
Citation: Ying, X.; Pan, M.; Chen, X.;

Zhou, Y.; Liu, J.; Li, D.; Guo, B.; Zhu,

Z. Research on Virus Propagation

Network Intrusion Detection Based on

Graph Neural Network. Mathematics

2024, 12, 1534. https://doi.org/

10.3390/math12101534

Academic Editors: Zhaoquan Gu and

Jianxin Li

Received: 4 April 2024

Revised: 3 May 2024

Accepted: 10 May 2024

Published: 14 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Research on Virus Propagation Network Intrusion Detection
Based on Graph Neural Network
Xianer Ying 1, Mengshuang Pan 1, Xiner Chen 1, Yiyi Zhou 2, Jianhua Liu 1,* , Dazhi Li 3,*, Binghao Guo 1

and Zihao Zhu 1

1 Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China;
c1571153285@163.com (X.C.); 18636961259@163.com (B.G.); zzh66192021@163.com (Z.Z.)

2 College of Letters & Science, University of California, Berkeley, Berkeley, CA 94720, USA
3 College of Information, Mechanical and Electrical Engineering, Shanghai Normal University,

Shanghai 200234, China
* Correspondence: ljh_541@163.com (J.L.); lijunzhi@shnu.edu.cn (D.L.)

Abstract: The field of network security is highly concerned with intrusion detection, which safeguards
the security of computer networks. The invention and application of intrusion detection technology
play indispensable roles in network security, and it is crucial to investigate and comprehend this
topic. Recently, with the continuous occurrence of intrusion incidents in virus propagation networks,
traditional network detection algorithms for virus propagation have encountered limitations and
have struggled to detect these incidents effectively and accurately. Therefore, updating the intrusion
detection algorithm of the virus-spreading network is imperative. This paper introduces a novel
system for virus propagation, whose core is a graph-based neural network. By organically combining
two modules—a standardization module and a computation module—this system forms a powerful
GNN model. The standardization module uses two methods, while the calculation module uses
three methods. Through permutation and combination, we obtain six GNN models with different
characteristics. To verify their performance, we conducted experiments on the selected datasets.
The experimental results show that the proposed algorithm has excellent capabilities, high accuracy,
reasonable complexity, and excellent stability in the intrusion detection of virus-spreading networks,
making the network more secure and reliable.

Keywords: virus propagation; intrusion detection; deep learning; graph neural networks

MSC: 68M25

1. Introduction

Along with the consistent development of the Internet, people’s livelihoods have
undergone significant changes. However, in this era in which everything is interconnected,
various network viruses have emerged, and network security issues have gradually sur-
faced. Multiple kinds of intrusions and attacks cause serious harm to the network and
equipment. Among these concerns, network intrusion through virus infection has recently
gained attention. The attack methods update constantly while their scope expands, and
pattern is hidden yet frequent. Traditional virus-infected network intrusion detection
algorithms are no longer suitable for new emerging virus-infected network intrusions.
Therefore, finding a new detection method to accurately detect these new network intru-
sions is urgent.

Based on the study of references [1–10], virus propagation networks often present
complex structural forms, such as grid topology and ring topology, which are difficult to
detect when they spread among networks.

Moreover, existing intrusion detection methods have limitations in detecting complex
virus transmission networks. These methods mainly consist of traffic-based detection

Mathematics 2024, 12, 1534. https://doi.org/10.3390/math12101534 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12101534
https://doi.org/10.3390/math12101534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9971-4964
https://orcid.org/0009-0002-2943-3865
https://doi.org/10.3390/math12101534
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12101534?type=check_update&version=1

Mathematics 2024, 12, 1534 2 of 11

(ref. [11–15]) and graph-based detection (ref. [16–20]). The traffic-based detection method
uses statistical analysis to detect link-type data, though this method does not apply to
topology. Meanwhile, the traditional graph-based detection method is unsuitable for
complex topologies. Moreover, the conventional methods have the following drawback:
they usually use a static model to represent the network structure, but the network is
dynamic. This drawback means that these methods cannot capture the dynamic evolution
and real-time changes in the network. They often only focus on the local network structure
or traffic characteristics and ignore global information. Virus spreading involves the
topology of the whole network and the complex relationship between nodes, so it may
not be practical to detect the spreading behavior by relying solely on local information.
The existing methods usually lack a deep understanding of node behavior and context,
and virus propagation may be affected by many factors, such as node attributes, behavior
patterns, etc. However, traditional methods often fail to take these factors into account.
Therefore, an efficient, accurate, and complex detection method is necessary when dealing
with a virus propagation network model with a complex topology.

