
Citation: Tolis, F.C.; Trakas, P.S.;

Blounas, T.-F.; Verginis, C.K.;

Bechlioulis, C.P. Learning to Execute

Timed-Temporal-Logic Navigation

Tasks under Input Constraints in

Obstacle-Cluttered Environments.

Robotics 2024, 13, 65. https://

doi.org/10.3390/robotics13050065

Academic Editors: Bruno Brito and

Giorgos Mamakoukas

Received: 6 February 2024

Revised: 29 March 2024

Accepted: 23 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Learning to Execute Timed-Temporal-Logic Navigation Tasks
under Input Constraints in Obstacle-Cluttered Environments †

Fotios C. Tolis 1 , Panagiotis S. Trakas 1 , Taxiarchis-Foivos Blounas 1 , Christos K. Verginis 2

and Charalampos P. Bechlioulis 1,3,*

1 Division of Signals and Control Systems, Department of Electrical and Computer Engineering,
University of Patras, Rio, 26504 Patras, Greece; fotistece@gmail.com (F.C.T.); ptrakas@upatras.gr (P.S.T.);
up1066656@ac.upatras.gr (T.-F.B.)

2 Division of Signals and Systems, Department of Electrical Engineering, Uppsala University,
752 37 Uppsala, Sweden; christos.verginis@angstrom.uu.se

3 Athena Research Center, Robotics Institute, Artemidos 6 & Epidavrou, 15125 Marousi, Greece
* Correspondence: chmpechl@upatras.gr
† Verginis, C.K.; Vrohidis, C.; Bechlioulis, C.P.; Kyriakopoulos, K.J.; Dimarogonas, D.V. Reconfigurable motion

planning and control in obstacle cluttered environments under timed temporal tasks. In Proceedings of the
2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 951–957.

Abstract: This study focuses on addressing the problem of motion planning within workspaces
cluttered with obstacles while considering temporal and input constraints. These specifications
can encapsulate intricate high-level objectives involving both temporal and spatial constraints. The
existing literature lacks the ability to fulfill time specifications while simultaneously managing
input-saturation constraints. The proposed approach introduces a hybrid three-component control
algorithm designed to learn the safe execution of a high-level specification expressed as a timed
temporal logic formula across predefined regions of interest in the workspace. The first component
encompasses a motion controller enabling secure navigation within the minimum allowable time
interval dictated by input constraints, facilitating the abstraction of the robot’s motion as a timed
transition system between regions of interest. The second component utilizes formal verification
and convex optimization techniques to derive an optimal high-level timed plan over the mentioned
transition system, ensuring adherence to the agent’s specification. However, the necessary navigation
times and associated costs among regions are initially unknown. Consequently, the algorithm’s
third component iteratively adjusts the transition system and computes new plans as the agent
navigates, acquiring updated information about required time intervals and associated navigation
costs. The effectiveness of the proposed scheme is demonstrated through both simulation and
experimental studies.

Keywords: task and motion planning; constrained motion planning; collision avoidance; input
constraints; temporal logics; robotics; prescribed performance control; adaptive performance control;
hybrid control

1. Introduction

In recent years, there has been a notable research focus on temporal-logic-based
motion planning, driven by its automated, correct-by-design control synthesis approach
for autonomous robots. Temporal logics provide a powerful framework for articulating
planning objectives that go beyond simple point-to-point navigation [1–7]. The integration
of time constraints widens the scope to encompass a broader range of tasks, such as
“collect data in region C every 20 s and transfer it to region D at least once every 120 s”.
Such capabilities are crucial for autonomous systems operating in dynamic and time-
sensitive environments.

Robotics 2024, 13, 65. https://doi.org/10.3390/robotics13050065 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics13050065
https://doi.org/10.3390/robotics13050065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0009-0007-3741-6551
https://orcid.org/0000-0002-6064-7370
https://orcid.org/0009-0008-7745-2589
https://orcid.org/0000-0001-9850-2540
https://doi.org/10.3390/robotics13050065
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics13050065?type=check_update&version=1

Robotics 2024, 13, 65 2 of 25

Tasks formulated using timed temporal logics such as Metric Temporal Logic (MTL)
or Metric Interval Temporal Logic (MITL) [8] necessitate abstracting the robot’s motion into
a transition system across predefined regions in the workspace. This abstraction requires
implementing suitable feedback controllers to facilitate timed navigation between these
regions. Additionally, as robots operate in environments cluttered with obstacles and are
subject to input-saturation constraints, designing such controllers becomes highly complex.
The duration of navigation within the workspace, accounting for these constraints, cannot
be arbitrarily predetermined. These insights showcase the challenge of motion planning
under timed temporal tasks and input constraints in obstacle-cluttered environments,
which we address in this paper. In particular, hardware constraints inherently impose
limitations on actuation capacity in robotic systems. These constraints can significantly
degrade the performance of closed-loop systems, resulting in inaccuracies or even insta-
bility. Consequently, developing control strategies that effectively handle these actuation
constraints holds practical importance and theoretical significance. Nonetheless, it remains
a formidable challenge for designers of control systems.

Related Works and Contributions

Numerous works in the literature handle tasks expressed through timed temporal
logics, including MTL or MITL [9–20]. However, several of these works overlook con-
tinuous robot dynamics, either assuming unrestricted robot navigation in a predefined
time or assuming obstacle-free environments [11–13,15]. Achieving timed navigation
in obstacle-cluttered environments is explored in [14] through sampling-based planning
but without considering timed temporal logic formulas. Some works, such as [9,16–18,21],
address obstacle avoidance by partitioning the workspace into cells and utilizing graph-
search methods. Nevertheless, these methodologies can be computationally intensive in
large workspaces. A manipulation planning framework that employs linear temporal
logic (LTL) specifications, enabling the expression of complex tasks, was presented in [22].
The framework tackles computational hurdles through an abstraction method and employs
a multi-layered planning structure. However, the planner’s runtime performance dete-
riorates with an increase in the number of objects and locations and with more complex
LTL specifications. The authors of [23] propose an integrated approach combining motion
planning and hybrid feedback control to achieve complex MITL missions. In particular,
they utilize sampling-based motion planning to find waypoints, compute timestamps
for reaching waypoints based on clock zones, and employ Time-Varying Control Barrier
Functions for low-level feedback control between waypoints. Additionally, the approaches
in [16,17,21] use optimization techniques that yield maximum-velocity controllers, poten-
tially leading to conservative estimates of transition times and unnecessarily high control
effort. More recently, the authors of [24] introduced a reactive control scheme, emphasiz-
ing its ability to meet LTL specifications while demonstrating resilience to disturbances.
The work in [25] presents a formal control framework aimed at achieving temporal logic
tasks and addressing challenges arising from conflicts between mission objectives and
safety constraints. Additionally, the synthesis of controllers under asynchronous tempo-
ral robustness constraints is explored in [26], ensuring resilience against individual time
shifts within its sub-trajectories. The work in [27] introduces a robust task and motion
planning algorithm, blending dynamic planning and behavior-tree-based control strategies
for the reactive TAMP method by employing LTL and motion cost approximation. Notably,
most of the related works in the literature (e.g., [9–11,13,16,18–20,24–29]) entirely neglect
input-saturation constraints and their defining impact on the evolution of robot dynamics,
consequently affecting task satisfaction.

This work introduces a novel control scheme by incorporating input constraints
into the motion planning problem under timed temporal task objectives. The proposed
algorithm learns to execute a given timed task optimally considering the input constraints.
Initially, given predefined regions of interest in an obstacle-cluttered workspace, previous
results on closed-loop feedback navigation [30] are utilized to enable safe timed transitions

Robotics 2024, 13, 65 3 of 25

of the robot, which are achieved via a robust controller designed based on the adaptive
performance control methodology [31]. This facilitates the abstraction of the robot as a timed
transition system over the regions without requiring further refinement of the workspace
partition. Unlike our prior work in [10], arbitrary time constraints for each transition
are no longer guaranteed due to input limitations. More specifically, these limitations
can hinder the completion of each transition in a prespecified time span, and, therefore,
the corresponding time constraints can no longer be arbitrarily set. To address this, we
employ an iterative learning scheme utilizing formal verification techniques to derive a
plan satisfying the untimed specification. The assignment of transition times is then recast
as a convex optimization problem. The algorithm considers time violations, recalculating
times after each transition by incorporating newly acquired information about the time and
control effort required for task completion.

The main contributions of this work are summarized as follows:

• Contrary to [9–11,13,16,18–20,24–29], the proposed learning algorithm for timed tem-
poral tasks addresses input constraints that inherently lead to plan reconfiguration.

• We significantly extend the path planner of [30] by considering more generic workspaces,
unicycle robot dynamics, and input constraints.

• The implemented low-level controller guarantees the robot’s safe navigation within
workspaces cluttered with obstacles, requiring no prior knowledge of the system or
extensive parameter tuning, which facilitates the integration into realistic experimen-
tal setups.

