is governed
by a policy, π(a|s) −→ (0, 1). A policy governs the behavior of an agent. It specifies what
action the agent should take in each state to maximize its expected reward over time. In
our case, the policy is a probability distribution over the available actions in a given state.
In state st, an action, at, is taken, perturbing the system to a new state, st+1 ∈ S, based on
the environment transition dynamics T (st+1|s, a). The transition dynamics is a model of
the system that captures the underlying rules or mechanisms that govern how the system
evolves from one state to another. After transitioning, the agent receives a reward signal,
rt ∈ R, based on the reward function r : S× A −→ R. The reward signal dictates the quality
of the action taken, which is used to update π accordingly. In the deep learning setting, the
policy is a neural network; therefore, the update is made on the parameters of the neural
network θ ∈ Rk. Without loss of generality, the θ parameterization is omitted from the
policy in the background and made more explicit in the methodology section. Overall,
the objective of the agent is to maximize the expected discounted reward by selecting the
appropriate actions. The expectation is denoted as E[·]. Conceptually, the agent should
learn the optimal policy

π∗ = arg max
π

Ea∼π

[
∑ r(s, a)

]
(1)

that yields the most reward for every state from selecting an action.

2.2. Soft Actor-Critic

For complex learning domains that are high-dimensional and continuous in state-
action spaces, such as an arm manipulator environment, it is difficult to find exact solutions
for the MDP when using action-value-based algorithms [15,16]. The soft actor–critic (SAC)
algorithm handles continuous state-action space problems and alters the objective function
by including an entropy term [17], redefining Equation (1) as

π∗ = arg max
π

Ea∼π

[
∑ r(s, a) + αH(π(·|s))

]
. (2)
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where H is the entropy function and α weights the importance of the entropy term. This
extra term brings many benefits. The prominent one is encouraging exploration; therefore,
the agent’s aim is to maximize the reward, even while behaving randomly.

2.3. Constrained Markov Decision Process

The constrained MDP (CMDP) [10,18] is modeled by (S, A, T , r, c, d, γ), where, like
the reward r, c is a random variable modeled by a cost function, c : S × A −→ {0, 1}, and
d ∈ R is a parameter for the allowable cost limit that controls the level of penalty imposed
by a violation. In RL, a Q-function represents the expected cumulative reward that an agent
can obtain by starting from a specific state and taking a particular action. The Q-function

is denoted as Qπ
r (s, a) = Ea∼π

[
∑∞

t=0 γtr(st, at)|s = st, a = at

]
to represent the expected

return for the random variable r when an action, a, is taken in state s and following π
thereafter. Like the Q-function for the reward, the Q-function for the cost, c, is represented

as Qπ
c (s, a) = Ea∼π [∑∞

t=0 γtc(st, at)|st = s, at = a
]
. Approaching safety in RL with CMDP

is to find the optimal policy, π∗, which simultaneously satisfies the constraining function
and the cost limit

π∗ = arg max
π

Qπ
r s.t. Qπ

c ≤ d. (3)

2.4. Lagrange Multiplier

A constrained optimization problem can be formulated in the context of reinforce-
ment learning (RL) using a Lagrange multiplier (LM) approach [19]. This methodology
involves finding a policy that not only maximizes expected rewards, but also minimizes
the expected cost, keeping it within a tolerable limit. In essence, solving Equation (3) as
an LM optimization problem represents this dual focus on reward maximization and cost
minimization within the RL framework as

max
π

min
λ

L(π, λ) = Qπ
r (st, at)− λ(Qπ

c (st, at)− d). (4)

In this scenario, the agent is directed to optimize Qr, the estimate of the reward
function, while simultaneously being penalized for any estimate of the cost, Qc, that
violates the limit, d. λ ∈ R acts as a coefficient to outweigh the estimation of the reward.
Depending on the limit violation, this parameter is learned throughout the learning process.
This weighting mechanism ensures that, as Qc becomes more significant relative to Qr
through the influence of λ, the agent increasingly prioritizes adherence to cost constraints,
thus aligning its actions more closely with the desired safety and operational parameters
designed by the user.

