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Abstract: The aim of this study is to refine the known Riccati transformation technique to provide
new oscillation criteria for solutions to second-order dynamic equations over time. It is important
to note that the convergence or divergence of some improper integrals on time scales depends not
only on the integration function but also on the integration time scale. Therefore, there has been

a motivation to find new oscillation criteria that can be applicable regardless of whether
∫ ∞

ζ0

∆ξ

a(ξ)
is convergent or divergent, in contrast to what has been followed in most previous works in the
literature. We have provided an example to illustrate the significance of the obtained results.
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1. Introduction

Oscillation phenomena are present in several models derived from real-world appli-
cations; see the papers [1,2] for mathematical biology models in which oscillation and/or
delay actions might be depicted using cross-diffusion terms. This work discusses dynamic
equations on time scales because they are relevant to many practical problems, such as
non-Newtonian fluid theory and the turbulent flow of a polytrophic gas in a porous media
(for further details, see, [3–7]). Therefore, we are interested in the oscillatory behavior of
second-order Sturm–Liouville dynamic equations in the form(

ay∆
)∆

(ζ) + p(ζ)y(τ(ζ)) = 0 (1)

on an arbitrary unbounded above time scale T, where ζ ∈ [ζ0, ∞)T := [ζ0, ∞) ∩T, ζ0 ≥ 0,
ζ0 ∈ T; a, p are positive rd-continuous functions on T; and τ : T → T is a nondecreasing
rd-continuous function satisfying τ(ζ) ≤ σ(ζ) on [ζ0, ∞)T and limζ→∞ τ(ζ) = ∞.

We presume the reader is already acquainted with the fundamentals of time scales
and time scale notations. By a solution of Equation (1) we mean a nontrivial real-valued
function y ∈ C1

rd[ξy, ∞)T, ζy ∈ [ζ0, ∞)T such that ay∆ ∈ C1
rd[ζy, ∞)T and y satisfies (1) on

[ζy, ∞)T, where Crd is the set of right-dense continuous functions. According to Trench [8],
we state that (1) is in noncanonical form if∫ ∞

ζ0

∆ξ

a(ξ)
< ∞, (2)
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and we state that (1) is in canonical form if∫ ∞

ζ0

∆ξ

a(ξ)
= ∞. (3)

We refer to a solution y of Equation (1) as nonoscillatory if it is either eventually positive or
negative; otherwise, it is considered oscillatory. The solutions vanishing in some neighbor-
hood of infinity will be excluded from our consideration. Equation (1) is said to oscillate if
all of its solutions oscillate. For nonoscillatory solutions of (1), we define

N1 :=
{

y(ζ) : y(ζ) y∆(ζ) < 0 eventually
}

and
N2 :=

{
y(ζ) : y(ζ) y∆(ζ) > 0 eventually

}
.

Stefan Hilger [9] proposed the theory of dynamic equations on time scales in order to
establish a unified framework for analyzing both continuous and discrete systems. A time
scale T is a nonempty, closed subset of the reals, and the cases when this time scale is real
or the integers represent the classical theories of differential and of difference equations.
Many applications use different time scales. The new theory of the so-called “dynamic
equations” includes classical theories for differential and difference equations and instances
in between. The q-difference equations, which have quantum theory implications (refer
to [10]), can be investigated at different time scales. The time scales include T=qN0 := {qλ :
λ ∈ N0 for q > 1}, as well as T=hN, T= N2, and T = Tn, where Tn represents the set of
harmonic numbers, see [11–13], for an introduction to the study of calculus on time scales.
Note that if T = R, then

σ(ζ) = ζ, µ(ζ) = 0, y∆(ζ) = y′(ζ),
∫ β

α
y(ξ)∆ξ =

∫ β

α
y(ξ)dξ,

and (1) becomes the linear Sturm–Liouville delay differential equation(
a y′
)′
(ζ) + p(ζ)y(τ(ζ)) = 0. (4)

The oscillatory characteristics of particular cases of Equation (4) are examined by Fite [14]
and showed that if ∫ ∞

