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Abstract: Aggressive flight has become increasingly important for expanding the applications of
quadrotors. The typical characteristic of large and rapid changes in commands poses stringent
demands on the maneuverability of quadrotors. Ensuring flight stability alone is not enough; dynamic
responses must also be selectively constrained, presenting quadcopter flight control with daunting
challenges. The prescribed performance control (PPC) method is seen as having the potential to solve
this problem by allowing for the constrained control of specified performance, leading to extensive
research. However, its practical application still faces challenges, such as the system divergence
caused by errors exceeding boundaries due to sudden command mutations. This paper presents
a robust dynamic event-triggered PPC (DETPPC) method for an aggressive quadrotor flight. By
assessing the direction and proximity of tracking errors approaching constraint boundaries, a dynamic
event-triggered compensation mechanism for performance function boundaries is established to
mitigate the divergence caused by error surpassing and to preserve preset control over the targeted
metrics. Controllers were designed for both the translational and rotational subsystems of the
quadrotor, and stability analysis was conducted based on Lyapunov functions. Simulation tests on
agile trajectory tracking and abrupt attitude control were carried out, demonstrating the effectiveness
of the proposed method.

Keywords: aggressive flight; prescribed performance control; dynamic event-triggered; abrupt command;
transient performance

1. Introduction

In recent years, the application scenarios of quadrotors have expanded into military
reconnaissance, strike missions, and commercial aerial performances [1–3]. Unlike tradi-
tional low-speed or hovering flights, in such applications, commands can change on a large
scale, rapidly, or even abruptly [4]. For instance, in military reconnaissance, the tracked
target may suddenly evade, necessitating rapid changes in speed and direction by the
quadrotor to maintain tracking. These are all typical characteristics of an aggressive flight,
imposing stringent demands on the maneuverability of quadrotors and posing challenges
to flight control.

During an aggressive flight, quadrotors experience high speeds, rapid attitude changes,
and noticeable aerodynamic disturbances, leading to pronounced model nonlinearity and
uncertainty [5]. This poses a formidable challenge for the design of quadrotor flight
controllers, primarily due to the difficulty of balancing maneuverability and robustness.
Existing flight control methods and research, such as backstepping-based control [6],
sliding-mode-based control [7], adaptive-based control [8], and neural-network-based con-
trol [9], primarily focus on enhancing quadrotors’ robustness against model errors and
external disturbances for stable flight [10]. However, they lack attention to and constraints
on quadrotors’ transient performance. Combining adaptive nonlinear control with distur-
bance observers, some studies have been able to achieve finite-time error convergence and

Aerospace 2024, 11, 301. https://doi.org/10.3390/aerospace11040301 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11040301
https://doi.org/10.3390/aerospace11040301
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace11040301
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11040301?type=check_update&version=2


Aerospace 2024, 11, 301 2 of 20

ultimately maintain uniformly bounded tracking. However, their convergence speed heav-
ily relies on the initial error. Especially when the initial error is substantial, the convergence
time is inevitably longer [11].

To achieve a better transient response aligned with specified constraints, prescribed
performance control (PPC) has gradually emerged in quadrotor flight control [12]. It utilizes
a prescribed performance function to guide tracking errors to converge in a predetermined
residual region within defined constraints, such as maximum overshoot, convergence time,
and allowable tracking deviation. Therefore, the design of the specified performance func-
tion is crucial, representing a focal point in recent research on PPC. Jia [13] and Veiginis [14]
refined the basic performance constraint function based on initial error, allowing for ad-
justable constraint levels. However, their practicality is limited by the understanding of the
initial system states. Such methods are not applicable when the initial error is unknown or
the actual situation deviates from the preset initial conditions, such as sudden disturbances
or different task instructions. Overly conservative designs can result in slow responses.
Bu [15] and Xiao [16] improved control efficiency for nonlinear systems by introducing
hyperbolic tangent and exponential functions, creating a performance constraint indepen-
dent of initial tracking errors. However, the independence from initial conditions may
lead to excessive system overshooting in cases of loose initial conditions. In quadrotor
applications, Xu et al. [17] integrated PPC with adaptive dynamic programming, enabling
finite-time attitude constraint control under external disturbances. Shao et al. [11] estab-
lished a threshold-triggered expanded state observer based on PPC, enabling adjustments
of quadrotor attitude under specific overshoot conditions. Wang et al. [18] integrated PPC
with backstepping, accounting for coupling between translational and rotational subsys-
tems, enabling precise position tracking of quadcopter quadrotors with minimal overshoot.
However, while the above-mentioned studies quantitatively constrain the targeted indi-
cators, singular problems arise when errors exceed the performance envelope. Therefore,
Wang [19] and Hu [20] addressed the issue by introducing terms related to the derivative
of the command in the prescribed performance function, allowing constraints to adapt
based on changes in task states. However, it is usually difficult to obtain the command
form expressed in time. Particularly for abrupt commands like step signals or error steps
induced by sudden disturbances, the method becomes inapplicable. But, these situations
are extremely common, even typical, in quadrotor aggressive flights. Therefore, to leverage
the advantage of PPC in constraining specific performance and improve the control effect
of a quadrotor aggressive flight, it is necessary to endow its performance function with the
ability to adapt to the out-of-bounds caused by sudden errors.

Drawing inspiration from the above, in this paper, we propose a dynamic event-
triggered prescribed performance control (DETPPC) method and design controllers for the
translational and rotational subsystem of the quadrotor. Subsequently, the boundedness
and stability of the controller based on Lyapunov functions were proved. Moreover, attitude
control and aggressive trajectory tracking simulations were conducted under command
mutations and external disturbances to demonstrate the effectiveness of the proposed
method. The main contributions of this paper are summarized as follows.