2.5. Scalarized Expected Return

Scalarized expected return (SER) is a key concept in multi-objective RL [20], where
the agent’s satisfaction is determined by multiple outcome values, typically represented in
vector form as returns. In multi-objective RL, scalarization is used to manage the trade-offs
between these various outcomes effectively. Specifically, within the SER framework, the
process begins by calculating the expected value of these returns for a given policy. Given
that Q symbolizes an expectation in this context, Equation (4) can be formulated to reflect
this scalarization approach as

max
π

min
λ

L(π, λ) = (1 − c)Qπ
r (st, at)− cλ(Qπ

c (st, at)− d), (5)

where the coefficient c is the immediate cost, which defines the cost to be either 1 or 0. This
acts to toggle the optimization objective depending on the label of the region.
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3. Related Work

According to Garcia and Fernandez [11], solely maximizing long-term reward in rein-
forcement learning (RL) may overlook infrequent but significant instances of large negative
outcomes. This necessitates a transformation of the optimization criterion to maximize
expected return while accounting for potential violations simultaneously. Unfortunately,
existing literature on RL with arm manipulators predominantly focuses on composing
reward functions for collision avoidance, often neglecting the application of more nuanced
safety approaches like risk-based, uncertainty-based, and CMDP-based methods. The
upcoming subsections will explore various studies that address these different dimensions
of safety within RL. In addition, the research specifically concerning arm manipulators
using RL for obstacle avoidance is discussed, which is in accordance with safety in the
robotics domain.

3.1. Risk-Based Safety in Reinforcement Learning

A popular approach is to modify the RL algorithm to account for risk in the formula-
tion [21–23]. In this risk-sensitive approach, the optimization criterion is transformed
to include a measure that reflects a trade-off between risk and reward by including a
parameter that controls sensitivity in stochastic environments [11]. Jaimungal et al. [21]
used the rank-dependent expected utility function in their RL formulation to trade off risk
and reward. Their objective was to minimize a measure of risk, subject to model uncertainty
caused by distorted states, where the distortion was produced by a distribution to have the
worst performance possible within the Wasserstein ball. Geibel and Wysotzki [22] solved
the problem with two value functions. They aimed to maximize the initial value function,
subject to the added value function serving as a cost signal that is constrained by weight to
dictate the feasibility of the policy. Mihatsch and Neuneier [23] created a risk framework
by transforming the temporal difference used for learning. A variable controls the level of
risk to overweight, underweight, or neutralize the successor state. When the variable is
positive, it weights the negative temporal difference more heavily, making it risk-avoidant.
Setting the variable to zero makes it risk-neutral, and when the variable is less than zero
this represents risk-seeking. Safety in the proposed approach is ensured by constraining the
agent with a discounted cost function. The risk-based approach to safety in RL incorporates
safety considerations through the RL objective or reward function, whereas constraint MDP
(CMDP) explicitly models safety constraints as part of the MDP formulation.

3.2. Uncertainty-Based Safety in Reinforcement Learning

Uncertainty-based safety approaches are variabilities that are either due to inherent
stochasticity of the system or to stochasticity in the MDP parameters [11]. To account for
uncertainty, the agent must be ready for the worst case when the model is inaccurate [24],
by formulating a worst-case optimization criterion [11]. For example, to verify system
properties with linear temporal logic, Wolff et al. [25] generated a control policy to maximize
the worst-case probability of satisfying the linear temporal logic based on their defined
specifications to account for the uncertainties in the transition dynamics. Typically, using
worst-case criteria to account for uncertainty in the transition dynamics does not include
safety constraints in the formulation. Russel et al. [26] addressed this by integrating CMDP
into the formulation of a robust MDP to account for transition probability uncertainty in
the MDP. Furthermore, Bossens and Bishop [24] developed a framework incorporating
robust MDP and CMDP, but the safety constraints are enforced by an escape mechanism
that monitors the system state. Near constraint budget violation, the escape mechanism
switches to a safety policy for actions that aim to return the system to a known safe state. To
capture environment variations, Chen et al. [27] adopted context-awareness using attentive
neural processing. With the use of prior offline data acting as context, the attentive neural
processing unit captures the difference between the prior and the environment samples
as a disturbance error. By minimizing this error, including with their additional dual
constrained objective, their goal is to improve the model prediction of future safe states and
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safe actions in a non-stationary environment. The proposed method approaches safety with
CMDP, where constraints are imposed throughout the MDP process, whereas uncertainty-
based approach safety is achieved through stochasticity in the system or variability in the
MDP parameters.