Considering that GNN can capture complex topologies with high precision and that
the GNN deep learning algorithm is efficient, we chose GNN as the detection model for
the virus propagation network. This paper presents an intrusion detection model based on
a graph neural network for a virus propagation network. The contributions of this paper
are as follows:

(1) We construct a GNN model. Our GNN model consists of the standardization module
and the computation module—the two modules stack on top of each other to form a
powerful GNN model.

(2) The normalized module is constructed, and it consists of symmetry and random walk
(ref. [21–23]).

(3) The computing module consists of three parts: multi-layer perceptron (MLP) (ref. [24–26])
and additive and incremental learning methods. MLP is a classical neural network
model with a wide range of applications; the additive method is a simple and effective
algorithm that can quickly adapt to new input data; the incremental learning rule
is a method of updating model parameters, which can improve the training effect
and generalization ability of the model. These three parts constitute an efficient
and reliable computing module that performs well in data classification and text
clustering tasks.

After a detailed and in-depth exploration, we conducted many experiments on the
network intrusion detection dataset, CTU-13, to verify the performance of the new detec-
tion model. The experimental results revealed that the proposed model has significant
advantages over the traditional model in terms of detection efficiency and accuracy.

2. Related Work

Intrusion detection systems have numerous shortcomings in traditional virus transmis-
sion network detection methods. Mithlesh Kumar et al. [25] proposed using modified and
optimized machine learning intrusion detection systems that incorporated MLP and RNN
architectures to address these limitations. While this approach demonstrated a promising
performance when encountering small amounts of intrusion data, its effectiveness was
limited when the virus transmission network containing vast amounts of data was detected.

Flow-based detection (ref. [11,15]) has numerous advantages. It focuses explicitly
on analyzing IP stream records, which provide aggregated information about packet
headers and summarize network traffic as IP streams. Doing so reduces the amount of data
intrusion detection systems need to process. As a result, flow-based intrusion detection is
particularly suitable for detecting complete network traffic backbone links that may pose
computational challenges. Although it excels at efficiently and accurately detecting link-
type data, this model could be more effective at detecting the complex topology involved
in virus transmission networks.

Mathematics 2024, 12, 1534 3 of 11

Based on the study of references [16–20], graph-based intrusion detection involves
processing each stream into a graph by utilizing the interactive information between packets.
The graph is then classified using various methods to learn its vector representation. This
approach effectively transforms the problem of traffic detection into a graph classification
problem. However, when it comes to detecting the virus transmission network with its
complex topology, this method still has limitations associated with ensuring high efficiency
and precision of detection.

Traditional machine learning algorithms (ref. [27,28]), including random forest, sup-
port vector machine (SVM) (ref. [29,30]), and adaptive boosting, have been widely applied
to network intrusion detection with varying degrees of success. However, two significant
limitations exist in applying virus-spread network intrusion detection. Firstly, these algo-
rithms rely heavily on carefully selected features, and inappropriate selection can severely
compromise their detection effectiveness. Secondly, traditional virus spread network de-
tection methods require better adaptability and are primarily suitable for smaller-scale
datasets. These methods often fail to produce satisfactory experimental results for large-
scale network security datasets.

General deep learning detection methods (ref. [31–34]), such as Recurrent Neural
Networks (RNN) (ref. [35,36]) and Convolutional Neural Networks (CNN) (ref. [37]), have
been developed to enhance traditional detection algorithms. While they offer some im-
provements, selecting the best model for virus-spread network intrusion detection can
be challenging, as it involves comparing multiple model groups using data from a single
experiment. This singleness and blind adherence may adversely affect the experimental re-
sults.