• A dynamic event-triggered performance function boundary adaptive adjustment
mechanism is proposed. By assessing the error variation direction and its distance from
the performance function boundary, a dynamic compensation factor related to input
commands and current errors is established for the performance function, preventing
the system divergence caused by errors exceeding the performance function.

• A robust control framework based on DETPPC is established. Based on this, we
designed the controller for the quadrotor translational and rotational subsystems by
separately constructing unconstrained error dynamics and performance functions
incorporating a dynamic event-triggered compensation factor. Furthermore, stability
analysis was conducted based on Lyapunov functions.

• Attitude control and aggressive trajectory tracking simulations were conducted under
command mutations. The results demonstrate that, compared to traditional PPC and
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cascade PID methods, the proposed DETPPC controller avoids the system divergence
caused by errors exceeding the performance function and achieves a faster response
and convergence, as well as reduced oscillations.

Based on the above, our method not only preserves the preset constraints on the
quadrotor transient performance but also innovatively enhances flight robustness and
algorithm practicality by addressing the divergence caused by errors exceeding the perfor-
mance function during command changes. The following is the content arrangement of this
paper. Section 2 gives the problem formulation and preliminaries, including the quadrotor
model and the control objective. The design of the dynamic event-triggered prescribed
performance function is presented in Section 3. Section 4 and Section 5 construct controllers
and stability analysis, respectively. Section 6 presents the simulation and discussion, while
the conclusion is given in Section 7.

2. Problem Formulation and Preliminaries

This section primarily discusses the kinematic and dynamic models of quadcopters,
serving as the foundation for subsequent research. This paper focuses on a quadcopter
with an “X” configuration, as illustrated in Figure 1. Numbers 1–4 represent the pro-
peller number.

Take Fb := [bx by bz] to represent the body-fixed reference frame whose direction is
indicated by a yellow arrow in Figure 1. T is the total thrust produced by the propellers
and Mi, i = x, y, z is the resultant external torque acting on the three axes of the quadrotor.
Define the earth reference frame as Fe := [ex ey ez]. Figure 2 displays the configuration.
l and d represent half the distance between the front and rear rotors and between the left
and right rotors, respectively.

Figure 1. Aerodynamics and configuration of the quadrotor.

Figure 2. A schematic of the proposed dynamic event-triggered prescribed performance control.

Assuming the quadrotor is a rigid body, its kinematics and dynamics model [21] can
be expressed as follows:
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Ṗ = V
V̇ = ge3 +

1
m R(Θ)F

Θ̇ = Ψ(Θ)ω
ω̇ = −ω × Jω + M

J

(1)

where m is the mass of the quadrotor, g is the gravitational acceleration, and e3 = [0, 0, 1]T

is a unitary vector in Fe. P ∆
= [x, y, z]T and V ∆

= [Vx, Vy, Vz]T are the quadrotor’s position

and velocity vector in Fe, respectively. Θ
∆
= [ϕ, θ, ψ]T is the Euler angles to describe the

flight attitude of the quadrotor, including the roll, pitch, and yaw angles. ω
∆
= [p, q, r]T

denotes the angular velocity in the Fb. R(Θ), as shown in (2), is the rotation matrix from
Fb to Fe. Ψ(Θ) is a specific matrix and is defined as (3).

R(Θ) =

 CθCψ SϕSθCψ − CϕSψ CϕSθCψ + SϕSψ

CθSψ SϕSθSψ − CϕCψ CϕSθSψ − SϕCψ

−Sθ SϕCθ CϕCθ

 (2)

where C(·) and S(·) are abbreviations of cos(·) and sin(·), respectively.
Ψ(Θ) is a specific matrix and is defined as follows:

Ψ(Θ) =

 1 SϕCθ CϕSθ

0 Cϕ −Sϕ

0 Sϕ/Cθ Cϕ/Cθ

 (3)

F and M in (1) are the total aerodynamic force and moment on the quadrotor, which
can be expressed as follows: {

F = F p + Fext
M = Mp + Mext

(4)

where the subscript p represents the aerodynamics generated by the propellers and ext
represents the external disturbance. The composition of F p and Mp is as follows:

F p = Fb[0, 0, T]T = Fb ·
[

0, 0,
4
∑

i=1
Tpi

]T

Mp = Fb
[
Mx, My, Mz

]T

= Fb · diag[l, d, 1]

 −Tp1 + Tp2 + Tp3 − Tp4
Tp1 − Tp2 + Tp3 − Tp4

−Qp1 − Qp2 + Qp3 + Qp4


(5)

where Tpn and Qpn (n = 1, 2, 3, 4) are the thrust and torque of each propeller, respectively.
The goal of quadrotor flight control is to adjust propeller rotation speeds to change

T and Mp, then alter the quadrotor’s angular velocity, attitude, velocity, and other states
to track the desired commands. To fulfil the afore-mentioned objectives, we adopt the
following assumptions to facilitate subsequent research and analysis.

Assumption 1. The desired state commands are continuous and bounded and the states P, V , Θ,
and ω in (1) can be obtained through sensor measurements.

Assumption 2. Fext and Mext, generated by the external disturbance, are bounded, Lipschitz
continuous, and can be regarded as slowly changing.