3.3. Constrained MDP-Based Safety in Reinforcement Learning

In CMDP, the objective is to maximize the expectation of return, subject to constraints
on the policy [10,11]. The work performed by Wachi and Sui [28] expanded a pessimistic
safe region, where the agent must satisfy a safety constraint with high probability, with
the ability for the agent to return to a set of safe states. Meanwhile, their optimistic region
considered a safe state, even with a small probability that the agent could return to a safe
state set. Although their approach is generic, the problem presented in this paper is tackled
using an approach with LM and a non-deterministic policy. Borkar and Jain [29] presented
an approach for solving a finite-horizon stochastic dynamic optimization problem with a
conditional value-at-risk (CVaR) constraint. Instead of a CVaR constraint in each timestep,
their constraint formulation applies to the entire trajectory, simplifying the time consistency
problem. The proposed formulation dives directly into LM formulation without a CVaR.
Achiam et al. [18] proposed using a trust region for policy update to guarantee constraint
satisfaction during training to tackle the non-guarantees of finding the optimal solutions
in model-free RL. This approach is a candidate direction to achieving safety with arm
manipulation; however, the proposed approach does not consist of trust regions to update
the policy. Instead, the arm manipulation problem is solved using LM and the CMDP
formulation combined with scalarized expected return using the cost samples directly,
which acts to toggle the objective towards either optimizing to avoid cost or preference
for reward.

3.4. Reinforcement Learning Obstacle Avoidance with Arm Manipulators

Obstacle avoidance has been a trending topic in RL to enforce safety. The work
described in this paper focuses on obstacle avoidance for the UR5 arm manipulator. For a
dual-arm space project, Li et al. [30] strictly modified the reward function to avoid collisions
between arms and to avoid collision between the end-effector (EE), also known as the tip
of the arm and the target obstacle. Cao et al. [31] used the same construct with dual
arm manipulators; however, in their methodology, they formulated a linear combination
of two policies that had prior experience to avoid the cold-start problem. Li et al. [32]
increased collision awareness by appending collision observations to an additional collision
buffer. This enabled the agent to learn the state and action pair that led to a collision
in every learning iteration. For their reward guidance, Tang et al. [33] fused multiple
reward schemes. One scheme served for collision detection to handle non-regular-shaped
obstacles, and another was guided by marked points to avoid collision using a repulsive
force function, which is commonly implemented by applying an increasing penalty as
the robot approaches an obstacle. Similarly, Sangiovanni et al. [34] used different reward
compositions, one of which was a repulsion function to avoid collision of a non-static object.
Although dual-arm manipulators are more challenging in their sparse reward approach,
Prianto et al. [35] penalized the agent when a collision occurred, and their obstacle was
static. Zeng et al. [36] also used different reward schemes to form an overall reward
function; however, their novel scheme was formulated based on a manipulability index
modeled with the Jacobian. They expressed the manipulability index as the allowable
control when performing the task. In addition to a collision avoidance reward scheme
for the EE, Yang and Wang [37] explicitly attempted to solve for feasible pose angles of
the arm robot, given the position of the EE, so that the links of the robot also avoided
the obstacle. Kamali et al. [38] combined deep RL and dynamic path following in an
arm robot. Using a controller as a track point, the objective function was for the EE to
follow the track point while avoiding objects. Similarly to previous work, their formulation
to avoid obstacles was a composition of reward functions. Simply shaping the reward



Robotics 2024, 13, 63 7 of 15

through compositions of reward functions for robotic arm obstacle avoidance remains a
common approach in recent work. Avaie et al. [39] addressed static obstacle avoidance with
a complex form of a reward function that considered many aspects of arm maneuverability
to comply with safe motions and to adhere to human preferences. The work described
in this paper does not explicitly augment the reward function for object detection or for
collision avoidance. Instead, the motion planning problem is tackled using a Lagrangian
objective function plus an additional scale on the reward and cost expectations. This scale is
based on the cost values from the replay buffer, which are used in addition to the Lagrange
cost multiplier coefficient.