ζ0

p(ξ)dξ = ∞, (5)

then every solution of the differential equation

y′′(ζ) + p(ζ)y(ζ) = 0 (6)

oscillates. Hille [15] improved condition (5) and proved that if

lim inf
ζ→∞

ζ
∫ ∞

ζ
p(ξ)dξ >

1
4

, (7)

then every solution of Equation (6) oscillates. If T = Z, then

σ(ζ) = ζ + 1, µ(ζ) = 1, y∆(ζ) = ∆y(ζ),
∫ β

α
y(ξ)∆ξ =

β−1

∑
ξ=α

y(ξ),

and (1) obtains the linear Sturm–Liouville difference equation

∆(a ∆y)(ζ) + p(ζ)y(τ(ζ)) = 0. (8)
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Thandapani et al. [16] studied the oscillation behavior of Equation (8) when a(ζ) = 1 and
τ(ζ) = ζ, and it was proven that every solution of Equation (8) oscillates if

∞

∑
ζ=ζ0

p(ζ) = ∞. (9)

We will show that our findings not only unify some differential and difference equation
oscillation results but can also be extended to determine oscillatory behavior in other cases.
If T =hZ, h > 0, thus

σ(ζ) = ζ + h, µ(ζ) = h, y∆(ζ) = ∆hy(ζ) :=
y(ζ + h)− y(ζ)

h
,
∫ β

α
y(ξ)∆ξ =

β−α−h
h

∑
k=0

y(α + kh)h,

and (1) converts the linear Sturm–Liouville difference equation

∆h(a ∆hy)(ζ) + p(ζ)y(τ(ζ)) = 0. (10)

If T = {ζ : ζ = qk, k ∈ N0, q > 1}, then

σ(ζ) = qζ, µ(ζ) = (q − 1)ζ, y∆(ζ) = ∆qy(ζ) =
y(q ζ)− y(ζ)
(q − 1) ζ

,
∫ ∞

ζ0

y(ξ)∆ξ =
∞

∑
k=n0

y(qk)µ(qk),

where ζ0 = qn0 , and (1) becomes the linear Sturm–Liouville q-difference equation

∆q
(
a ∆qy

)
(ζ) + p(ζ)y(τ(ζ)) = 0. (11)

If T = N2
0 := {n2 : n ∈ N0}, then

σ(ζ) = (
√

ζ + 1)2, µ(ζ) = 1 + 2
√

ζ, ∆Ny(ζ) =
y((

√
ζ + 1)2)− y(ζ)
1 + 2

√
ζ

,

and (1) obtains the linear Sturm–Liouville difference equation

∆N(a ∆Ny)(ζ) + p(ζ)y(τ(ζ)) = 0. (12)

If T = {Hn : n ∈ N} where Hn is the n-th harmonic number defined by H0 = 0, Hn =

∑n
k=1

1
k , n ∈ N0, then

σ(Hn) = Hn+1, µ(Hn) =
1

n + 1
, y∆(ζ) = ∆Hn y(Hn) = (n + 1)∆y(Hn)

and (1) converts the linear Sturm–Liouville difference equation

∆Hn(a ∆Hn y)(Hn) + p(Hn)y(τ(Hn)) = 0. (13)

Recall that in the case of a discrete time scale,∫ β

α
y(ξ)∆ξ = ∑

ξ∈[α,β)T

y(ξ)µ(ξ).

Regarding dynamic equations, there have been a large number of papers devoted to
studying the oscillatory behavior of solutions to second-order dynamic equations on time
scales. As an illustration, Agarwal et al. [17] established some sufficient conditions for the
oscillation of the delay dynamic equation

y∆∆(ζ) + p(ζ)y(τ(ζ)) = 0, (14)
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where τ(ζ) ≤ ζ on [ζ0, ∞)T. Zhang et al. [18] examined the oscillation of the dynamic equation

y∆∆(ζ) + p(ζ)y(σ(ζ)) = 0 (15)

and obtained some oscillation criteria and comparison theorems for (15). By utilizing the
Riccati transformation method, Sahiner [19] was able to derive sufficient conditions for the
oscillation of the delay dynamic equation

y∆∆(ζ) + p(ζ)y(τ(ζ)) = 0. (16)