Furthermore, to implement prescribed performance control on the desired quadrotor
states, establishing their relationship with the corresponding control signals is essential.
The following section will elaborate on this.
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3. Dynamic Event-Triggered Prescribed Performance Function

To achieve prescribed control over the targeted performance, Bechlioulis et al. [22]
proposed the PPC method, which aims to drive the tracking error to converge to a designed
envelope. Building on this foundation, various PPC-based control methods have been
developed. However, existing studies still cannot solve the system divergence due to the
errors exceeding the bounds caused by variations in task states after the system reaches
a steady state. Therefore, we developed a novel performance function based on dynamic
event triggering to facilitate envelope adjustments.

3.1. Prescribed Performance Function Design

For a general control system represented as (6), x(t) is the system state, y(t) is the
system output, and u(t) is the control input.{

ẋ(t) = f (x(t)) + g(x(t))u(t)

y(t) = x(t)
(6)

The tracking error e(t) can be expressed as y(t)− xre f (t), where the subscript “re f ”
represents the reference command. To design prescribed performance control, first define
the error manifold as follows:

ε(t) = αe(t) + ė(t) (7)

where α > 0 is an adjustable parameter.
To alleviate dependence on the system’s initial state, unlike previous studies, the

performance function in this paper is designed in the following form.{
β̄(t) =

(
1 − e−at)β∞ + sat(e(t))Ξ

β(t) = −β̄(t)
(8)

where β∞ represents the maximum allowable boundary for steady-state errors, while a
reflects the desired error convergence time. There are designed parameters, β∞ > 0 and
α > a ≥ 0. sat(e) represents the dynamic triggering term, and Ξ is the compensation
factor associated with the command-related performance function. Their definition and
composition are provided in Section 3.2.

3.2. Dynamic Event-Triggered Mechanism

In this paper, dynamic event triggering serves to detect whether errors exceed bounds,
dynamically adjusting the performance function envelope to maintain effective prescribed
performance control. The dynamic event-triggered condition is designed as follows:

sat(e) =
{

1, |e(t)| > keβ∞ & de ⩽ (1 − ke)β∞
0, else

(9)

where ke ∈ (0, 1) is the designed parameter which represents the permissible safety range
of error during a steady state. de = min(

∣∣∣e(t)− β(t)
∣∣∣, ∣∣e(t) + β̄(t)

∣∣) represent the minimum
value between the error and the boundary of the performance function. Equation (9) indi-
cates that the triggering of performance function compensation requires the simultaneous
satisfaction of two conditions: the absolute error value exceeds the predetermined safety
range, and the minimum distance between the error and the upper and lower bounds of
the performance function is outside the range.

The dynamic term Ξ in the performance function is designed as follows:

Ξ =
∣∣∣xre f (t)

∣∣∣e−at + (|e(t)| − y + (1 − ke)β∞)e−at (10)
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Remark 1. In (8), β̄(t), β(t), ˙̄β(t), and β̇(t) are bounded. ε(0) + η constrains the maximum
overshoot of the tracking error manifold. (β∞,−β∞) represents the maximum range allowed for
s(t) at a steady state.

Remark 2. In (10), the first part introduces xre f (t) to extend the boundaries of β(t) when the
command changes abruptly. The second part is aimed at enlarging the boundaries to ensure that the
deviation between e(t) and β(t) is not less than (1 − ke)β∞ when e(t) is uncontrollable. Both are
aimed at preventing error overflow and consequent system divergence.

To ensure that ε(t) lies within
(

β̄(t), β(t)
)

, we define the transformed error before
designing the control law. First, the normalized error λ(t) is defined as follows:

λ(t) =
[
2ε(t)−

(
β̄(t) + β(t)

)]
/
(

β̄(t)− β(t)
)

(11)

Then, the transformed error can be designed as follows:

E(t) =
λ(t)

1 − λ2(t)
(12)

Taking the derivative of E(t) with respect to time yields, we have,

Ė(t) = Λ(ε̇(t) + Φ) (13)

where

Λ =
2
(
1 + λ2(t)

)
(1 − λ2(t))2

(
β̄(t)− β(t)

) (14)

and

Φ =
λ(t)

(
˙̄β(t)− β̇(t)

)
−
(

˙̄β(t) + β̇(t)
)

2
(15)

Theorem 1. Supposing that there exists a constant Em > 0 satisfying |E(t)| ≤ Em for ∀t ≥ 0,
then it follows that |λ(t)| < 1.

Proof. According to β(0) =
∣∣∣xre f

∣∣∣+ β∞ and β̄(0) = −
∣∣∣xre f

∣∣∣− β∞, then |λ(0)| < 1.

1. For 0 ≤ E(t) ≤ Em for ∀t ≥ 0, there are two cases: (a) 0 ≤ λ(t) < 1 and
(b) λ(t) < −1. The case (b) contradicts that |λ(0) < 1|.

2. For −Em ≤ E(t) < 0, there have two cases: (a) −1 < λ(0) < 0 and (b) λ(t) > 1. Case
(b) contradicts |λ(0) < 1|.

Therefore, if |E(t)| ≤ Em was valid, then |λ(t) < 1| and β(t) < ε(t) < β̄(t) would
exist for ∀t ≥ 0.

Figure 2 illustrates the schematic of the proposed dynamic event-triggered prescribed
performance control method. The gray dashed line represents the steady-state boundary
before performance function adjustment.

Remark 3. It can be observed that, when the command mutation occurs at t = t∗, the system
error undergoes large-scale variation, exceeding the original steady-state performance function
envelope. However, the performance function can dynamically adjust instantly, ensuring envelope
error tracking and controlling it within the initially set constraints.

Remark 4. Compared with the traditional PPC methods introduced in study [23], the proposed
performance functions (8) with the dynamic event-triggered mechanism (9) not only quantitatively
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constrain the state of the quadcopter but also prevent the system divergence caused by error overflow,
thus enhancing practicality and flight safety.