2. Preliminaries

In this section, we provide an overview of certain foundational concepts that will be
referenced throughout the subsequent discussion.

An atomic proposition is a statement concerning problem variables and parameters that
can assume a truth value of either True(⊤) or False (⊥) at a specific time instance.

Definition 1. A time sequence t0t1t2 . . . [32] constitutes an infinite series of time values tj ∈ R≥0,
j ∈ N0, where each value is determined by adding a constant tj,j+1 ∈ R≥0 to the preceding one.

Definition 2. A timed word w over a finite set of atomic propositions AP consists of an infinite
sequence w = (w0, t0)(w1, t1), . . . , where w0, w1, w2, . . . forms an infinite word over 2AP and
t0, t1, t2, . . . represents a time sequence.

Definition 3. A Weighted Transition System (WTS) is a tuple T := (Π, Π0,−→,AP ,L, γ),
where Π is a finite set of states, Π0 ⊆ Π is a set of initial states,−→⊆ Π×Π is a transition relation,
AP is a finite set of atomic propositions, L : Π→ 2AP is a labeling function, and γ :−→ → R≥0
is a map that assigns a weight to each transition.

Definition 4. A timed run of a WTS is an infinite sequence R := (π0, t0)(π1, t1)(π2, t2) . . .
such that π0 ∈ Π0, πj ∈ Π, and πj → πj+1, for all j ∈ N0, where the sequence of the
time stamps t0t1 . . . conforms to Def. 1. The timed run r generates a timed word w(R) :=
w0(π0)w1(π1)w2(π2) . . . := (L(π0), t0)(L(π1), t1)(L(π2), t2) . . . over the set 2AP , where, for
each j ∈ N0, L(πj) is the subset of atomic propositions that are true at state πj at time tj.

The syntax of timed logics characterized by the grammar presented in (1) encompasses
operators such as eventually (♢), always (□), and until (U), along with time intervals I [33].
A detailed description of the generalized semantics of (1) can be found in [34,35].

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 |♢Iϕ |□Iϕ | ϕ1UIϕ2, (1)

We also consider a finite set of clocks CL := {cl1, . . . , cl|CL|} and Φ(CL), a set of clock
constraints of the grammar (2), where cl ∈ CL is a clock, ψ ∈ Q is a clock constraint,
and ▷◁∈ {<,>,≥,≤,=}. Clocks acquire values through mappings called clock valuations.

Robotics 2024, 13, 65 4 of 25

To denote that a valuation v or a time instant t satisfies a clock constraint ϕ, we simply
write v |= ϕ and t |= ϕ, respectively.

ϕ ::= ⊤ | ¬ϕ | ϕ1 ∧ ϕ2 | cl ▷◁ ψ, (2)

Definition 5 ([32]). A Timed Büchi Automaton is a tuple At := (Q, Q0,CL,AP , E, F), where Q
is a finite set of locations, Q0 ⊆ Q is the set of initial locations, CL is a finite set of clocks, AP is
a finite set of atomic propositions that defines the input alphabet 2AP , E ⊂ Q×Φ(CL)× 2CL ×
2AP ×Q gives the set of edges of the form e = (q, g, R, α, q′), where q, q′ are the source and target
locations, g is the guard of edge, R is a set of clocks to be reset upon executing the edge, and α is an
input string. F ⊆ Q corresponds to the set of accepting locations.

Between two states (q, v), (q′, v′) of anAt, which are affixed by an edge e = (q, g, R, α, q′),

there can exist discrete transitions (q, v) e−→ (q′, v′) if v |= g or time transitions (q, v) δ−→
(q′, v′) if q = q′ and v′ = v + δ, where δ ∈ R. Starting from an initial state of At, infinite

runs relate to infinite sequences of time and discrete transitions (q0, v0)
δ0−→ (q′0, v′0)

e0−→
(q1, v1)

δ1−→ (q′1, v′1) . . . , where ei = (qi, gi, Ri, σi, q′i), ∀i ∈ N0, and they correspond to timed
words wt = (σ0, τ0)(σ1, τ1), with τi+1 = τi + δi, ∀i ∈ N0. For a timed word to be deemed as
accepting, it must be linked to an accepting run. If there is an accepting run for a particular
At, it is possible to produce it [32]. Timed formulas ϕ over AP , originating from the
decidable realm of timed logics ([33,35]), can undergo algorithmic conversion into a Timed
Büchi Automaton (TBA) with an input alphabet 2AP . This transformation ensures that the
language of timed words satisfying ϕ aligns with the language of timed words generated
by the TBA.

3. Problem Formulation

Consider a unicycle robot operating in an open bounded set W ⊂ R2 and whose
position is denoted by p = [x, y]T ∈W. The workspace is populated with m ∈ N connected,
closed sets {Oi}i∈J that are indexed by the set J := {1, . . ., m}, corresponding to obstacles.
Accordingly, we define the free space as

F :=W\
⋃

i∈J
Oi

Unicycle robot motion is described by the following nonholonomic kinematic model:

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(3)

where v, ω denote the translational and rotational velocities, respectively; they are consid-
ered the control inputs of the system and are compactly written as u = [v, ω]T ∈ U . Note
that owing to physical limitations, the combined motion of the robot is constrained within
the following compact set [36]:

U := {(v, ω) : |v/α|+ |bω/α| ≤ 1} (4)

where α is the maximum wheel velocity and b denotes half of the distance between the two
driving wheels. We identify K points of interest within the unoccupied space as ck ∈ F for
each k ∈ K := 1, . . ., K, with Π := c1, . . ., cK representing specific attributes (e.g., charging
area, repair stop). These attributes are encoded as boolean variables using a finite set of
atomic propositions AP determined by the labeling function L : Π→ 2AP . We define the
region of interest πk associated with each point ck as the set

πk := B̄(ck, rπk) ∩ F , rk ∈ R≥0

Robotics 2024, 13, 65 5 of 25

with B̄(c, r) being the closed ball of radius r > 0 centered at c ∈ R2, and the free space
outside the regions of interest is πW := F\(∪k∈Kπk). The agent is assumed to be in a
region πk, k ∈ K,∈ πW , simply when x ∈ πk and x ∈ πW , respectively. For clarity, we
operate under the assumption that all workspace data are predetermined. However, our
analysis extends to scenarios where the workspace is initially uncharted, and obstacles
are encountered during exploration. We further assume that the obstacles and regions of
interest are pairwise disjoint and strictly within W.

As previously stated, our focus lies in formulating timed temporal formulas over
the atomic propositions AP and, consequently, over the regions of interest Π within F .
To accomplish this, we must discretize the system using a finite set of states. This is achieved
by ensuring timed transitions between the regions of interest in Π and establishing a clearly
defined timed transition system among them. Before proceeding, we require the following
definition concerning the transitions of the agent.

Definition 6. Suppose that p(tk) ∈ F for a tk ∈ R≥0, indicating that the agent is located in either
a region πk for some k ∈ K or in πW . Then, given δ ∈ R>0, there exists a timed transition to πℓ,
ℓ ∈ K, represented as πk → πℓ (or πW → πℓ), if there exists a time-varying feedback control law
u : F × [tk, tℓ]→ R2, with tℓ ≥ tk + δ, ensuring that the solution p of the closed-loop system (3)
satisfies the following conditions:

(i) p(t) ∈ πl , for all t ∈ [tk + δ, tl)
(ii) p(t) ∈ F , for all t ∈ [tk, tℓ]
(iii) p(t) /∈ πm, for all m ∈ M, t ∈ [tk, tℓ]

whereM := K\{k, ℓ} if p(tk) ∈ πk andM := K\{ℓ} if p(tk) ∈ πW .

In essence, Definition 6 simply states that the agent must move between two regions
πk, πℓ (or πW and πℓ) while avoiding all other regions of interest, obstacles, and the

workspace boundary. To highlight the transition time δ, we occasionally use πk
δ−→ πℓ

instead of πk → πℓ. Subsequently, we define the agent’s behavior to formulate the problem
of timed specification.

Definition 7. Consider a robot trajectory p : [t0, ∞) → F of (3), where t0 ∈ R≥0. Then,
a timed behavior of p is the infinite sequence b := (p(t0), σ0, t0)(p(t1), σ1, t1), where t0, t1 is a
time sequence according to Definition 1, p(t0) ∈ Π̃, p(tl) ∈ πjl , jl ∈ K, for l ∈ N0, and σl ∈
L(πjl) ⊆ 2AP , i.e., the subset of atomic propositions that are true when p(tj) ∈ πjl , for l ∈ N0.
The timed behavior b satisfies a timed formula ϕ if and only if bσ := (σ0, t0)(σ1, t1) |= ϕ.

The problem can be now rigorously formulated as follows.

Problem 1. Consider a robot governed by (3) operating within a known workspace, starting from
an initial position p(0) ∈ F and constrained by input saturation as specified in (4). The objective
is to devise a control strategy that, given a timed formula ϕ over AP and a labeling function L̄,
produces a trajectory p : [0, ∞)→ F achieving a timed behavior b that satisfies ϕ.