4. Methodology

The objective function serves to achieve motion planning with the UR5 arm manipu-
lator while avoiding collision during the trajectory. The safety aspect that is emphasized
in this paper is robotic motion without collision. This is attainable by including obstacle
coordinates relative to each nonstationary link position of the arm manipulator within the
agent’s state space. Note that low-level trajectory control is not part of this scope. When
used in real robot scenarios, a control trajectory system handles the low-level control to
alleviate the concerns about forbidden positions and avoid links colliding with each other.
Therefore, without the need for such concerns, the initial step in testing the feasibility
of the algorithm was to simulate the UR5 in a MuJoCo [40] environment. MuJoCo is a
high-performance physics engine designed for model-based control within robotics. The
MuJoCo engine accurately simulates complex physical interactions involving multiple
joints and contact points. This makes it an ideal platform to test and refine rigorously
designed algorithms for robotic manipulation.

4.1. State Features

In each state, the agent can access the arm robot’s center of mass for each axis. The

center of mass for the x-axis is computed as mx = ∑n
i mixi

∑n
i mi

, where xi is the corresponding link
position on the x-axis and m is the mass of the link. The mass (model.body_mass function is
used to retrieve the mass of individual bodies in the MuJoCo physics simulation) is acquired
from the MuJoCo simulation engine. my and mz are also computed for the y- and z-axes.
The angular velocity (data.qvel function is used to retrieve the angular velocity of each
joint in the MuJoCo physics simulation) of each joint is acquired from MuJoCo. Similarly,
the angles (data.qpos function is used to retrieve the angles of each joint in radians in the
MuJoCo physics simulation) of each joint in radians are provided by MuJoCo. However,
the radians are normalized between ±2ω, where ω ∈ [0, 3.1415). The EE position 3D
coordinate is provided in each timestep, as well as the distance (find_closest_point PyVista
function is used to find the index of the closest point in a mesh object with Euclidean
distance) of each nonstationary link to the closest point on the obstacle, O. Similarly, the
distance of each link to the closest point on the sphere, H, is computed. The 3D coordinates
of each nonstationary link and the object, O, are provided in each timestep.

4.2. Reward Function

The reward function is formulated using the negative Euclidean distance between the
EE and the goal location:

r = −
√
(xt − xg)2 + (yt − yg)2 + (zt − zg)2, (6)

where xt, yt, zt are the x-, y-, and z-coordinates of the EE in each timestep, t, and xg-, yg-,
zg- are the x-, y-, and z-coordinates of the goal position. This results in an increased reward
as the EE approaches the target coordinates.
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4.3. Danger Region and Cost Function

For simplicity, an obstacle, O, is modeled as a sphere, and Os is the space occupied by
O. Another sphere is created as a layer around O called H, and Hs is the space occupied
by H. Both O and H always have the same center coordinates. The cost function is an
indicator function defined by c [41]. Then:

c =

{
1, if li ∈ Hs || Os

0, otherwise,
(7)

where li ∈ L is the set of nonstationary link coordinates, including the EE. c takes on a
value of 1 when li is in Hs or in Os. However, when li is in Os, the arm position resets to the
initial position, but the object, O, does not reset to the initial position. The non-resetting
of the object is important because it makes the problem more challenging and closer to
real-world scenarios. When the obstacle and the arm are reset, the agent needs to learn one
trajectory to avoid the obstacle, which becomes similar to a static object problem. Spheres
O and H are created with the PyVista package.

4.4. Soft-Actor Critic Training

The implementation of the SAC algorithm consists of two critic networks. The critic
on the network parameters ψ provides feedback for the reward function (6). The critic
on the network parameters ϕ provides feedback on the cost defined by (7). The actor–
network has parameters, θ, that define the policy. All the networks are of the same size;
therefore ϕ, ψ ∈ Rk. Each corresponding critic has a target network represented by ψ̄ and
ϕ̄, respectively, that undergoes soft updates during the learning phase. The output of the
actor–network is used as a parameter to sample from a Gaussian distribution; therefore, for
πθ(a|s), a ∼ N (µ, σ) + et, where µ and σ are the mean and variance, respectively, output
from the actor–network and et is an input noise sample from a fixed distribution. All
networks are trained at every timestep, t. Computing the loss for the critic, parameterized
by ϕ,