Erbe et al. [20] extended Sahiner’s result to the delay dynamic Equation (1), where τ(ζ) ≤ ζ
on [ζ0, ∞)T and (3) holds. Erbe et al. [21] established Hille–Kneser type nonoscillation
necessary and sufficient criteria for the pair of dynamic equations(

ay∆
)∆

(ζ) + p(ζ)y(ζ) = 0 (17)

and (
ay∆
)∆

(ζ) + p(ζ)y(σ(ζ)) = 0,

where (3) holds. Erbe et al. [22] studied the canonical form of Equation (1), i.e., (3) holds,
and established the following results:

Theorem 1 (see [22] (Theorems 2.1 and 2.2)). Let (3) hold. Then Equation (1) oscillates if there
exists a function ρ ∈ C1

rd(T,R+) such that

lim sup
ζ→∞

[∫ ζ

ζ0

(
ρ(ξ)p(ξ)

A(τ(ξ))

Aσ(ξ)
−
(
ρ∆(ξ)

)2a(ξ)
4ρ(ξ)

)
∆ξ

]
= ∞, (18)

where

A(ξ) :=
∫ ξ

ζ0

∆s
a(s)

.

For further results, see articles [23–42] and the references indicated therein. It is worth
noting here that most of the works are concerned with obtaining sufficient conditions for
oscillation when (2) holds, while others do so when (3) holds.

Here, it is important to highlight a property that is not expected in the usual calculus
of integrals and sums but has been achieved for some time scales, which is that the

convergence of the improper integral
∫ ∞

ζ0

∆ξ

ξα
does not depend only on α but also on the

time scale, such as for the unbounded above time scales

T =
{

ξk : ξk = 2βk
, β > 1, k ∈ N0

}
,

such that ∫ ∞

ζ0

∆ξ

ξα
=

∞

∑
k=0

µ(ξk)

ξα
k

is divergent if α ≤ β and convergent if α > β; see [13] (Examples 5.63, 5.66, and
Theorems 5.65, 5.68) for more details. This means that the results obtained when con-
dition (2) is satisfied cannot be applied to all time scales.

Therefore, it was important to present new oscillation criteria that improve the ex-
isting criteria in the literature and can be applied to either the noncanonical or canonical
form. Moreover, these results will be applicable in the case of improper integrals whose
convergence and divergence depend on the time scale.
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2. Main Results

The first two theorems are established for non-existence criteria for nonoscillatory
solutions in class N1, and the other two are for class N2.

Theorem 2. If there exists a function δ ∈ C1
rd(T,R+) such that

lim sup
ζ→∞

[
δ(ζ)

∫ ∞

ζ

∆ξ

a(ξ)
+
∫ ζ

ζ0

(
δ(ξ)

a(ξ)
−
(
δ∆(ξ)

)2

4δ(ξ)p(ξ)

)
∆ξ

]
= ∞, (19)

then N1 = ∅.

Proof. Assume (1) has a nonoscillatory solution y(ζ) ∈ N1 such that y(ζ) > 0 and
y(τ(ζ)) > 0 for ζ ∈ [ζ0, ∞)T. Then,

y∆(ζ) < 0 and
(

ay∆
)∆

(ζ) = −p(ζ)y(τ(ζ)) < 0 for ζ ∈ [ζ0, ∞)T. (20)

Define

w1(ζ) := −δ(ζ)
y(ζ)

a(ζ)y∆(ζ)
. (21)

We see by the product and quotient rules that

w∆
1 (ζ) = δ∆(ζ)

(
−y(ζ)

a(ζ)y∆(ζ)

)σ

+ δ(ζ)

(
−y(ζ)

a(ζ)y∆(ζ)

)∆

= δ∆(ζ)

(
−y(ζ)

a(ζ)y∆(ζ)

)σ

+δ(ζ)

(
−y∆(ζ)

(
1

a(ζ)y∆(ζ)

)
− yσ(ζ)

(
1

a(ζ)y∆(ζ)

)∆
)

= δ∆(ζ)

(
−y(ζ)

a(ζ)y∆(ζ)

)σ

+δ(ζ)

(
− 1

a(ζ)
+

(
a(ζ)y∆(ζ)

)∆

a(ζ)y∆(ζ)

(
y(ζ)

a(ζ)y∆(ζ)

)σ
)

.