4. Methodology

The proposed approach comprises three layers: (i) a continuous control strategy
ensuring the agent’s navigation to a target point from obstacle-free configurations while
considering input constraints, (ii) a discrete-time plan over regions of interest for the
robot utilizing formal verification and optimization methods, and (iii) an iterative learning
procedure that improves the high-level plan, taking into account the traversed path of the
robot and the limitations imposed by the input constraints.

4.1. Motion Controller

The initial step of the proposed approach involves designing a control scheme to
establish a well-defined transition according to Definition 6 to address the input constraints

Robotics 2024, 13, 65 6 of 25

of the robot. Let p(tk) = [x(tk), y(tk)]
T ∈ F , specifically, p(tk) ∈ πk (p(tk) ∈ πW) for some

tk ∈ R≥0 and k ∈ K. Given δ ∈ R>0, the aim is to design a time-varying state-feedback

control law u : F × [tk, tℓ]→ U , with tℓ ≥ tk + δ, ensuring πk
δ−→ πℓ (πW

δ−→ πℓ). To achieve
this, the free space is redefined as

F :=W\
(⋃

i∈J
Oi ∪

⋃
m∈M

πm

)
.

Henceforth, we aim to design a robust adaptive control scheme that addresses input
limitations and guarantees the navigation among any two regions of interest in a prescribed
time interval δ. We note that in cases of excessive input saturation, navigation in any
arbitrarily prescribed time interval δ is not always possible. In such cases, the controller
should ensure navigation between any two specified regions of interest in a time interval
δ′ as close to the initially prescription as the limitations allow. The key to its functionality
lies in transforming the free space F into a topologically equivalent yet geometrically
simpler space. To achieve this, a diffeomorphism T : F → P is employed, where P is
a point world [37], i.e., an open disk modulo a finite set with cardinality equal to the
number of obstacles and regions of interest |J| + |M|. The transformation described is
not analytically derived but rather obtained through the solution of two boundary value
problems, as described in [38] (pp. 14–17). The feedback controller that we propose
ensures the prescribed navigation by adeptly avoiding obstacles. It guarantees that the
distance ∥p(t) − cℓ∥ remains less than ρv(t), where ρv(t) is an adaptive performance
function that will be designed later. Let us now provide a path planner, which was
initially proposed in [30], designed to ensure the secure navigation of holonomic mobile
robots within spherical environments that are densely populated with static obstacles. The
reference command is determined by the following law:

ur(t, q) = uγ(t, q) + uβ(q) (5)

with uγ(t, q) = −w(t, q)(q − qd), where q and qd represent the current position of the
robot and its destination in the spherical world, respectively. The term w(t, q) corresponds
to a state-dependent, time-varying control gain that vanishes as the robot approaches
its destination point. The term uβ(q) ∈ R2 is activated when the robot approaches an
obstacle beyond a predefined threshold, ensuring collision avoidance (additional details
regarding (5) can be found in [30]). Note that the first term in (5) drives the robot towards its
designated destination, while the second term is dedicated to enforcing collision avoidance,
thus ensuring the forward invariance of the workspace. Henceforth, the control design is
structured in three distinct steps, as outlined below.

Step 1. We define the normalized position error ξv := ∥p(t)−cℓ∥2

ρv(t)
. Employing the

coordinate transformation T : F → P , we design the reference signal:

a(t, p) = J−1(T(p))

[− k1 ln 1
1−ξv(t)

(1− ξv(t))ρv(t)
(T(p)− T(pd))

+ uβ(T(p))

]
, k1 > 0 (6)

where J(·) denotes the Jacobian of the coordinate mapping T(·), and uβ(·) is the collision
avoidance term, as defined in [30]. When the motion of the robot is aligned with a(t, p),
i.e., ṗ = a, then the prescribed time navigation problem regulated by the time parameter δ is
solved for appropriately chosen parameters (see Theorem 1 in [30]). However, the pfaffian
constraints, i.e., unicycle model of the robot, prevent the direct implementation of the
reference signal a ∈ R2 to the system (3), which leads us to the next design step.

Step 2. Given the reference vector a = [ax, ay]T ∈ R2, we define vr := ∥a(t, p)∥ and

θr := arctan
(

ay
ax

)
, denoting its magnitude and direction, respectively. To avoid discontinu-

ities of arctan(·), we exploit the formula cos (θr − θ) := ax(t,p)
a(t,p) cos (θ(t)) + ay(t,p)

a(t,p) sin (θ(t))

Robotics 2024, 13, 65 7 of 25

to define the orientation error eω := 1− cos (θr − θ) ∈ [0, 2] and the corresponding nor-
malized error ξω := eω(t)

ρω(t)
, with ρω(t) denoting a performance function to be designed.

Note that by imposing adaptive performance attributes to the normalized orientation error
ξω, we ensure that eω(t) < ρω(t), ∀t ≥ 0. Since aligning with the direction of a(t, p) is
crucial for ensuring collision avoidance, the fulfillment of orientation error constraints
takes precedence over that of position constraints. To quantify this priority, we define the
reference translational velocity as

vd(t, p) = sµ(ρω(t))vr(t, p) (7)

with the following smooth bump function:

sµ(ρω(t)) =

 0 if ρω(t) > µρ∞
ω

2
(

ρω(t)−ρ∞
ω

ρ∞
ω (µ−1)

)3
− 3
(

ρω(t)−ρ∞
ω

ρ∞
ω (µ−1)

)2
+ 1 if ρ∞

ω ≤ ρω(t) ≤ µρ∞
ω

with µ ∈ N− {1}, and ρ∞
ω denotes a performance parameter that will be defined later

along with ρω(t). In this manner, the reference translational velocity vd(t, p) is set to zero,
i.e., the robot is commanded to stop, when the orientation error exceeds a safety threshold
µρ∞

ω . This pause continues until the robot aligns its orientation with the direction of (6),
thereby ensuring secure navigation within the workspace. Note that when ρω(t) = ρ∞

ω ,
then sµ(ρω) = 1, which implies that vd = vr. Moreover, we design the reference angular
velocity as follows:

ωd(t, p) =
k2sign(sin (θr − θ)) ln 1

1−ξω(t)

(1− ξω(t))ρω(t)
, k2 > 0. (8)

Step 3. In step 2, we designed the reference control input ud := [vd(t), ωd(t)]T ∈ R2

that ensures safe navigation with performance guarantees. Nevertheless, since ud(t) is
constrained within the compact set U , we leverage a saturation function to produce the
actual control input that obeys the input constraints. Hence, by selecting v̄ = a and
ω̄ = a/b as the translational and rotational velocity saturation levels, respectively, we
design a saturation function σ(·) : (−∞, ∞)× (−∞, ∞)→ U that maps the desired control
signals ud /∈ U onto the boundary of the set U based on the radial distance of ud from the
origin. The diamond-shaped input constraints illustrating the functionality of saturation
function σ(·) are depicted in Figure 1. Thus, the control input incorporating both input and
output constraints is obtained as follows:

u := [uv(t, p), uω(t, p)]T = σ(ud(t)) ∈ U . (9)

Finally, in order to provide the necessary compromise between input and output constraints,
we build on the Adaptive Performance Control (APC) technique [31], to introduce the
following adaptive performance laws:

ρ̇v = −sµ(ρω(t))λ1(ρv(t)− ρ∞
v) + |uv(t, p)− vd(t, p)|, λ1, ρ∞

v > 0 (10)

ρ̇ω = −λ2(ρω(t)− ρ∞
ω) + |uω(t, p)−ωd(t, p)|, λ2, ρ∞

ω > 0. (11)

with ρv(0) > ∥p(0)− cℓ∥2 and ρω(0) > eω(0). Note that the performance specifications
are incorporated through the parameters λi, i = 1, 2, i.e., the convergence rate, and ρ∞

i , i ∈
{v, ω}, i.e., the maximum allowable steady-state error when saturation is inactive.

Remark 1. The performance parameters in (10) define the specifications regarding the position
error ∥p(t)− cℓ∥2, indicating both the maximum duration and the accuracy with which the robot

will approach the desired position cℓ. By choosing λ1 > − 1
δ ln η2−ρ∞

1
ρ1(0)−ρ∞

1
and ρ∞

1 < η2, the proposed
control scheme (6)–(11) ensures that the robot will either reach cℓ within a radius of η in a time

Robotics 2024, 13, 65 8 of 25

interval less than δ or, in the case that transition within the time interval δ cannot be achieved, ensure
the best feasible navigation time while obeying the input constraints. Concerning the performance
parameters in (11), it is preferable to choose a value of λ2 that is relatively large and a value of ρ∞

2
that is relatively small. This selection enables the rapid and accurate tracking of the direction of the
reference vector (6), which is crucial for collision avoidance.