4. Controller Design

The dynamic event-triggered prescribed performance controller scheme of the quadro-
tor is shown in Figure 3, and the subsequent sections will provide detailed explanations of
the design of each component.

Figure 3. Dynamic event-triggered prescribed performance control scheme of the quadrotor.

4.1. Translational Subsystem Controller Design

Define the tracking error as •̃ = • − •d, where • represents represents any state
variable of the quadrotor in (1). Then, considering Assumptions 1 and 2, the error dynamics
of the translation subsystem can be represented as follows:{

˙̃P = Ṗ − Ṗd
˙̃V = ge3 +

F pR(Θ)
m − V̇ d

(16)

Considering Θ̃ = Θ − Θd =
[
ϕ̃, θ̃, ψ̃

]T , the transformation matrix R(Θ) in (16),
composed of trigonometric functions of the attitude angles, as shown in (2), can be obtained
using the sum and difference identities of trigonometric functions as follows:

R(Θ) =

 Cψ −Sψ 0
Sψ Cψ 0
0 0 1


 Cϕ̃Cθ̃ SθSϕ̃ Cϕ̃Sθ̃

−Sθd Sϕ̃ Cϕ̃ −Cθd Sϕ̃

−Cϕ̃Sθ̃ CθSϕ̃ Cϕ̃Cθ̃


 Cϕd Sθd

−Sϕd

Cϕd Cθd

 (17)

Considering that F p = [0, 0, T]T , combined with (17), (16) by can be rewritten as (18).{
˙̃P = Ṗ − Ṗd
˙̃V = ge3 +

R(ψ)R̃FT
m − V̇ d

(18)

where

R̃ =

 Cϕ̃Cθ̃ SθSϕ̃ Cϕ̃Sθ̃

−Sθd Sϕ̃ Cϕ̃ −Cθd Sϕ̃

−Cϕ̃Sθ̃ CθSϕ̃ Cϕ̃Cθ̃

 (19)

FT =

 Fx
Fy
Fz

 =

 Cϕd Sθd T
−Sϕd T

Cϕd Cθd T

 (20)

R(ψ) =

 Cψ −Sψ 0
Sψ Cψ 0
0 0 1

 (21)
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With reference to (7), define ϵT =
[
ϵx, ϵy, ϵz

]T
= αP̃ + ˙̃P as the error manifold of

the translational subsystem, where α = diag
(
αx, αy, αz

)
. The performance function of the

translational subsystem in this paper is designed as follows:{
β̄i(t) =

(
1 − e−ait

)
βi,∞ + sat(ei(t))Ξi

β
i
(t) = −β̄i(t)

(22)

where αi > ai > 0, i = x, y, z.
Combining the definition of a normalized error in this paper, the control law for the

translational subsystem can be derived as follows:

uT = −R(ψ)ΛTκTET + ge3 (23)

where κT = diag(κx, κy, κz) is a positive definite control gain matrix, ET = diag(Ex, Ey, Ez)
and ΛT = diag(Λx, Λy, Λz)

are expressed by (24) and (25).

Ei(t) =
λi(t)

1 − λ2
i (t)

(24)

Λi =
2
(
1 + λ2

i (t)
)(

1 − λ2
i (t)

)2
(β̄i(t)− β

i
(t))

(25)

uT = [ux, uy, uz]T in (23) essentially represents the linear acceleration command.
Generally, based on force equilibrium, the desired attitude angles and total thrust of a
quadrotor can be obtained by applying Newton’s second law to the linear acceleration
commands. However, this neglects the influence of air resistance, leading to errors in
command derivation. Based on an incremental nonlinear dynamic inversion method, the
authors of [24] established mapping between quadcopter linear acceleration and horizontal
attitude angles, as shown in (26), demonstrating a significant enhancement in the accuracy
of attitude angle commands.[

mad,x/T
mad,y/T

]
=

[
max/T
may/T

]
+

[
CϕSψ − SϕSθCψ CϕCθCψ
−CϕCψ − SϕSθSψ CϕSθSψ

]([
ϕd
θd

]
−
[

ϕ
θ

])
(26)

where T is the total thrust. Variables with subscript d represent desired commands, while
the remaining state variables represent measurements from sensors at the current time.
Based on (26), considering the definition of uT , then based on the translational subsystem
controller, the desired total thrust, roll, and pitch angle of the quadrotor can be obtained
as follows: 

Td = m∥uz∥[
ϕd
θd

]
=

[
ϕ
θ

]
+ R−1

1

[
m(ax − ux)/T
m
(
ay − uy

)
/T

] (27)

where

R1 =

[
CϕSψ − SϕSθCψ CϕCθCψ

−CϕCψ − SϕSθSψ CϕSθSψ

]
(28)

4.2. Rotational Subsystem Controller Design

Similar to the translational subsystem controller design, the performance function for
the attitude control of the quadrotor is selected as (29). β̄ j(t) =

(
1 − e−ajt

)
β j,∞ + sat

(
ej(t)

)
Ξj

β
j
(t) = −β̄ j(t), j = ϕ, θ, ψ

(29)
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Define the output of the quadrotor attitude controller as uΘ = [pd, qd, rd]
T ; this means

the virtual desired angular velocity, which can be expressed in (30).

uΘ =

 pd
qd
rd

 = −Ψ(Θ)−1κΘEΘ (30)

where κΘ = diag(κϕ, κθ , κψ) is a positive definite control gain matrix and EΘ = diag(Eϕ,
Eθ , Eψ) can be expressed by (31).