Thanks to the facts that
[
a(ζ)y∆(ζ)

]∆
< 0 and y∆(ζ) < 0 on [ζ0, ∞)T, (1), and (21), we have

w∆
1 (ζ) = − δ(ζ)

a(ζ)
+ δ∆(ζ)

(
w1(ζ)

δ(ζ)

)σ

+ δ(ζ)p(ζ)
y(τ(ζ))

a(ζ)y∆(ζ)

(
w1(ζ)

δ(ζ)

)σ

≤ − δ(ζ)

a(ζ)
+ δ∆(ζ)

(
w1(ζ)

δ(ζ)

)σ

+ δ(ζ)p(ζ)
(

y(ζ)
a(ζ)y∆(ζ)

)σ(w1(ζ)

δ(ζ)

)σ

= − δ(ζ)

a(ζ)
+ δ∆(ζ)

(
w1(ζ)

δ(ζ)

)σ

− δ(ζ)p(ζ)
[(

w1(ζ)

δ(ζ)

)σ]2

. (22)

Using the inequality

Au − Bu2 ≤ A2

4B
, B > 0, (23)

we obtain

δ∆(ζ)

(
w1(ζ)

δ(ζ)

)σ

− δ(ζ)p(ζ)
[(

w1(ζ)

δ(ζ)

)σ]2

≤
(
δ∆(ζ)

)2

4δ(ζ)p(ζ)
.



Mathematics 2024, 12, 1532 6 of 11

By the latter inequality and (22), we obtain

δ(ζ)

a(ζ)
−
(
δ∆(ζ)

)2

4δ(ζ)p(ζ)
≤ −w∆

1 (ζ). (24)

By integrating (24) from ζ0 to ζ, it follows that

∫ ζ

ζ0

(
δ(ξ)

a(ξ)
−
(
δ∆(ξ)

)2

4δ(ξ)p(ξ)

)
∆ξ ≤ −w1(ζ) + w1(ζ0).

By the facts that y∆(ζ) and a(ζ)y∆(ζ) are decreasing on [ζ1, ∞)T, we obtain

−y(ζ) ≤
∫ ∞

ζ

a(ξ)y∆(ξ)

a(ξ)
∆ξ ≤ a(ζ)y∆(ζ)

∫ ∞

ζ

∆ξ

a(ξ)
, (25)

which implies

w1(ζ) ≥ δ(ζ)
∫ ∞

ζ

∆ξ

a(ξ)
.

Therefore,

δ(ζ)
∫ ∞

ζ

∆ξ

a(ξ)
+
∫ ζ

ζ0

(
δ(ξ)

a(ξ)
−
(
δ∆(ξ)

)2

4δ(ξ)p(ξ)

)
∆ξ ≤ w1(ζ0),

which leads to a discrepancy with (19).

Now, we are prepared to state and demonstrate the Philos-type criterion for Equation (1).

Theorem 3. If there exist functions δ ∈ C1
rd(T,R+) and R, r ∈ Crd(D,R), where

D ≡ {(ζ, ξ) : ζ, ξ ∈ T, ζ ≥ ξ ≥ ζ0}

such that
R(ζ, ζ) = 0, ζ ≥ ζ0, R(ζ, ξ) > 0, ζ > ξ ≥ ζ0, (26)

and suppose R has a nonpositive continuous ∆-partial derivative R∆ξ (ζ, ξ) that satisfies

R∆ξ (ζ, ξ) +
δ∆(ξ)

δσ(ξ)
R(ζ, ξ) = − r(ζ, ξ)

δσ(ξ)

√
R(ζ, ξ) (27)

and

lim sup
ζ→∞

1
R(ζ, ζ0)

∫ ζ

ζ0

[
δ(ξ)

a(ξ)
R(ζ, ξ)− r2(ζ, ξ)

4δ(ξ)p(ξ)

]
∆ξ = ∞, (28)

then N1 = ∅.