Figure 1. Saturation function to address diamond-shaped constraints; ud denotes the desired control
input, and σ(ud) denotes the feasible constrained control input based on the radial distance of ud
from the origin.

Remark 2. Note that the first term in both (10) and (11) is negative, enforcing the output con-
straints on the respective errors. Conversely, the second term is non-negative and becomes active
when the corresponding control input reaches saturation. This activation ensures the necessary
trade-off between input and output constraints. It is worth highlighting that when saturation is
inactive, the adaptive performance functions revert to their prescribed form with the exponential
rate dictated by the parameters λi, i = 1, 2.

In order to clarify the functionality of the proposed controller, we present a simple
illustrative paradigm. In this simulation, a mobile robot is commanded to navigate safely
to a predetermined position inside a workspace within a specified time period of δ = 5 s
or less. Figure 2 depicts both the real workspace (left) and the transformed sphere world
(right). In these figures, the initial position of the robot is denoted by a green triangle, while
the destination is denoted by a red ‘x’. One can see that the proposed controller safely
navigates the robot within the workspace and appropriately steers it to avoid collisions
with the static obstacles (denoted by blue and purple boxes). The constrained control
input u = [uv, uω]T and the diamond-shaped input constraints are depicted in Figure 3a.
Evidently, the control input obeys the input constraints, i.e., u(t) ∈ U for all t ≥ 0. The ori-
entation and position errors are depicted in Figure 3b,c, respectively. Notice that at the
beginning of the simulation, the robot remains static until the performance function incor-
porating the orientation error specifications drops below a prespecified threshold, i.e., until
sµ(ρω(t)) > 0. Furthermore, the predefined temporal constraint, i.e., δ = 5 s, is achieved
despite the presence of input saturation, as the decaying rate λ1, which determines the
navigation time, has been set large enough to provide convergence to the destination at
approximately t = 1.5 s.

Robotics 2024, 13, 65 9 of 25

Figure 2. Real (left) vs. transformed (right) workspace: the green triangle denotes the initial position
of the robot; the red ‘x’ denotes the destination of the robot; the black dotted line denotes the trajectory
of the robot.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

p
o

s
it

io
n

 e
rr

o
r

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.05

0.1

0.15

0.2

0.25

0.3

o
ri

e
n

ta
ti

o
n

 e
rr

o
r

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-6

-4

-2

0

2

4

6

(a)

Figure 3. Input constraints: (a) the actual control input u(t) (red asterisks) vs. the diamond-shaped
constraints (black line); (b,c) the orientation and position tracking error, respectively. The red line
corresponds to the tracking error, and the black line denotes the adaptive performance boundary.

The main properties of the proposed control strategy are outlined in the following
theorem.

Theorem 1. Consider a unicycle robot described by (3) operating within a planar environment
cluttered with obstacles and subject to the input constraints outlined in Section 3. The proposed
control scheme (6)–(11) ensures the safe navigation of the robot within the workspace, preventing
collisions and guiding the robot to its desired destination while also ensuring the following:

∥p(t)− cℓ∥2 < ρv(t)

1− cos (θr − θ) < ρω(t) , ∀t ≥ 0.
(12)

Robotics 2024, 13, 65 10 of 25

Proof. Let us first define the transformed errors ϵv := ln (1
1−ξv(t)

) and ϵω := ln (1
1−ξω(t)

).

Subsequently, consider the positive definite function V = 1
2 ϵ2

v + ϵ2
ω. Differentiating with

respect to time, we get

V̇ =
ϵv(t)

(1− ξv(t))ρv(t)

(
2(p− cℓ)T ṗ− ρ̇vξv

)
+

ϵω(t)
(1− ξω(t))ρω(t)

(
sin (θr(t)− θ(t))

(
θ̇r −ω

)
− ρ̇ωξω

)
.

Substituting the control protocol (6)–(11) into V̇, we obtain

V̇ =
ϵv(t)

(1− ξv(t))
(h1(t, p, ρv, ρω)− ζ1(ϵv)) +

ϵω(t)
(1− ξω(t))

(
h2(t, p, θ, θr, θ̇r, ρω)− ζ2(ϵω)

)
with

h1(t, p, ρv, ρω) =
1

ρv(t)

[
(p− cℓ)T ṗ + ∥p(t)− cℓ∥2sµ(ρω(t))λ1

(
1− ρ∞

v
ρv(t)

)]

h2(t, p, θ, θr, θ̇r, ρω) =
1

ρω(t)

[
sin (θr(t)− θ(t))

(
θ̇r −ω

)
+ eω(t)λ2

(
1− ρ∞

ω

ρω(t)

)]
ζ1(ϵv) = ξv|uv(t)− vd(t)|
ζ2(ϵω) = ξω |uω(t)−ωd(t)|.

Owing to the continuity of sµ(ρω(t)), θr(t), θ̇r, the fact that the system (3) is input-to-
state stable, and the boundedness of the control input u(t) because of input constraints,
it is concluded that there exist H1, H2 > 0 such that ∥h1(·)∥∞ ≤ H1 and ∥h2(·)∥∞ ≤
H2. These bounds are independent of upper bounds on ρv(t), ρω. Moreover, notice that

1
(1−ξv(t))

, 1
(1−ξω(t))

> 1, since |ξv(t)|, |ξω | < 1. Additionally, the continuous functions
ζ1(ϵv), ζ2(ϵω) are strictly increasing and radially unbounded, and the transformed errors
satisfy ϵv(t), ϵω(t) ≥ 0, which leads to

V̇ ≤ (H1 − ζ1(ϵv))ϵv(t) + (H2 − ζ2(ϵω))ϵω(t).

Consequently, V̇ becomes negative when ϵv(t) > ζ−1
1 (H1) and ϵω(t) > ζ−1

2 (H2). Fur-
thermore, since ϵv(0) and ϵω(0) are well defined, it can be concluded that ϵv(t), ϵω(t) are
uniformly ultimately bounded, which implies that ξv(t), ξω(t) < 1 for all t ≥ 0. Hence, it is
deduced that all closed-loop signals remain bounded, as well as that ∥p(t)− cℓ∥2 < ρv(t)
and eω < ρω(t), ∀t ≥ 0, completing the proof.

4.2. High-Level Plan Generation

The next step in our solution involves devising a high-level timed plan spanning
the regions of interest to satisfy the specified timed formula ϕ. This part is similar to
the respective part in [10], and we provide a concise summary here. Leveraging the
control mechanism introduced earlier, which enables transitions within the set Π, we
first abstract the robot’s motion into a finite transition system denoted as T := (Π̃, Π̃0,→
, AP, L̃, γ), where γ : (→) → R>0 assigns a cost to each transition, representing the
distance that the robot needs to travel. This cost is intricately linked to the number and
positions of obstacles and cannot be directly calculated. In the learning algorithm detailed
in Section 4.3, we initially set γ(πk → πℓ) = |ck − cℓ|, γ(πk → πk) = 0, and γ(πW →
πk) = γ(πk → πW) = |ck − x(0)|, for all k, ℓ,∈ K with k ̸= ℓ. These values are updated
as the robot navigates through the workspace. Subsequently, the timed formula ϕ over
the atomic propositions AP is translated to the TBA At = (Q, Q0, CL,AP , E, F) using
off-the-shelf tools [39]. Following that, we calculate the product Büchi Automaton AP as
AP := T ⊗ At = (S, S0,→P , FP , γP) [10]. Starting from S0, we employ graph-search
techniques to find the optimal path to the accepting states FP with respect to the cost γP ,

Robotics 2024, 13, 65 11 of 25

which satisfies ϕ [7,40]. Using the abbreviation s I−→ s′ for (s, g, R, s′) in the set of edges of
AP , such a path has the following form:

s̄p0

I0,1−→ s̄p1

I1,2−→ . . .
IL−1,L−→ s̄pL

IL,L+1−→

IL,L+1−→
(

s̄pL+1

IL+1,L+2−→ . . .
IL+Z−1,L+Z−→ s̄pL+Z

) f

The first part of the path contains a finite prefix, meaning a finite sequence of states to
be visited. The second part of the path, contained in the parentheses, is an infinite suffix,
which is a specific sequence of states to be visited infinitely many times. This infinite
frequency of visitation is represented by f . Additionally, s̄pj , j ∈ {0, . . . , L + Z}, denotes
the sequence

s̄pj := (πpj , qj0)
Ij0,1−→ . . .

Ij(ℓj−1),ℓj−→ (πpj , qjℓj
)

with πpj ∈ Π̃, qjι ∈ Q for j ∈ {0, . . . , L + Z}, ι ∈ {1, . . . , lj} and ℓj ∈ {0, . . . , |S|}. Moreover,
q(j+1)0

= qjℓj
, q(L+Z)ℓ(L+Z)

= q(L+1)0
, and

Ij,j+1 :=
{

qj,j+1, Rj,j+1

}
, Ijι,ι+1

:=
{

qjι,ι+1 , Rjι,ι+1

}
indicate the corresponding guards and reset maps for j ∈ {0, 1, . . . , L + Z − 1},
ι ∈ {0, . . . , ℓj−1}. The transition set IL+Z,L+1 is defined similarly. Consider now the
transitions

(πpj , qj0)
Ij0,1−→ . . .