Ej(t) =
λj(t)

1 − λ2
j (t)

, λj(t) = Θ̃j(t)/β̄ j(t) (31)

where j = ϕ, θ, ψ.
For angular velocity control, the performance functions are selected as (32) and the

control signal uω can be deduced as (33).{
β̄k(t) =

(
1 − e−akt)βk,∞ + sat(ek(t))Ξk

β
k
(t) = −β̄k(t), k = p, q, r (32)

uω =

 up
uq
ur

 = −κωEω (33)

where κω = diag(κp, κq, κr) is a positive definite control gain matrix and Eω = diag(Ep,
Eq, Er) can be expressed by (34).

Ek(t) =
λk(t)

1 − λ2
k(t)

, λk(t) = ω̃k(t)/β̄k(t) (34)

where k = p, q, r.
Therefore, the desired moment of the quadrotor can be obtained as Md = [Mx,d, My,d,

Mz,d]
T = Juω.

5. Stability Analysis

To facilitate derivation, combining (1) and (6), rewrite the quadrotor angular velocity
subsystem as follows:

ω̇k = fk(ωk, uk) + bk, k = p, q, r (35)

where fk(ωk, uk) is an unknown non-affine Lipschitz continuous function; bk is the exter-
nal disturbance.

According to [18], there exist continuous functions, Ck(ωk, uk), C̄k(ωk, uk), ck(ωk),
and c̄k(ωk), and unknown constants, νk and ν̄k, k = p, q, r, which make the following
inequalities hold. {

fk(ω, uk) ≥ Ck(ω, uk)uk + ck(ω), uk ≥ νk ≥ 0
fk(ω, uk) ≤ C̄k(ω, uk)uk + c̄k(ω), uk ≤ ν̄k ≤ 0

(36)

Theorem 2. Suppose that both fk(ωk, uk) and bk are bounded. By combining the quadrotor
translational and rotational subsystem control outputs, (23), (30), and (33), the following properties
can be ensured:

• For ∀t ≥ 0, β
l
(t) < el(t) < β̄l(t) exists with l = x, y, z, ϕ, θ, ψ, p, q, r and el(t) =

x̃, ỹ, z̃, ϕ̃, θ̃, ψ̃, p̃, q̃, r̃.
• All the state variables in (1) for quadcopters are bounded.
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Proof. Based on (36) and the extreme value theory, there exist continuous functions, Gk(uk)
and Ḡk(uk), such that the following inequalities hold.{

fk(ωk, uk) ⩾ −Gk, 0 ⩽ uk ⩽ νk
fk(ωk, uk) ⩽ Ḡk, −νk ⩽ uk ⩽ 0

(37)

where νk, k = p, q, r are unknown constants.
Thus, according to (36) and (37), it can be obtained that

fk(ωk, uk) ≥ Ck(ωk, uk)uk + ck(ωk), uk ≥ νk
fk(ωk, uk) ≥ −Gk(ωk) + Ck, m(uk − νk), 0 ≤ uk ≤ νk
fk(ωk, uk) ≤ Ḡk(ωk) + Ck, m(uk + νk), −νk ≤ uk ≤ 0
fk(ωk, uk) ≤ C̄k(ωk, uk)uk + c̄k(ωk), uk ≤ −νk

(38)

Then, rewrite fk(ω, uk) as follows:

fk(ω, uk) = Ck(ω, uk)uk + ck(ω) (39)

with

Ck(ωk, uk) =


γk,1Ck(ωk, uk), uk ≥ νk
γk,2Ck, m, 0 ≤ uk ≤ νk
γk,3Ck, m, −νk ≤ uk ≤ 0
γk,4C̄k(ωk, uk), uk ≤ −νk

(40)

ck(ωk) =


ck(ωk), uk ≥ νk
−Ck, mνk − Ḡk(ωk), 0 ≤ uk ≤ νk
Ck, mνk + Ḡk(ωk), −νk ≤ uk ≤ 0
c̄c(ωk), uk ≤ −νk

(41)

where Ck,m ≤ Ck(ωk, uk) and |ck(ωk)| ≤ max
{
|ck(ωk)|,

∣∣−Ck, mνk − Gk(ωk)
∣∣,∣∣Ck, mνk + Ḡk(ωk)

∣∣, |c̄k(ωk)|
}

, factors γk,n ∈ [1,+∞), k = p, q, r.
Then, define the normalized error for all states of the quadrotor as λ(t) = [λx, λy, λz,

λϕ, λθ , λψ, λp, λq, λr]T , whose derivative λ̇l(t) is defined as follows:

λ̇l(t) = λ̄(t, λl(t)) (42)

where l = x, y, z, ϕ, θ, ψ, p, q, r.
Define ℧λ = (−1, 1)× (−1, 1)× · · · × (−1, 1)︸ ︷︷ ︸

9×

, which constrains that λ(0) ∈ ℧λ, and

there exists a maximal solution tmax that fulfils λ(t) ∈ ℧λ for t ∈ [0, tmax) [18]. Thus, set a
constant H̄l and H̄l ≥ max

{∣∣∣βl
(0)
∣∣∣, ∣∣β̄l(0)

∣∣}, then it can be obtained that |el(t)| < H̄l .

Step 1. Differentiate the error manifold of the translational subsystem as follows:

ε̇T(t) =
R(ψ)

m
R̃u′

T + oT (43)

where u′
T = uT − ge3 and oT =

[
ox, oy, oz

]T
= −P̈d + αTṖ − αTṖd.