JQc,ϕ = E(st ,at)∼D

[1
2
(
Qc,ϕ(st, at)− Q̂c,ϕ̄(st, at)

)2
]
, (8)

where

Q̂c,ϕ̄(st, at) = Ea∼πθ(·|s)

[
c(st, at) + Qc,ϕ̄(st+1, a)

]
D is the replay buffer from which st and at are sampled. Now, computing the loss for the
critic, parameterized by ψ,

JQr,ψ = E(st ,at)∼D

[1
2
(
Qr,ψ(st, at)− min

i=1,2
Q̂r,ψ̄i

(st, at)
)2
]
, (9)

where
Q̂r,ψ̄i

(st, at) = Ea∼πθ(·|s)

[
r(st, at) + Qr,ψ̄i

(st+1, a)− α log πθ(a′|st+1)
]
.

The policy is trained to fulfill a dual objective that consists of maximizing the expected
reward, considering the entropy of the policy, and minimizing the expected cost scaled by
λ. As in Haarnoja et al. [17], a Gaussian noise is added in the action selection process to en-
courage exploration. Adding noise to the sampling action, given the state, let at = fθ(et; st).
Using SER from Equation (5), the objective function is now

Jπθ
= E(st ,at)∼D

{
(1 − c)

[
α log πθ( f (et; st)|st)− min

i=1,2
Qr,ψi (st, f (et; st))

]
+ cλQc,ϕ(st, at)

}
. (10)

The policy is structured to optimize a linear scalarized combination of expected return
and cost, in addition to the Lagrange multiplier acting as a scaling factor on the cost
component. This design effectively creates a dynamic toggling mechanism: when the agent
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is not in the hazardous state, Hs, it focuses on maximizing the expected return; conversely,
when it enters Hs, the emphasis shifts towards minimizing the expected cost. This adaptive
strategy enables the policy to balance between achieving its goals and maintaining safety
under varying conditions, even without object resetting.

4.5. Lambda Training

In the context of Lagrange optimization, λ is the multiplier, which is crucial for controlling
cost. λ is updated as a function of Softplus times the proportion of expected cost:

Jλ = ∑
t

1
β

log(1 + exp(βλt))(Qc,ϕj(st, at)− d), (11)

as the agent violates the constraint limit, lambda increases to put more weight on Qc in (10). λ is
updated every other step to discourage an early conservative policy.

5. Results and Discussion

This section delineates the configuration of the neural networks and parameters used
in the experiments. Subsequently, it presents the results of the proposed method and
provides an analysis of the cost limit. Finally, the results and limitations are discussed.

5.1. Neural Network Details

This study uses two feedforward neural networks, each featuring two hidden layers
with 128 neurons, to control a UR5 robotic arm. These networks are distinct primarily in
their output layers to suit their specific functions. For the critic networks, a single neuron
in the output layer is designated to calculate a Q value for each state, which is crucial for
assessing the actions proposed by the actor. On the other hand, the output layer of the
actor–network is made out of six neurons corresponding to the six joints of the UR5 arm,
with each neuron responsible for each joint angle. To enhance decision-making throughout
the learning process, the Adam optimizer is used to learn the weights of the networks.

5.2. Experimental Setup

The experiments were conducted on a desktop PC equipped with an Intel Core i9-
7900X processor, an NVIDIA GeForce RTX 3090 GPU, and 32 GB of DDR4 memory. The
implementation was in Python (v 3.8.16), and the major packages used were PyVista (v
0.38.5) to model the object and PyTorch (v 1.13.1+cuda 11.7) for neural network training;
MuJoCo (v 2.3.3) was used as the simulation environment for the UR5 arm robot. The
project folder with all the related files and source code modules can be found in the
pML0x0/Scalarized-LM-SAC GitHub repository.

For a consistent analysis, both methods were tested under identical hyperparame-
ters. Table 1 details the experiment’s hyperparameters and their respective values. To
clarify some of these parameters, the state features, when combined, result in a state di-
mension of 48. This dimensionality corresponds to the inputs that the agent considers
in its decision-making. The output of the actor–network, which consists of six neurons,
matches the dimension of the action space, with each neuron influencing one aspect of the
arm movement.