Ij(ℓj−1),ℓj−→ (πpj , qjℓj
)
(Ij,j+1)−→ (πp(j+1) , q(j+1)0

)

that encode the physical transition from πpj to πpj+1 inAP . The overlap between the respec-
tive guards gj,j+1 and gι,ι+1, where ι ∈ 0, . . . , ℓj−1, defines a time interval
Ij,j+1 ∈ [a, b], [a, b), (a, b], (a, b), [a, ∞), (a, ∞) with a, b ∈ Q> 0 and b > a. This interval
satisfies tj,j+1 ∈ Ij,j+1 if tj,j+1 satisfies gj,j+1 and gι,ι+1 for ι ∈ 0, . . . , ℓj−1, where tj,j+1 rep-
resents the duration of the navigation from πj to πj+1. Similarly to [10], we frame the
assignment of these transition times as a convex optimization problem. To do this, let
tp := [t0,1, . . . , tL+Z−1,L+Z, tL+Z,L+1]

⊤ ∈ R> 0L+Z+1 be the concatenation of the transition
times, and let Lb := [lb0,1, . . . , lbL+Z−1,L+Z, lbL+Z,L+1]

⊤ represent the lower bounds for this
variable. The optimization problem is as follows:

min
tp

L+Z−1

∑
j=0

(
γ(πpj → πpj+1)

tj,j+1

)
+

γ(πpL+Z → πpL+1)

tj,j+1
(13)

s.t.
{

tj,j+1 ∈ Ij,j+1, tL+Z,L+1 ∈ IL+Z,L+1
tj,j+1 ≥ lbj,j+1, tL+Z,L+1 ≥ lbL+Z,L+1

(14)

for j ∈ {0, L+Z}. In addition to enforcing constraints arising from guard intersections, limi-
tations are imposed on the inputs through Lb. Failing to consider these bounds may result in
the assignment of transition times that are unattainable due to input constraints. Similarly to
the cost γ, these bounds are heavily influenced by the presence of obstacles among regions
and the input constraints, making a priori computation unfeasible. In the learning algorithm
outlined in Section 4.3, we initialize these bounds based on the initial costs and the input sat-
uration level v̄: lbπk→πl =

|ck−cℓ |
v̄ , lbπk→πk = 0, and lbπW→πk = lbπk→πW = |ck−x(0)|

v̄ , for all
k, ℓ,∈ K with k ̸= ℓ. These values are updated as the robot navigates in the workspace.
Furthermore, it is important to note that the objective function in (13) is a convex function
of tp, and the constraints can be expressed as linear inequalities and lower bounds on the
problem variables. Consequently, the optimization problem described above is convex and

Robotics 2024, 13, 65 12 of 25

can be efficiently solved using off-the-shelf software. The choice of this specific cost func-
tion is motivated by two observations: (i) the time assigned to a transition is an increasing
function of the transition cost, and (ii) shorter transition times are penalized.

4.3. Iterative Learning

The third part of the solution is an iterative procedure that is depicted in Algorithm 1
and derives feasible paths and transition times. After the optimization problem (13) and
(14) is solved and the time durations tp have been attained (line 8), the robot performs each
transition using the motion controller presented in Section 4.1 (line 9). Once transition

πpj

(tj,j+1)−→ πpj+1 is completed, the corresponding transition cost γ(πj → πj+1) is updated
with the length of the curve for the duration of the transition (line 10), which is more
accurate than the initial Euclidean-based estimate; the obstacles obstruct the straight-line
path between two regions of interest. The lower time bound required to perform the
transition lbπj→πj+1 is also updated accordingly. Specifically, this bound is updated only if
the transition duration takes longer time than the time requested (line 11–14).

With this new information, the associated optimization problem is resolved to acquire
new transition times (line 8). Notably, after each transition, the optimization problem
constraints are altered. Particularly, the TBA of the formula is shifted forward by a time
amount equal to the last performed transition, which induces a change in the guards and,
therefore, in the constraints.

Algorithm 1 Iterative Learning Algorithm
Input: Product Büchi Automaton AP , Initial position π0, Formula ϕ, Input Constraint level
v̄
Output: Optimal Cost Path: Path

1: Γ← InitializeCosts(π0)
2: Lb ← InitializeTimeBounds(π0, Costs, v̄)
3: Path← ∅
4: while Path ̸|= ϕ do
5: Pathi ← GraphSearch(AP , π0, Γ)
6: for j← 1 to (Length(Pathi)− 1) do
7: πpj ← Pathi(j), πpj+1 ← Pathi(j + 1)
8: tj,j+1 ← Solve((13)and(14), Γ, Lb)
9: Per f orm(πpj−→πpj+1)

10: UpdateCosts(Γ, γ(πpj , πpj+1))
11: if (πpj−→πpj+1) not achieved in tj,j+1 then
12: lbj,j+1 ← tj,j+1(actual)
13: UpdateBounds(Lb, lbj,j+1)
14: else tj,j+1(actual) ← tj,j+1

15: UpdatePath(Path, γ(πpj , πpj+1), tj,j+1(actual))

16: return Path

After each path is run, the algorithm repositions the robot in the initial state x(0) using
the motion controller (Section 4.1) to explore new potential paths. This repositioning allows
for an exhaustive search of timed paths, eventually deriving the one that optimally satisfies
the task with respect to the traveled distance. We stress that the learning algorithm of our
previous work [10], which did not accommodate input constraints, considered a fixed path
by only updating the time constraints of the optimization (13) and (14). Such a setting is
conservative, since the timed task might not be satisfied by all possible paths due to the
input constraints, regardless of the assigned times.

Remark 3. Regarding the time complexities of the framework, we note that the construction of
the Product Automaton is an offline procedure that does not affect the online solution time-wise.

Robotics 2024, 13, 65 13 of 25

Additionally, even though the optimization problem (13) and (14) has low computational complexity,
computational overhead can also be accounted for by allocating the required time or by optimizing
en route to the next region of interest. What does add to the time complexity, however, is the size
of the graph representing the Product Automaton. This is linked to the intricacy of the specified
timed formula ϕ and can prolong the graph-search stage and, therefore, the path selection stage.
We note that the time complexity of the iterative algorithm aligns with the time complexity of the
graph-search method employed. When selecting this method, one must take into account the size of
the graph in order to ensure the completeness and optimality of the produced solution of the search.

5. Simulation Study
5.1. Dynamic Obstacle Environment

The first step of our simulation study involves showcasing the effectiveness of the pro-
posed motion controller in workspaces occupied by dynamic obstacles. More specifically,
we consider a sphere world (Figure 4) containing static obstacles along with three mov-
ing ones, which follow oscillatory trajectories denoted by dotted lines. Arrows represent
suggestive directions of movement along each trajectory, and the dynamic obstacles are
depicted at indicative time instances. From a starting configuration in the workspace (green
triangle), we request a transition time of 10 time units (tu) for navigation to a destination
region (purple circle). We repeat the same scenario in a static equivalent of the workspace
by replacing the three moving obstacles with stationary ones, as displayed with the light
gray color in Figure 4. Observing the two cases, it is evident that the controller ensures
safe navigation in both static (blue path) and dynamic obstacle environments (red path).
Furthermore, the scheme naturally attempts to achieve the requested transition time speci-
fications, but the obstacle movement can add to the existing effect of the input constraints,
increasing both the required distance and the necessary transition time, as shown in Table 1.

Figure 4. Navigation in a dynamic obstacle environment. The green triangle represents the starting
position, and the purple circle represents the destination. The arrows indicate directions of motion
for the three dynamic obstacles along their trajectories (dotted lines). Depicted with the light gray
color are stationary obstacles, corresponding to the static environment case, and plotted with blue
is the resulting path. The red path represents the transition in the dynamic environment, and the
moving obstacles are displayed at indicative time instances along their trajectories.

Robotics 2024, 13, 65 14 of 25

Table 1. Transition characteristics.

Environment Transition Time Transition Distance

Static Obstacle Environment 26.7822 tu 1.3583 du
Dynamic Obstacle Environment 59.228 tu 1.3991 du

5.2. Comparison of Path Planners

In the following, we employ different planners to calculate the path between a starting
configuration and a destination region in the workspace, and we subsequently assess their
performance. To be precise, we utilize the following path planners:

• Proposed motion controller (Section 4.1)
• Rapidly Exploring Random Tree (RRT) planner
• Probabilistic Road Map (PRM) planner
• Bidirectional Rapidly Exploring Random Tree (BiRRT) planner

In addition, we examine the required transition time and the distance covered, since
these metrics are essential for the effective application of the three-layer approach (Section 4).
The scenario is illustrated in Figure 5. Examining the results in Table 2, it is evident that
the proposed controller is more efficient in calculating the distance-wise optimal path.
Additionally, it is the only one out of the four planners that can incorporate transition
time requirements, which are necessary when tackling complex motion planning tasks.
Finally, contrary to the other planners, the proposed scheme works online, rendering it
more dexterous in dealing with complex and dynamic environments.