Define the Lyapunov function candidate V T = ET
TKTET , where ET =

[
Ex, Ey, Ez

]T and
KT = [Kx, Ky, Kz]T are a positive definite diagonal matrix. Take the derivative of V T with respect
to time as follows:

V̇ T =ET
TKT ĖT + ĖT

TKTET

=ET
TKTΛT

(
R(ψ)

m
R̃uT + oT + ΦT

)
+

(
uT

T R̃T RT(ψ)

m
+ oT

T + ΦT
T

)
ΛTKTET

(44)
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where Λ = diag(Λx, Λy, Λz) and Φ = [Φx, Φy, Φz]T . Choose KT = κT and submit (23) into (43);
we thus have

V̇ T =ET
TκTΛT

(
−R(ψ)

m
R̃RT(ψ)ΛTκTET + oT + ΦT

)
+

(
−ET

TκTΛT R(ψ)R̃T RT(ψ)

m
+ oT

T + ΦT
T

)
ΛTκTET

=− 2
m

ET
TκTΛT R(ψ)R̃sRT(ψ)ΛTκTET

+ ET
TκTΛT(oT + ΦT) +

(
oT

T + ΦT
T

)
ΛTκTET

(45)

where R̃s =
(

R̃ + R̃T
)

/2.
Consider the following boundedness condition:

• β̄i(t), ˙̄βi(t), β
i
(t), and β̇

i
(t), i = x, y, z are bounded;

• Pd, V d, and V̇ d are bounded;
• According to extreme value theory, oi and Φi for ∀t ∈ [0, tmax), there is a constant ςT > 0

that satisfies ∥oT + ΦT∥ ≤ ςT for ∀t ∈ [0, tmax).

Based on Young’s inequality, together with R(ψ)RT(ψ) = I, it can be deduced that

ET
TκTΛT(oT + ΦT) ≤

mς2
T

4µomin
(

R̃s
)

+
µET

TκTΛT R(ψ)omin
(

R̃s
)

RT(ψ)ΛTκTET

m

(46)

where 0 < µ < 1. Because R̃s is positive definite, then we have

2
m

µET
TκTΛT R(ψ)

(
omin

(
R̃s
)

I − R̃s
)

RT(ψ)ΛTκTET ≤ 0 (47)

Use OT to respresent 2
m (1 − µ)κTΛT R(ψ)R̃sRT(ψ)ΛTκT , then take (46) and (47) into (45);

it can be deduced that

V̇ T ≤ −ET
TOTET +

mς2
T

2µomin
(

R̃s
) (48)

According to the boundary theory of nonlinear systems based on definiteness [25], it can be
obtained that ∥ET∥ ≤ ET ≜ max{∥ET(0)∥,ℑT} for ∀t ∈ [0, tmax), where

ℑT ≤ ςT

√
omax(KT)m

2omin
(

R̃s
)
omin(OT)omin(KT)µ

(49)

Therefore, Ei and uT,i, i = x, y, z are bounded and −1 < λi ≤ λi(t) ≤ λ̄i < 1 for
∀t ∈ [0, tmax).

Step 2. Differentiate Θ̃ with respect to time as follows:

˙̃Θ = Ψ(Θ)(ωd + ω̃)− ˙̃Θd = Ψ(Θ)ωd + oΘ (50)

where oR = Ψ(Θ)Θ̃ − Θ̇d.
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Define the Lyapunov function candidate V Θ = ET
ΘKΘEΘ =

[
Vϕ, Vθ , Vψ

]T , where EΘ =[
Eϕ, Eθ , Eψ

]T and KΘ = [Kϕ, Kθ , Kψ]T represent a positive definite diagonal matrix. Take the
derivative of VΘ as follows:

V̇ Θ = ET
ΘKΘĖΘ + ĖT

ΘKΘEΘ

= ET
ΘKΘΛΘ(Ψ(Θ)ωd + oΘ + ΦΘ) +

(
ωT

d ΨT(Θ) + oT
Θ + ΦT

Θ

)
ΛΘKΘEΘ

(51)

where ΛΘ = diag(Λϕ, Λθ , Λψ), ΦΘ = [Φϕ, Φθ , Φψ]T . Choosing KΘ = κΘ and taking
(30) into (51), we have

V̇ Θ =− 2ET
ΘκΘΛΘκΘEΘ + ET

ΘκΘΛΘ(oΘ + ΦΘ)

+
(

oT
Θ + ΦT

Θ

)
ΛΘκΘEΘ

(52)

Consider the following boundedness conditions:

• β j(t) and β̇ j(t), j = ϕ, θ, ψ are bounded;
• Θ and Θ̇ are bounded by the former step;
• oj and Φj are bounded for ∀t ∈ [0, tmax).

Because κΘ and ΛΘ are both positive diagonal matrixes, it can be deduced as follows:

V̇j ≤ −2Λjκ
2
j E2

j + 2ς jΛjκj
∣∣Ej
∣∣ (53)

Thus, we can conclude that
∣∣Ej
∣∣ ≤ Ēj ≜ max

{∣∣Ej(0)
∣∣, ℑ̄j

}
for ∀t ∈ [0, tmax) with ℑj ≤

ς j/κj. Thus, Θj, j = ϕ, θ, ψ and ωd,k, k = p, q, r are bounded and −1 ≤ λj ≤ λj(t) ≤ λ̄j < 1
for ∀t ∈ [0, tmax).