Proof. Assume (1) has a nonoscillatory solution y(ζ) ∈ N1 such that y(ζ) > 0 and
y(τ(ζ)) > 0 for ζ ∈ [ζ0, ∞)T. Hence, (20) holds. As shown in the proof of Theorem 2,
we have

δ(ζ)

a(ζ)
≤ −w∆

1 (ζ) + δ∆(ζ)

(
w1(ζ)

δ(ζ)

)σ

− δ(ζ)p(ζ)
[(

w1(ζ)

δ(ζ)

)σ]2

. (29)
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Replace ζ by ξ, multiply by R(ζ, ξ), and integrate with regard to ξ from ζ0 to ζ ≥ ζ0
to obtain ∫ ζ

ζ0

δ(ξ)

a(ξ)
R(ζ, ξ)∆ξ ≤ −

∫ ζ

ζ0

R(ζ, ξ)w∆
1 (ξ)∆ξ

+
∫ ζ

ζ0

δ∆(ξ)R(ζ, ξ)

(
w1(ξ)

δ(ξ)

)σ

∆ξ

−
∫ ζ

ζ0

δ(ξ)p(ξ)R(ζ, ξ)

[(
w1(ξ)

δ(ξ)

)σ]2

∆ξ.

Integrating by parts and from (26) and (27), we obtain∫ ζ

ζ0

δ(ξ)

a(ξ)
R(ζ, ξ)∆ξ ≤ R(ζ, ζ0)w1(ζ0) +

∫ ζ

ζ0

R∆ξ (ζ, ξ)wσ
1 (ξ)∆ξ

+
∫ ζ

ζ0

δ∆(ξ)

δσ(ξ)
R(ζ, ξ)wσ

1 (ξ)∆ξ

−
∫ ζ

ζ0

δ(ξ)p(ξ)R(ζ, ξ)

{(
w1(ξ)

δ(ξ)

)σ}2

∆ξ

= R(ζ, ζ0)w1(ζ0) +
∫ ζ

ζ0

[
− r(ζ, ξ)

√
R(ζ, ξ)

(
w1(ξ)

δ(ξ)

)σ

−δ(ξ)p(ξ)R(ζ, ξ)

{(
w1(ξ)

δ(ξ)

)σ}2]
∆ξ. (30)

It is easy to check that

−r(ζ, ξ)
√

R(ζ, ξ)

(
w1(ξ)

δ(ξ)

)σ

− δ(ξ)p(ξ)R(ζ, ξ)

{(
w1(ξ)

δ(ξ)

)σ}2

≤ r2(ζ, ξ)

4δ(ξ)p(ξ)
. (31)

From (30) and (31), we obtain

1
R(ζ, ζ0)

∫ ζ

ζ0

[
δ(ξ)

a(ξ)
R(ζ, ξ)− r2(ζ, ξ)

4δ(ξ)p(ξ)

]
∆ξ ≤ w(ζ0),

which is a discrepancy with assumption (28).

Theorem 4. If there exists a function ρ ∈ C1
rd(T,R+) such that

lim sup
ζ→∞

[
ρ(ζ)

∫ ∞

ζ
P(ξ)∆ξ +

∫ ζ

ζ0

(
ρ(ξ)P(ξ)−

(
ρ∆(ξ)

)2a(ξ)
4ρ(ξ)

)
∆ξ

]
= ∞, (32)

where

P(ξ) := p(ξ)
A(τ(ξ))

Aσ(ξ)
with A(ξ) :=

∫ ξ

ζ0

∆s
a(s)

,

then N2 = ∅.

Proof. Assume (1) has a nonoscillatory solution y(ζ) ∈ N2 such that y(ζ) > 0 and
y(τ(ζ)) > 0 for ζ ∈ [ζ0, ∞)T. Then,

y∆(ζ) > 0 and
(

ay∆
)∆

(ζ) = −p(ζ)y(τ(ζ)) < 0 for ζ ∈ [ζ0, ∞)T. (33)

Define

w2(ζ) := ρ(ζ)
a(ζ)y∆(ζ)

y(ζ)
.
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In a manner analogous to the proof of Theorem 2, we find that

w∆
2 (ζ) ≤ −ρ(ζ)p(ζ)

y(τ(ζ))
yσ(ζ)

+ ρ∆(ζ)

(
w2(ζ)

ρ(ζ)

)σ

− ρ(ζ)

a(ζ)

[(
w2(ζ)

ρ(ζ)

)σ]2

.