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Figure 5. Paths resulting from different planners. The starting position is the black dot, and the
destination region is the green circle.

Table 2. Comparison of path planners.

Path Planner Transition Time Transition Distance
(Time Units (tu)) (Distance Units (du))

Proposed Motion Controller 9.32 tu 8.11 du
RRT 9.23 tu 9.28 du
PRM 16.09 tu 16.08 du

BiRRT 9.1 tu 9.18 du

Robotics 2024, 13, 65 15 of 25

5.3. Examination of the Proposed Scheme

The complete proposed scheme is now exemplified through an extensive study. We
consider an agent governed by the unicycle dynamics of Section 3, operating in an obstacle-
cluttered environment with three regions of interest πk = B̄(ck, r), which define the set
Π = {πk}, k ∈ K. The set of atomic propositions is AP = Π̃, and the labeling function
L̃ : Π→ 2AP is defined as πk 7→ {πk}, k ∈ K. Starting from an initial position in the free
space F , we require the robot to “always visit each region of interest at least once every x time
units”, corresponding to the following MITL formula:

ϕ =
∨

k∈K
(□♢Iπk), I = [0, x] (15)

We examine the scheme in both a sphere and a generalized world. For each world, we
additionally consider the following two cases:

• Case A: The time available for task execution is sufficient. After the reassignment of
the transition times through the iterative learning algorithm, the satisfaction of the
formula ϕ in the time frame I = [0, x] is possible.

• Case B: The time available for task execution is not sufficient. Here, the scheme should
again be able to find the optimal path while also taking into account the inability to
satisfy the formula ϕ in the requested time frame.

5.3.1. Sphere World

The agent operates in an obstacle-cuttered sphere world, as illustrated in Figure 6.
The three regions of interest are denoted as discs (red, green, blue), and the initial position
of the agent is the black dot.

Figure 6. The sphere world workspace. The blue, green, and red discs correspond to the three
regions of interest, and the starting position is the black dot. Plotted are three indicative paths (runs)
implemented by the iterative learning algorithm. Each path consists of three individual transitions
(orange, green, and cyan), corresponding to the respective transition times between the regions.

Robotics 2024, 13, 65 16 of 25

Sphere World: Case A

We request a time frame of 20 time units (I = [0, 20]) for the satisfaction of the formula
ϕ. Using the Euclidean distances as the only initial knowledge regarding the different
path options, the algorithm explores different routes, some with large costs and large
runtimes (e.g., Run 1 Figure 7) and others with smaller distances but with heavier input
saturation encountered and, therefore, larger runtimes (e.g., Run 4 Figure 7). The results are
depicted in Figure 7. We observe that as the iterative learning process evolves, the transition
times calculated by (13,14) converge to the actually used times (Figure 7 (top)). Moreover,
the total runtime of the path (consisting of three individual transitions), while initially not
satisfying the task (>20 tu), converges to a task-satisfying duration (Figure 7 (middle)).
Finally, the path cost per suffix execution is reduced as the agent gathers information about
the transition times and costs (Figure 7 (bottom)). The optimal path traced by the algorithm
can be observed in Figure 6 (bottom).

2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

19

20

21

22

2 4 6 8 10 12 14 16 18 20

3.09

3.1

3.11

3.12

3.13

2 4 6 8 10 12 14 16 18 20

Figure 7. Sphere world: Case A. (top) The transition times calculated before each transition are
denoted by filled circles; square marks correspond to actually used transition times. Orange cor-
responds to the first individual transition of each path, green to the second, and cyan to the third
(Figure 6). Together, they form the total time of each run (runtime). (middle) The evolution of the
path runtime. (bottom) The evolution of the path cost.

Sphere World: Case B

For a requested time frame of 19 time units, the satisfaction of the formula is not
possible. However, with convergence to a minimum cost with respect to the traveled
distance, a path can still be achieved, as presented in Figure 8 (bottom). Additionally,
we observe convergence to the actual time frame in which the task can be satisfied while
simultaneously following the optimal-cost path (Figure 8 (middle)), which is again the one
in Figure 6 (bottom). This time frame is obviously greater than the one initially requested

Robotics 2024, 13, 65 17 of 25

(20 tu). This comes as a result of the progressively improved transition time assignment,
which establishes the times corresponding to consistent transitions (Figure 8 (top)).

2 4 6 8 10 12 14 16 18 20
4

5

6

7

8

9

10

19

20

21

2 4 6 8 10 12 14 16 18 20

3.09

3.1

3.11

3.12

3.13

2 4 6 8 10 12 14 16 18 20

Figure 8. Sphere world: Case B. (top) The transition times calculated before each transition are
denoted by filled circles; square marks correspond to actually used transition times. Orange cor-
responds to the first individual transition of each path, green to the second, and cyan to the third
(Figure 6). Together, they form the total time of each run (runtime). (middle) The evolution of the
path runtime. (bottom) The evolution of the path cost.

5.3.2. Generalized World

An agent operates in an office environment with three regions of interest. The scenario
is illustrated in Figure 9. The regions of interest and the initial position remain the blue,
green, and red discs and the black dot, respectively.

Figure 9. Cont.

Robotics 2024, 13, 65 18 of 25

Figure 9. The workspace in the generalized world. The blue, green, and red discs represent the three
regions of interest, with the starting position indicated by the black dot. Depicted are three sample
paths generated by the iterative learning algorithm. Each path comprises three distinct transitions
(orange, green, and cyan), aligning with the respective transition times between the regions.

Generalized World: Case A

We seek a time frame of six time units (I = [0, 6]) for the fulfillment of ϕ. The outcomes
are illustrated in Figure 10. Similarly to the sphere world, as the iterative learning process
advances, the transition times converge to the actual times (Figure 10 (top)). Additionally,
although the total path runtime initially falls short of meeting the task requirement (>6 tu),
it gradually converges to a duration that satisfies the task (Figure 10 (middle)). Lastly,
the path cost decreases as the agent acquires information about the transition times and
distances (Figure 10 (bottom). The optimal path found is the one depicted in Figure 9
(bottom).

2 4 6 8 10 12 14
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

5

5.5

6

6.5

7

7.5

2 4 6 8 10 12 14

2.6

2.8

3

2 4 6 8 10 12 14

Figure 10. Generalized world: Case A. (top) The transition times calculated before each transition
are denoted by filled circles; square marks correspond to actually used transition times. Orange
corresponds to the first individual transition of each path, green to the second, and cyan to the third
(Figure 9). Together, they form the total time of each run (runtime). (middle) The evolution of the
path runtime. (bottom) The evolution of the path cost.

Robotics 2024, 13, 65 19 of 25

Generalized World: Case B

While a requested time frame of five time units (I = [0, 5]) does not allow satisfaction
of the formula, convergence to a minimum-cost path (Figure 9 (bottom)) is still attainable,
as illustrated in Figure 11 (bottom). Furthermore, there is observable convergence to the
actual time frame necessary for task satisfaction while adhering to the optimal cost path
(Figure 11 (middle)). The actual time frame surpasses the initially requested one of 5 tu
(6 tu), a result of the progressively refined assignment of transition times, aligning them
with consistent transitions (Figure 11 (top)).

2 4 6 8 10 12 14
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

5

5.5

6

6.5

7

2 4 6 8 10 12 14

2.6

2.8

3

2 4 6 8 10 12 14

Figure 11. Generalized world: Case B. (top) The transition times calculated before each transition
are denoted by filled circles; square marks correspond to actually used transition times. Orange
corresponds to the first individual transition of each path, green to the second, and cyan to the third
(Figure 9). Together, they form the total time of each run (runtime). (middle) The evolution of the
path runtime. (bottom) The evolution of the path cost.

In the context of both the sphere and generalized world cases, there are notable
observations to consider. Firstly, as the accuracy of transition time assignment gradually
improves, the optimal cost path may settle at a value slightly exceeding the initially
calculated one during its primary traversal (see, for example, Figure 7 (bottom)). This
outcome is attributed to the refined time assignment, preventing the agent from adopting a
rushed approach and leading to transitions that are slightly smoother and more prolonged.
Naturally, should the refined path cost value cease to represent the optimal path option,
the algorithm would opt for an alternative, following a similar procedure.