The parameter that controls exploration over SAC is α. Table 2 shows the results for
the selection of α. Given the average violation counts and average collision counts over
five seeds and 6000 episodes, a constant value of α = 0.05 is selected.

The initial value of λ is set to −10 to encourage initial exploration; a higher starting
point could make the agent too conservative in decision-making. The learning rate of
λ determines how significantly λ is adjusted in response to the expected cost. The β
parameter is critical in defining the steepness of the Softplus function, which affects how
abruptly λ is updated. The soft-update parameter forms a linear combination with the local
and target networks, ensuring better stability in the learning process as opposed to having
the same network also act as the target. Finally, the action range, expressed in radians,
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specifies the maximum rotational movement allowed for each robot joint in a single action
step. A small range is chosen to encourage safe movements of the robotic arm.

Table 1. Hyperparameter values used to run the experiments.

Hyperparameter Symbol Value

State dimension - 48
Action dimension - 6
Discount factor γ 0.99999
Initial temperature parameter α 0.05
Cost limit d 0.001
Initial lambda λ −10
Lambda learning rate - 0.001
Softplus Beta β 0.5
Network learning rate - 0.0001
Soft-update parameter - 0.005
Object (radius) O 0.2
Sphere (radius) H 0.35
Replay buffer D 300,000
Batch size - 256
Action range in radians - ±0.0698132

Table 2. Alpha hyperparameter tuning results.

Alpha (α) 0.05 0.1 0.2 0.3 0.4

Violations 14,812.75 15,188.5 21,314.0 15,845.25 24,864.25
Collision 168.75 214.75 681.5 256.0 590.0

5.3. Performance Comparison

This subsection presents the results of the proposed approach, which combines scalar-
ized expectation with Lagrange multipliers (LM) and is compared with the method of
solely using LM in a dynamic UR5 environment where the object to be avoided does not
reset. Three key metrics are used to draw a comprehensive comparison: the cumulative
number of violations, the total count of collisions, and the average reward achieved per
episode. In the studies presented, the figures display the various metrics on the y-axis
and their progression over episodes on the x-axis. The range of the plots is represented
by the minimum and maximum values across five seeds, with the solid line indicating
the average.

Figure 2 shows the average reward for the proposed method compared with solely
using LM. The average reward also depends on the number of timesteps taken to reach the
goal. Given the negative reward function (6), the more steps that are taken in an episode,
the lower will be the average reward. In the early training phase, the number of steps can
be increased because the agent is more exploratory. However, the nature of exploration can
also cause the agent either to collide more often or to reach the goal state more by chance.
This results in higher variation in the early stage of training.

Figure 3 shows the performance of the proposed model over violations and collisions.
A violation occurs when any arm link in movement, li, comes close to colliding with an
object, but does not hit the object; then li ∈ Hs ∧ li /∈ Os. The cumulative number of
violations is shown in Figure 3a. A collision occurs when any arm link in movement hits
the object; then li ∈ Os. Figure 3b shows the cumulative number of collisions.

Figure 4 provides an analysis of the different success rates. In concrete terms, collision-
free corresponds to a successful trajectory where none of the robot’s links collide with
the object but may enter the violation region, hence li ∈ Hs ∧ li /∈ Os. Violation-free
corresponds to a successful trajectory without considering whether a violation occurred
or a collision. The method achieves rates of 84% and 98% for violation-free and collision-
free, respectively.
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Figure 2. Averagereward progress over episodes. The blue curve represents the LM method alone,
and the orange curve is the proposed scalarized + LM method.

Figure 3. Performanceover violations and collisions: (a) cumulative violations and (b) cumulative collisions.

Figure 4. Success performance rate over violations and collisions.

The results show that the proposed approach yields better results without additional
penalties on the reward function. This was achieved because the arm is better at avoiding
the object to reach the goal state, yielding consistent steps. In addition, the trend in average
rewards for the proposed approach slightly reduces before finding a constant average,
indicating a more risk-averse stance as λ increases. However, the trend for the LM approach
decreases with the number of steps and the inability to fully avoid the object when moving
closer to the goal state.
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5.4. Cost Limit Parameter Analysis

This subsection analyses the results derived from the cost limit variation and the
performance of the proposed method with scalarized expectation and Lagrange multipliers
(LM). The performance of the method over violations and collisions is shown in Figure 5.
The range of the plots is represented by the minimum and maximum values across five
seeds, with the solid line indicating the average.