By virtue of [12] (Theorem 1), we have(
y(ζ)
A(ζ)

)∆
< 0. (34)

Therefore,

w∆
2 (ζ) ≤ −ρ(ζ)p(ζ)

A(τ(ζ))

Aσ(ζ)
+ ρ∆(ζ)

(
w2(ζ)

ρ(ζ)

)σ

− ρ(ζ)

a(ζ)

[(
w2(ζ)

ρ(ζ)

)σ]2

= −ρ(ζ)P(ζ) + ρ∆(ζ)

(
w2(ζ)

ρ(ζ)

)σ

− ρ(ζ)

a(ζ)

[(
w2(ζ)

ρ(ζ)

)σ]2

.

Using the inequality (23), we obtain

ρ∆(ζ)

(
w2(ζ)

ρ(ζ)

)σ

− ρ(ζ)

a(ζ)

[(
w2(ζ)

ρ(ζ)

)σ]2

≤
(
ρ∆(ζ)

)2a(ζ)
4ρ(ζ)

.

Therefore,

w∆
2 (ζ) ≤ −ρ(ζ)P(ζ) +

(
ρ∆(ζ)

)2a(ζ)
4ρ(ζ)

. (35)

By integrating (35) from ζ0 to ζ, we obtain

∫ ζ

ζ0

(
ρ(ξ)P(ξ)−

(
ρ∆(ξ)

)2a(ξ)
4ρ(ξ)

)
∆ξ ≤ −w2(ζ) + w2(ζ0).

From (1), (33), and (34), we have

a(ζ)y∆(ζ) ≥
∫ ∞

ζ
p(ξ)y(τ(ξ))∆ξ ≥ y(ζ)

∫ ∞

ζ
p(ξ)

A(τ(ξ))

Aσ(ξ)
∆ξ

which implies

w2(ζ) ≥ ρ(ζ)
∫ ∞

ζ
p(ξ)

A(τ(ξ))

Aσ(ξ)
∆ξ.

Hence,

ρ(ζ)
∫ ∞

ζ
P(ξ)∆ξ +

∫ ζ

ζ0

(
ρ(ξ)P(ξ)−

(
ρ∆(ξ)

)2a(ξ)
4ρ(ξ)

)
∆ξ ≤ w2(ζ0),

which leads to a discrepancy with (32). This completes the proof.

Theorem 5. If there exist functions ρ ∈ C1
rd(T,R+) and R, r ∈ Crd(D,R) such that

R∆ξ (ζ, ξ) +
ρ∆(ξ)

ρσ(ξ)
R(ζ, ξ) = − r(ζ, ξ)

ρσ(ξ)

√
R(ζ, ξ)

and

lim sup
ζ→∞

1
R(ζ, ζ0)

∫ ζ

ζ0

[
ρ(ξ)p(ξ)

A(τ(ξ))

Aσ(ξ)
R(ζ, ξ)− r2(ζ, ξ)a(ξ)

4ρ(ξ)

]
∆ξ = ∞, (36)

where R, r are defined as in Theorem 3, then N2 = ∅.
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Proof. Assume (1) has a nonoscillatory solution y(ζ) ∈ N2 such that y(ζ) > 0 and
y(τ(ζ)) > 0 for ζ ∈ [ζ0, ∞)T. Hence, (33) holds. As shown in the proof of Theorem 4,
we have

ρ(ζ)p(ζ)
A(τ(ζ))

Aσ(ζ)
≤ −w∆

2 (ζ) + ρ∆(ζ)

(
w2(ζ)

ρ(ζ)

)σ

− ρ(ζ)

a(ζ)

[(
w2(ζ)

ρ(ζ)

)σ]2

.