Moreover, beyond the consideration of the path cost, it is evident that certain traversed
paths (such as Run 3 in Figure 8) may appear achievable within the requested time frame.
However, it is crucial to recognize that these paths may not be temporally reliable yet.
To elaborate, they might involve transitions accomplished without the requested transition
times accurately aligning with the actual durations (see, for example, Run 3 of the green
transition in Figure 8). In practical terms, this implies that to achieve such a transition,
a smaller time must be requested than what is actually needed. To purposely adopt such

Robotics 2024, 13, 65 20 of 25

a practice, however, would mean forcing the agent to work through heavier saturation.
Additionally, we would not acquire durations that result in consistent and time-wise
repeatable transitions, which would be necessary for the completion of timed tasks. In the
proposed algorithm, even though it may extend the given time frame post-convergence,
assurance is established that the times assigned to each transition are not only consistent
but also safe and repeatable, deeming the path temporally reliable.

6. Experimental Study

We also conducted an experimental study to verify the validity of our findings. We
consider an AmigoBot mobile robot operating in a workspace with three regions of interest
(blue, red, and yellow), as shown in Figure 12. An Odroid computer was attached to
the AmigoBot to run the Robotic Operating System (ROS). Additionally, an RPLIDAR-A1
was mounted on the agent in order to extract the workspace map using Simultaneous
Localization and Mapping (SLAM). More precisely, the map of the workspace was created
using the gmapping ROS implementation [41,42], and the boundaries necessary for the
diffeomorphism T : F → P for scheme implementation in generalized worlds were
extracted using OpenCV. Regarding the localization process, the ROS implementation
deployed was Adaptive Monte Carlo Localization (AMCL) [43], utilizing odometry data
and a laser scan to estimate the precise location of the agent in the workspace and provide
online localization during each run. A basic schematic of the ROS setup can be observed in
Figure 13.

Figure 12. The workspace in the experimental study.

Figure 13. ROS setup schematic. The controller providing the agent with the appropriate velocity is
the one proposed in Section 4.1.

Starting from an initial position in the free space, we require the robot to “always visit
each region of interest at least once every 45 seconds”, corresponding to the MITL formula (15),

Robotics 2024, 13, 65 21 of 25

with I = [0, 45] s. The scenario is illustrated in Figure 12, indicative runs of the algorithm
are depicted in Figure 14 and the results are shown in Figure 15. We can observe that the
requested time frame is not sufficient for the satisfaction of the formula, but convergence
to an optimal cost path is still achieved, as shown in Figure 15 (bottom). This path is
depicted in Figure 14 (bottom). In Figure 15 (top), we examine the times corresponding to
the three transitions of each path; red represents the first transition, green represents the
second, and blue represents the third. The actual values of these individual transitions meet
the ones calculated by the algorithm while simultaneously settling into the optimal-cost
path. Finally, we detect convergence to the actual time frame in which the task can be
satisfied in Figure 15 (middle). A video of the agent traversing a single indicative path
and a video of the complete iterative learning process (12 Runs) can be accessed through
the following hyperlinks:

• Single-path run: https://youtu.be/S3jF7IsD2U8 (accessed on 6 February 2024)
• Full iterative learning process: https://youtu.be/4uaStlYZing (accessed on 6 Febru-

ary 2024)

Figure 14. Three indicative runs of the algorithm in the experimental workspace. The green path
depicts the position of the agent provided by the localization process.

1 2 3 4 5 6 7 8 9 10 11 12
5

10

15

20

25

30

35

40

Figure 15. Cont.

https://youtu.be/S3jF7IsD2U8
https://youtu.be/4uaStlYZing

Robotics 2024, 13, 65 22 of 25

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12

7

8

9

10

11

1 2 3 4 5 6 7 8 9 10 11 12

Figure 15. Experimental study results. (top) The transition times calculated before each transition are
denoted by filled circles; square marks correspond to actually used transition times. Red corresponds
to the first individual transition of each path, green to the second, and blue to the third. Together,
they form the total time of each run (runtime). (middle) The evolution of the path runtime. (bottom)
The evolution of the path cost.

7. Conclusions and Future Work

A novel three-layer algorithm designed to ensure timed temporal specifications within
obstacle-cluttered environments in the presence of input constraints was proposed in this
work. Through an iterative learning framework, a high-level plan adeptly generates naviga-
tion paths that adhere to specified timed requirements. The integration of a novel low-level
controller that takes into account diamond input constraints ensures safe navigation within
the workspace, optimizing navigation time while respecting input constraints. Validation
through comparative simulations and real-world experimentation confirms the effective-
ness and superiority of the proposed scheme. Future efforts will emphasize incorporating
runtime considerations into optimal path selection criteria, exploring more intricate timed
specifications and more complex workspaces and researching formula relaxation tech-
niques. Future endeavors will prioritize integrating runtime considerations into optimal
path selection criteria, exploring more intricate timed specifications, and investigating
formula relaxation techniques. Additionally, extending the results to multi-agent systems
subject to communication and safety constraints requires further investigation.

Author Contributions: Conceptualization, C.K.V. and C.P.B.; methodology, F.C.T. and P.S.T.; software,
F.C.T. and T.-F.B.; validation, C.K.V. and C.P.B.; formal analysis, F.C.T. and P.S.T.; investigation, F.C.T.
and P.S.T.; writing—original draft preparation, F.C.T. and P.S.T.; writing—review and editing, C.K.V.
and C.P.B.; visualization, F.C.T.; supervision, C.K.V. and C.P.B.; project administration, C.P.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the second call for research projects to support postdoctoral researchers (HFRI-PD19-370).
The work of C.P.B. was also supported by the project “Applied Research for Autonomous Robotic
Systems” (MIS 5200632), which is implemented within the framework of the National Recovery and
Resilience Plan “Greece 2.0” (Measure: 16618- Basic and Applied Research) and is funded by the
European Union—NextGenerationEU.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to privacy restrictions.

Conflicts of Interest: The authors declare no conflicts of interest.

Robotics 2024, 13, 65 23 of 25

Abbreviations
The following abbreviations are used in this manuscript:

MTL Metric Temporal Logic
MITL Metric Interval Temporal Logic
TBA Timed Büchi Automaton
APC Adaptive Performance Control
R Set of real numbers
R≥0 Set of non-negative numbers
R>0 Set of positive numbers
| · | Absolute value of a scalar
|| · || Spectral (euclidean) norm of a matrix (vector), respectively
|| · ||∞ Infinity norm
ϕ MITL formula
F Free space
K Points of interest within the free space
L Labeling function
δ Prescribed time interval
θ Orientation of robot
u Commanded linear velocity of robot
ω Commanded angular velocity of robot
ud Nominal linear velocity of robot
ωd Nominal angular velocity of robot

ρu, ρω
Performance functions regarding the evolution of position and orientation error,
respectively

sµ(χ) Continuous function vanishing when χ > µχmin

σ(χ)

Saturation function constraining the vector χ within a compact set based on the radial
distance of χ from the origin

References
1. Bhatia, A.; Kavraki, L.E.; Vardi, M.Y. Sampling-based motion planning with temporal goals. In Proceedings of the 2010 IEEE

International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 2689–2696.
2. Belta, C.; Isler, V.; Pappas, G.J. Discrete abstractions for robot motion planning and control in polygonal environments. IEEE

Trans. Robot. 2005, 21, 864–874. [CrossRef]
3. Fainekos, G.E.; Girard, A.; Kress-Gazit, H.; Pappas, G.J. Temporal logic motion planning for dynamic robots. Automatica 2009,

45, 343–352. [CrossRef]
4. Kloetzer, M.; Belta, C. Automatic deployment of distributed teams of robots from temporal logic motion specifications. IEEE

Trans. Robot. 2009, 26, 48–61. [CrossRef]
5. Kress-Gazit, H.; Fainekos, G.E.; Pappas, G.J. Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot.

2009, 25, 1370–1381. [CrossRef]
6. Loizou, S.G.; Kyriakopoulos, K.J. Automatic synthesis of multi-agent motion tasks based on ltl specifications. In Proceedings of

the 2004 43rd IEEE conference on decision and control (CDC)(IEEE Cat. No. 04CH37601), Nassau, Bahamas, 14–17 December
2004; Volume 1, pp. 153–158.

7. Guo, M.; Johansson, K.H.; Dimarogonas, D.V. Motion and action planning under LTL specifications using navigation functions
and action description language. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Tokyo, Japan, 3–7 November 2013; pp. 240–245.

8. Bouyer, P.; Laroussinie, F.; Markey, N.; Ouaknine, J.; Worrell, J. Timed temporal logics. In Models, Algorithms, Logics and Tools:
Essays Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th Birthday; Springer: Cham, Switzerland, 2017; pp. 211–230.

9. Verginis, C.K.; Dimarogonas, D.V. Timed abstractions for distributed cooperative manipulation. Auton. Robot. 2018, 42, 781–799.
[CrossRef]

10. Verginis, C.K.; Vrohidis, C.; Bechlioulis, C.P.; Kyriakopoulos, K.J.; Dimarogonas, D.V. Reconfigurable motion planning and control
in obstacle cluttered environments under timed temporal tasks. In Proceedings of the 2019 International Conference on Robotics
and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 951–957.