Step 3. Differentiate ω̃k, k = p, q, r respect to time as follows:

˙̃ωk = fk(ωk, uk)− ω̇d,k = Ck(ωk, uk)uk + ok (54)

where ok = ck(ω)− ω̇d,k.
Define the Lyapunov function candidate Vk = E2

k /2, then its derivative with respect to time
can be represented as follows:

V̇k = EkĖk = EkΛk(Ck(ωk, uk)uk + ok + Φk) (55)

Taking (33) into (55), we have

V̇k = EkΛk(−Ck(ωk, uk)κk + ok + Φk) (56)

Consider the following boundedness conditions:

• βk(t) and β̇k(t), k = p, q, r are bounded;
• ωk and ω̇k are bounded by the former step;
• Based on the extreme value theory, ok and Φk are bounded for ∀t ∈ [0, tmax) and there exists a

constant ςk > 0 that satisfies |ok + Φ + k ≤ ςk|
According to the above conditions, it can be obtained as follows:

V̇k ≤ −Ck(ωk, uk)ΛkκkE2
k + Λkςk|Ek| (57)

After that, it can be concluded that |Ek| ≤ Ēk ≜ max
{
|Ek(0)|, ℑ̄k

}
for ∀t ∈ [0, tmax)

with ℑk ≤ ςk/(Ck,mκk). Therefore, we can obtain that Ek and uk, k = p, q, r are bounded and
−1 ≤ λk ≤ λk(t) ≤ λ̄k < 1 for ∀t ∈ [0, tmax).
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Step 4. According to the setting that λ(t) ∈ ℧
′
λ for ∀t ∈ [0, tmax), where

℧
′
λ = ∏

i∈{x,y,z}

[
λi, λ̄i

]
× ∏

j∈{ϕ,θ,ψ}

[
λj, λ̄j

]
× ∏

k∈{p,q,r}

[
λk, λ̄k

]
(58)

Thus, it can be assumed that tmax < ∞ and ℧′
λ ⊂ ℧λ, and it can be demonstrated that there

exists a time instant tt ∈ [0, tmax) satisfying λ(tt) /∈ ℧′
λ[25]. It is obvious that such a deduction is

contradictory to λ(t) ∈ ℧′
λ.

Hence, it can be concluded that all states of the closed-loop quadrotor based on the proposed
dynamic event-triggered PPC remain bounded and tmax = ∞. Furthermore, we can obtain the
following conclusion:

β
l
(t) < el(t) < β̄l(t), ∀t ≥ 0 (59)

Henceforth, all proofs are complete.

6. Simulation and Discussion

In order to verify the effectiveness of the proposed method, we provide quadrotor
aggressive flight simulations. The parameters of the quadrotor model and DETPPC con-
trollers designed are as shown in Table 1. At the same time, the measurement noise of the
sensor is taken into account.

Table 1. The structural parameters and DETPPC controller parameters of the quadcopter.

Parameter Value

m 6.95 kg
l 0.65 m
d 0.66 m
g 9.81 m/s2

J diag(0.256, 0.266, 0.437) kgm2

αT diag(1.2, 1.2, 1.2)
αΘ diag(0.008, 0.008, 0.015)
αω diag(0.015, 0.015, 0.032)
κT diag(0.4, 0.4, 0.4)
κΘ diag(2.8, 2.8, 2.8)
κω diag(0.015, 0.015, 0.015)
ke,l 0.6, l = x, y, z, ϕ, θ, ψ, p, q, r
ai 1, i = x, y, z
aj 4, j = ϕ, θ, ψ

ak 8, k = p, q, r
βi,∞ 0.2, i = x, y, z
β j,∞ 0.05, j = ϕ, θ, ψ

βk,∞ 0.1, k = p, q, r

The performance functions of each subsystem are, respectively, designed as (22), (29),
and (32), the parameters of which are displayed in Table 1.

This paper selects two controllers for comparison: (1) a traditional prescribed perfor-
mance controller (TPPC) without dynamic event-triggering, with controller parameters
consistent with DETPPC; (2) a Cascade PID controller (P-PID), with parameters set accord-
ing to Wang [26].

Example 1. To verify the improvement in the transient performance of the proposed method for
quadrotors facing abrupt commands, this example conducts a simulation of an attitude control
under abrupt mutations. The reference attitude commands (Θd), as defined in (60), are employed
for attitude control simulation. Θd in (60) denotes that the roll and pitch attitude angles of the
quadrotor were initially subjected to sinusoidal commands. However, at the 3rd and 9th seconds,
due to specific flight requirements, their values experienced abrupt changes and were maintained for
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3 s each. The initial attitude and angular velocity of the quadrotor are set to Θ0 = [0, 0, 0]T and
ω0 = [0, 0, 0]T .

Θd(deg) =



ϕd = 20 sin
(

π
10 t
)

θd = 30 sin
(

π
10 t
) }

t < 3 s & 6 s < t < 9 s & t > 12 s

ϕd = 20
θd = 30

}
3 s < t < 6 s

ϕd = −10
θd = −15

}
9 s < t < 12 s

(60)

Figures 4 and 5 present the tracking results. Due to the absence of performance
function compensation based on dynamic event triggering, the TPPC controller diverges
when the command abruptly changes at the third second. In comparison with the P-PID
method, the DETPPC controller in this study demonstrates faster response and convergence
rates, as well as smaller tracking errors. Figure 6 illustrates a comparison of the convergence
of Θ̃. The purple and green dashed lines represent the proposed DETPPC performance
function. The TPPC method encounters an error overshoot at the third second, which is
the cause of control divergence. The proposed DETPPC controller demonstrates faster
and more stable error convergence than the P-PID controller. In Figure 7, DETPPC’s
control gain dynamically adjusts based on Θ̃ variations. This accounts for DETPPC’s faster
convergence and response speed compared to traditional cascade PID methods when
handling abrupt commands.

Figure 4. The tracking results of ϕ angle.

Figure 5. The tracking results of θ angle.
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Figure 6. Comparision of the tracking error of attitude angle.

Figure 7. The control gain of DETPPC varies with the tracking error.