Replacing ζ by ξ, multiplying by R(ζ, ξ), and integrating with regard to ξ from ζ0 to ζ ≥ ζ0,
we obtain ∫ ζ

ζ0

ρ(ξ)p(ξ)
A(τ(ξ))

Aσ(ξ)
R(ζ, ξ)∆ξ ≤ −

∫ ζ

ζ0

R(ζ, ξ)w∆
2 (ξ)∆ξ

+
∫ ζ

ζ0

ρ∆(ξ)R(ζ, ξ)

(
w2(ξ)

ρ(ξ)

)σ

∆ξ

−
∫ ζ

ζ0

ρ(ξ)

a(ξ)
R(ζ, ξ)

{(
w2(ξ)

ρ(ξ)

)σ}2

∆ξ.

In a manner similar to the proof of Theorem 3, we find a discrepancy with assumption (36).

Next, by combining the results of previous theorems, we set new oscillation criteria
for Equation (1).

Theorem 6. If conditions (19) or (28) and (32) or (36) are satisfied, then Equation (1) oscillates.

Example 1. Consider the dynamic equation of second order(
ζ2y∆

)∆
(ζ) + γ

Aσ(ζ)

A(τ(ζ))
y(τ(ζ)) = 0, (37)

where γ > 0, a(ζ) = ζ2, and p(ζ) =
Aσ(ζ)

A(τ(ζ))
. By choosing δ(ζ) = ζ, we have

lim sup
ζ→∞

[
δ(ζ)

∫ ∞

ζ

∆ξ

a(ξ)
+
∫ ζ

ζ0

(
δ(ξ)

a(ξ)
−
(
δ∆(ξ)

)2

4δ(ξ)p(ξ)

)
∆ξ

]

= lim sup
ζ→∞

[
ζ
∫ ∞

ζ

∆ξ

ξ2 +
∫ ζ

ζ0

(
1
ξ
− 1

4γξ

A(τ(ξ))

Aσ(ξ)

)
∆ξ

]

≥ lim sup
ζ→∞

[
ζ
∫ ∞

ζ

(
−1
ξ

)∆
∆ξ +

(
1 − 1

4γ

) ∫ ζ

ζ0

1
ξ

∆ξ

]
= ∞.

If γ >
1
4

and by choosing ρ(ζ) = 1, (32) holds. As a result of Theorem 6, then Equation (37)

oscillates if γ >
1
4

. It is very important here to note that with the time scale

T = {ζ : ζ = 2βk
, β > 1, k ∈ N0},

we obtain ∫ ∞

ζ0

∆ξ

a(ξ)
=
∫ ∞

ζ0

∆ξ

ξ2


= ∞ if β ≥ 2,

< ∞ if β < 2.

For more details, see [13] (Example 5.63 and Theorem 5.65). Therefore, all previous results in the
literature fail to apply to this Equation (37) on any time scale.

In a particular case, we note that if (3) holds, then N1 = ∅; see [22] (Lemma 2.1).
Together with Theorems 4 and 5, we get further oscillation criteria for Equation (1).
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Corollary 1. If conditions (3) and (32) or (36) are satisfied, then Equation (1) oscillates.

3. Discussion and Conclusions

(1) The results obtained in this paper are applicable to all time scales without restrictive
conditions, such as T = R, T = Z, T = hZ with h > 0, T = qN0 with q > 1, etc.
(see [11]).

(2) Novel and enhanced criteria have been developed for the oscillation of the solutions
of Equation (1) without relying on convergence and divergence of the improper

integral
∫ ∞

ζ0

∆ξ

a(ξ)
. Compared to previous works in the literature, this approach is more

appropriate and applicable to all time scales.
(3) By virtue of

ρ(ζ)
∫ ∞

ζ
P(ξ)∆ξ +

∫ ζ

ζ0

(
ρ(ξ)P(ξ)−

(
ρ∆(ξ)

)2a(ξ)
4ρ(ξ)

)
∆ξ ≥

∫ ζ

ζ0

(
ρ(ξ)P(ξ)−

(
ρ∆(ξ)

)2a(ξ)
4ρ(ξ)

)
∆ξ,

condition (32) improves (18). Therefore, Corollary 1 improves Theorem 1.
(4) It would be interesting to find such conditions for the half-linear second order dynamic

equations of the form(
a(ζ)

∣∣∣y∆(ζ)
∣∣∣α−1

y∆(ζ)

)∆
+ p(ζ)|y(τ(ζ))|α−1y(τ(ζ)) = 0,

where α > 0 is a constant.
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