11. Faied, M.; Mostafa, A.; Girard, A. Dynamic optimal control of multiple depot vehicle routing problem with metric temporal logic.
In Proceedings of the 2009 American Control Conference, St. Louis, MO, USA, 10–12 June 2009; pp. 3268–3273.

12. Fu, J.; Topcu, U. Computational methods for stochastic control with metric interval temporal logic specifications. In Proceedings
of the 2015 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 15–18 December 2015; pp. 7440–7447.

http://doi.org/10.1109/TRO.2005.851359
http://dx.doi.org/10.1016/j.automatica.2008.08.008
http://dx.doi.org/10.1109/TRO.2009.2035776
http://dx.doi.org/10.1109/TRO.2009.2030225
http://dx.doi.org/10.1007/s10514-017-9672-7

Robotics 2024, 13, 65 24 of 25

13. Karaman, S.; Frazzoli, E. Vehicle routing problem with metric temporal logic specifications. In Proceedings of the 2008 47th IEEE
Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; pp. 3953–3958.

14. Edelkamp, S.; Lahijanian, M.; Magazzeni, D.; Plaku, E. Integrating temporal reasoning and sampling-based motion planning for
multigoal problems with dynamics and time windows. IEEE Robot. Autom. Lett. 2018, 3, 3473–3480. [CrossRef]

15. Zhou, Y.; Maity, D.; Baras, J.S. Timed automata approach for motion planning using metric interval temporal logic. In Proceedings
of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; pp. 690–695.

16. Andersson, S.; Nikou, A.; Dimarogonas, D.V. Control synthesis for multi-agent systems under metric interval temporal logic
specifications. IFAC-PapersOnLine 2017, 50, 2397–2402. [CrossRef]

17. Nikou, A.; Boskos, D.; Tumova, J.; Dimarogonas, D.V. On the timed temporal logic planning of coupled multi-agent systems.
Automatica 2018, 97, 339–345. [CrossRef]

18. Verginis, C.K.; Dimarogonas, D.V. Distributed cooperative manipulation under timed temporal specifications. In Proceedings of
the 2017 American Control Conference (ACC), Seattle, WA, USA, 24–26 May 2017; pp. 1358–1363.

19. Wang, W.; Schuppe, G.; Tumova, J. Decentralized Multi-agent Coordination under MITL Specifications and Communication
Constraints. In Proceedings of the 2023 31st Mediterranean Conference on Control and Automation (MED), Limassol, Cyprus,
26–29 June 2023; pp. 842–849.

20. Hustiu, S.; Dimarogonas, D.; Mahulea, C.; Kloetzer, M. Multi-robot Motion Planning under MITL Specifications based on Time
Petri Nets. In Proceedings of the 2023 European Control Conference (ECC), Bucharest, Romania, 13–16 June 2023.

21. Gol, E.A.; Belta, C. Time-constrained temporal logic control of multi-affine systems. Nonlinear Anal. Hybrid Syst. 2013, 10, 21–33.
[CrossRef]

22. He, K.; Lahijanian, M.; Kavraki, L.E.; Vardi, M.Y. Towards manipulation planning with temporal logic specifications. In
Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015;
pp. 346–352.

23. Barbosa, F.S.; Lindemann, L.; Dimarogonas, D.V.; Tumova, J. Integrated Motion Planning and Control Under Metric Interval
Temporal Logic Specifications. In Proceedings of the 2019 18th European Control Conference (ECC), Naples, Italy, 25–28 June
2019; pp. 2042–2049.

24. Seong, H.; Lee, K.; Cho, K. Reactive Planner Synthesis Under Temporal Logic Specifications. IEEE Access 2024, 12, 13260–13276.
[CrossRef]

25. Huang, Z.; Lan, W.; Yu, X. A Formal Control Framework of Autonomous Vehicle for Signal Temporal Logic Tasks and Obstacle
Avoidance. IEEE Trans. Intell. Veh. 2024, 9, 1930–1940. [CrossRef]

26. Yu, X.; Yin, X.; Lindemann, L. Efficient STL Control Synthesis Under Asynchronous Temporal Robustness Constraints. In
Proceedings of the 2023 62nd IEEE Conference on Decision and Control (CDC), Singapore, 13–15 December 2023; pp. 6847–6854.

27. Li, S.; Park, D.; Sung, Y.; Shah, J.; Roy, N. Reactive Task and Motion Planning under Temporal Logic Specifications. In Proceedings
of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 9228–9234.

28. Fotiadis, F.; Verginis, C.K.; Vamvoudakis, K.G.; Topcu, U. Assured learning-based optimal control subject to timed temporal logic
constraints. In Proceedings of the 2021 60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, 14–17 December
2021; pp. 750–756.

29. Bonnah, E.; Nguyen, L.; Hoque, K. Motion Planning Using Hyperproperties for Time Window Temporal Logic. IEEE Robot.
Autom. Lett. 2023, 8, 4386–4393. [CrossRef]

30. Vrohidis, C.; Vlantis, P.; Bechlioulis, C.P.; Kyriakopoulos, K.J. Prescribed time scale robot navigation. IEEE Robot. Autom. Lett.
2018, 3, 1191–1198. [CrossRef]

31. Trakas, P.S.; Bechlioulis, C.P. Approximation-free Adaptive Prescribed Performance Control for Unknown SISO Nonlinear
Systems with Input Saturation. In Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico,
6–9 December 2022; pp. 4351–4356.

32. Alur, R.; Dill, D.L. A theory of timed automata. Theor. Comput. Sci. 1994, 126, 183–235. [CrossRef]
33. Bouyer, P.; Markey, N.; Ouaknine, J.; Worrell, J. The cost of punctuality. In Proceedings of the 22nd Annual IEEE Symposium on

Logic in Computer Science (LICS 2007), Wroclaw, Poland, 10–14 July 2007; pp. 109–120.
34. D’Souza, D.; Prabhakar, P. On the expressiveness of MTL in the pointwise and continuous semantics. Int. J. Softw. Tools Technol.

Transf. 2007, 9, 1–4. [CrossRef]
35. Ouaknine, J.; Worrell, J. On the decidability of metric temporal logic. In Proceedings of the 20th Annual IEEE Symposium on

Logic in Computer Science (LICS’05), Chicago, IL, USA, 26–29 June 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 188–197.
36. Chen, X.; Jia, Y.; Matsuno, F. Tracking Control for Differential-Drive Mobile Robots With Diamond-Shaped Input Constraints.

IEEE Trans. Control Syst. Technol. 2014, 22, 1999–2006. [CrossRef]
37. Loizou, S.G. The navigation transformation. IEEE Trans. Robot. 2017, 33, 1516–1523. [CrossRef]
38. Vlantis, P. Distributed Cooperation of Multiple Robots under Operational Constraints via Lean Communication. Ph.D. Thesis,

National Technical University of Athens, Athens, Greece, 2020.
39. Brihaye, T.; Geeraerts, G.; Ho, H.M.; Monmege, B. Mighty L: A Compositional Translation from MITL to Timed Automata. In

Proceedings of the Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg, Germany, 24–28 July
2017; Proceedings, Part I 30; Springer: Cham, Switzerland, 2017; pp. 421–440.

40. Baier, C.; Katoen, J.P. Principles of Model Checking; MIT Press: Cambridge, MA, USA, 2008.

http://dx.doi.org/10.1109/LRA.2018.2853642
http://dx.doi.org/10.1016/j.ifacol.2017.08.432
http://dx.doi.org/10.1016/j.automatica.2018.08.023
http://dx.doi.org/10.3182/20120606-3-NL-3011.00054
http://dx.doi.org/10.1109/ACCESS.2024.3356570
http://dx.doi.org/10.1109/TIV.2023.3283055
http://dx.doi.org/10.1109/LRA.2023.3280830
http://dx.doi.org/10.1109/LRA.2018.2794616
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/s10009-005-0214-9
http://dx.doi.org/10.1109/TCST.2013.2296900
http://dx.doi.org/10.1109/TRO.2017.2725323

Robotics 2024, 13, 65 25 of 25

41. Grisetti, G.; Stachniss, C.; Burgard, W. Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals
and selective resampling. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona,
Spain, 18–22 April 2005; pp. 2432–2437.

42. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized particle filters. IEEE Trans.
Robot. 2007, 23, 34–46. [CrossRef]

43. Dellaert, F.; Fox, D.; Burgard, W.; Thrun, S. Monte carlo localization for mobile robots. In Proceedings of the 1999 IEEE
International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 2,
pp. 1322–1328.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TRO.2006.889486

	Introduction
	Preliminaries
	Problem Formulation
	Methodology
	Motion Controller
	High-Level Plan Generation
	Iterative Learning

	Simulation Study
	Dynamic Obstacle Environment
	Comparison of Path Planners
	Examination of the Proposed Scheme
	Sphere World
	Generalized World

	Experimental Study
	Conclusions and Future Work
	References