Figure 5. Effects of cost limit variation over (a) cumulative violations and (b) cumulative collisions.
For visualization purposes, the number of episodes is reduced.

The cost limit, d, plays an important role in reducing violations and collisions when
using the scalarized expected return with the LM approach. Figure 5 shows the effect,
highlighting the relationship between d and the number of violations and collisions. A
smaller value of d corresponds to fewer cumulative violations and collisions. This effect
occurs because, as d decreases, the allowable cost decreases. Setting the cost limit d = 0
should theoretically reduce the violations to zero, at which point the reward function can
be ignored.

5.5. Discussion

Combining scalarized expectation with Lagrange multipliers (LM) improves perfor-
mance in avoiding obstacles in a dynamic environment, as seen in the UR5 setup. The
method’s effectiveness is evident through fewer violations and collisions, and a stable
reward trend, compared with using LM alone. This suggests that the integrated approach
better balances exploration and goal achievement, leading to more consistent and efficient
task completion. The analysis also points out the role of cost limits in minimizing risks,
indicating a direct correlation between lower cost limits and reduced incidence rates.

However, this approach has limitations, including its reliance on a deterministic indica-
tor cost function and the challenges associated with min–max type problems in non-convex
optimization. The first is the assumption that the indicator cost function is deterministic
and relies on the labels of safe and unsafe regions being well defined. Stochasticity in the
cost function can misguide the optimization objective towards optimizing in the wrong
direction. In concrete terms, the cost function in areas labeled safe with some stochasticity
would return 0 + ζ, where ζ can be inherent noise. This may switch the polarity of the
return value labeled safe if the noise has a negative value, or could increase the return
value, which directly affects Equation (10) because it relies on the immediate cost value. To
alleviate this, a threshold could be established; however, the solution then becomes reliant
on the threshold. The second caveat is the inherent challenges in min–max type problems
in non-convex optimization [42]. A problem formulated in this setting can achieve only
an approximation to the true solution because the max over policy π in Equation (4) is
approximated with a neural network. This makes stability in training a problem that needs
to be addressed. However, with direct scaling of the immediate cost function values, the
challenges of min–max are reduced because the toggling effect treats it one objective at
a time.
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6. Conclusions and Future Work

This work highlights the challenges posed by robot–human coexistence and the im-
portance of intuitive behavior from robots. A novel approach is presented by including
a scalarized expected return in a CMDP problem and directly using the cost values sam-
pled from the replay buffer. In addition to the trainable LM variable, which scales the
expected cost, the cost samples used from the replay buffer scale the expected return and
the expected cost as the SER scaling component. It is easier to interpret the workings of
this approach on a single sample basis in a non-deep RL setting. The method optimizes
expected returns in areas not designated with a cost label of 1, while actively avoiding
expected costs in areas labeled with a cost of 1. This strategy is more straightforward than
the iterative adjustment of λ to a point where the objective is balanced, specifically for
avoiding areas with a cost label of 1. In addition, a notable limitation of using solely LM
without the scalarized expectation is the need for a large number of samples to achieve the
optimal balance. In contrast, the proposed approach achieves effective results. It advances
the ability for robots to be present in shared spaces, paving the way for safer and more
effective interactions between humans and machines in dynamic environments.

In future work, it would be valuable to deploy and test a model of the proposed ap-
proach on an actual UR5 robotic arm. Such a deployment would provide valuable insights
into how the model is scalable and how effective the model is in real-world scenarios
beyond simulated environments. In addition, exploring integration of the scalarization
method with the coupled CMDP approach, which would be an extension of composite
MDP as described by Singh et al. [43], could be a promising direction. In this expanded
framework, each nonstationary link of the arm would be assigned its own constraint multi-
plier, leading to a multi-dimensional constraint problem represented by a vector of λ ∈ R|L|,
where |L| signifies the number of links. This approach would effectively create a system
of composite CMDPs, enabling more nuanced and link-specific optimization in the arm’s
movement and decision-making.
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