Figure 8 and Figure 9, respectively, depict ω̃ and the variation of DETPPC control
gain with the angular rate tracking errors. Besides the divergence seen in the TPPC
method during command mutations, it is evident that, for pitch angular velocity control,
the DETPPC controller also shows faster and more stable convergence. Moreover, the
tracking error based on the P-PID method occasionally surpasses the expected performance
boundaries. For roll angular velocity, DETPPC and P-PID controllers perform similarly,
likely due to the small reference command for roll angle.

Figure 8. Comparision of the tracking error of angular velocity.
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Figure 9. The control gain of DETPPC varies with the angular velocity tracking error.

To sum up, the proposed DETPPC method resolves the divergence problem faced by
traditional PPC when confronted with command mutations, while also achieving superior
transient performance through tailored constraint design for specified state variables.

Example 2. To further validate the afore-mentioned conclusions, this example provides a simulation
of agile trajectory tracking for a quadrotor with abrupt command. As errors exceeding performance
function boundaries lead to system divergence, the traditional PPC method is not included as a
comparison in this simulation. The reference trajectory in this example is a three-dimensional helix,
as shown in (61). External disturbances are encountered at the tenth second, persisting for two
seconds. Additionally, trajectory command changes occur at the twentieth and thirtieth seconds,
respectively. The initial position of the quadcopter is set to P0 = [0, 0, 0]T .

Pd(m) =



xd = 40 sin
(

π
10 t
)

yd = 40 cos
(

π
10 t
)
− 40

zd = t

t < 20 s

xd = 2t − 40
y = 0
z = 20

20 s < t < 30 s

xd = −40 sin
(

π
10 t
)
+ 20

yd = 40 cos
(

π
10 t
)
+ 40

z = −t + 50

30 s < t < 40 s

(61)

Figures 10 and 11 present the results of trajectory tracking and position control in
three directions, respectively. It can be observed that the DETPPC method enables more
accurate trajectory tracking, which is particularly evident during the command mutation
at 20 s, where the proposed DETPPC method exhibits reduced overshoot and faster po-
sition convergence. Take the root-mean-square (RMS, ep1) values of the tracking errors,
as shown in Table 2, to quantitatively evaluate the controller effectiveness. The results
demonstrate that the trajectory tracking RMS of the proposed method is only 31% of that of
the traditional approach.

Figure 10. The trajectory tracking results in comparison.
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Table 2. RMS of the trajectory tracking errors.

Index DETPPC P-PID

RMS (m) 1.2715 4.1206

Figure 11. The results of position control in three directions.

The convergence of P̃ for the quadrotor is illustrated in Figure 12. By imposing
performance constraints, DETPPC achieves faster convergence of tracking errors with
smaller overshoots through automatic adjustment of control gains, as depicted in Figure 13.
In comparison, the position control errors of the P-PID method notably deviate from the
desired criteria, especially in the horizontal direction. The position tracking error of the
proposed method is only 50% that of the P-PID controller in the horizontal direction, and
75% in the vertical direction. Similarly, the velocity control of the quadcopter in three axes
shows the same trend. As depicted in Figure 14, DETPPC facilitates quicker convergence
of velocity control, particularly with reduced fluctuations during command changes.

Figure 12. The convergence of position tracking errors.

Figure 13. The variation of position control gains with tracking errors.

Figure 14. The convergence of velocity control errors.

Figures 15–17 demonstrate the control comparison of attitude angles and angular
rates. For the desired trajectory in (61), the quadrotor’s attitude angles reached 40 degrees.



Aerospace 2024, 11, 301 18 of 20

Furthermore, the proposed DETPPC method reaches peak attitude angles nearly 2 s faster
than the P-PID controller. Figure 15 demonstrates that, with DERPPC, the quadrotor
achieves more agile attitude control. Additionally, in Figure 16, during the 10–12 s period
of external disturbance, the proposed method demonstrates rapid attitude convergence,
while the P-PID controller exhibits larger and longer fluctuations, especially in roll and
pitch angles. ω̃ in Figure 17 also reflects the same conclusion.

Figure 15. The response of the quadrotor’s attitude angles.

Figure 16. The convergence of attitude angle control errors.

Figure 17. The convergence of angular rate control errors.

7. Conclusions

Originating from the demands of quadrotor aggressive flight for maneuverability
and transient performance, this paper aims to address the control divergence caused
by command mutations in existing PPC methods. Through designing a dynamic event-
triggered mechanism, and using the direction of error variation and its distance from the
envelope of the performance function as triggering criteria, the performance function can be
autonomously compensated. Based on this, the performance function was redesigned, and
robust prescribed performance controllers for the quadrotor’s translational and rotational
subsystems were, respectively, designed. Moreover, a stability analysis of the controller was
conducted based on Lyapunov functions. Finally, simulations were conducted to evaluate
attitude control and aggressive trajectory tracking under command mutations and external
disturbances. The results indicate that the proposed method resolves the divergence of
traditional PPC controllers under abrupt command changes, enhancing the algorithm’s
robustness. Additionally, compared to the cascaded PID method, the proposed DETPPC
controller exhibits faster response and convergence speeds, along with reduced oscillations,
in trajectory tracking simulations under sudden command changes. Ultimately, it achieves
an RMS trajectory tracking error that is only 31% of the control group. We believe that this
work can provide a reference for practical applications, while also indicating areas that
require further exploration. It is worth noting that our proposed method has shown that
control gains vary with error convergence. Hence, energy consumption during application
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needs attention, even potentially control saturation. This provides us with further ideas for
our future research and for enhancing the practicality of the algorithm.
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