This paper proposes a novel intrusion detection model based on a graph neural
network. It considers the traditional detection methods of virus propagation networks and
universal deep learning detection methods. The detection accuracy and detection ability
are further improved to ensure stability and adaptability. Contrast experiments select the
most suitable intrusion detection model for virus spreading networks.

3. Virus Transmission Detection Model Based on Graph Neural Network
3.1. Model Overview

We systematically explore a graph neural network (GNN) model based on symmetry,
random walk, multi-layer perceptron (MLP), addition (additive), and the incremental
learning method (IL). This model comprises carefully designed modules, including six GNN
models with unique characteristics, aiming to comprehensively address the complexity and
diversity of graph structural data. First, we introduce a symmetric normalization module,
which aims to improve the model’s sensitivity to the symmetry between the nodes in the
graph. Considering the importance of symmetry in graph neural networks, we process the
node adjacency information through normalization to ensure the accuracy and stability
of the model when processing graph data. Second, applying random walk normalization
modules provides an effective graph traversal strategy. By randomly selecting the starting
nodes and walking between the adjacent nodes of the graph, this module encourages the
model to further understand the relationship between the nodes in the graph. Then, the
generalization ability of the model is improved.

Regarding computing modules, we choose multi-layer perceptron (MLP) as a feed-
forward neural network structure. MLP has a high degree of nonlinear transformation
ability and can extract high-order features of the graph data. This design allows the model
to better resolve the complex patterns in the graph and enhance its performance in dealing
with complex graph structures. Furthermore, we use an addition to integrate the output
of different modules to produce the final graph representation. This design helps to syn-
thesize the information of different modules and further improve the expression ability
of the model. The addition methods perform excellently in multiple tasks, such as node
classification, graph classification, and link prediction. Finally, introducing the incremental
learning method (IL) allows the model to update new data without retraining the entire

Mathematics 2024, 12, 1534 4 of 11

model. This feature is critical when processing dynamic graph data or gradually growing
datasets, enabling the model to adapt to new information and make timely adjustments.
The incremental learning method improves the model’s generalization ability and enhances
its utility in real-world applications. To validate the performance of the proposed GNN
model, we perform a comprehensive experimental validation of the CTU-13 invasion de-
tection dataset. The experimental results clearly show that the six proposed GNN models
perform well in node classification, graph classification, and link prediction tasks. These
results fully confirm the validity and reliability of our proposed method and provide new
perspectives and tools for the in-depth analysis of graph structure data.

We propose a GNN model based on symmetry, random walk, MLP, additive, and
incremental learning methods. Six GNN models with unique features are constructed
by carefully combining the modules. The experimental results fully demonstrate these
models’ excellent performance and good generalization ability in the graph structure data
analysis task. We will continue to study more efficient graph normalization modules and
computational modules to improve the GNN model’s overall performance.

3.2. GNN Model of Virus Transmission Network Detection

Firstly, we design the space of the GNN layer and use the GNN model with different
layer structures to detect the virus-spreading network. We define the virus transmission
network topology as g ∈ {V, E, M}, where V is the node{v1, . . ., vn}and E are edge sets, and
M is the adjacency matrix. We also design the matrix M: aii=∑n

j=1 mij. The GNN layer is
calculated as follows:

O(l) = Lβ(O
(l−1), S), O(l−1)

= C
(

O(l−1)
)

(1)

where O(l) is the output of the l layer and O(l−1) the characteristic output of the previous
layer. l(·) represents the execution function and is its learning parameter set. In (1), C(·)
corresponds to the selection of the calculation module with multi-layer perceptron, the
additive method, and the incremental learning method. Considering the selection of the
normalization module, two methods are available: symmetric and random walk. These
two modules constitute the design space for the GNN layer, as depicted in Figure 1. The
various designs of GNN models correspond to different choices of these two modules.
Now, let us delve into a closer examination of these two modules and their expressions.

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 12

Figure 1. Schematic diagram of GNN model design.

The advantage of symmetric as a normalization module is that it can maintain the

symmetry of the graph data and will not break the symmetry property in the graph struc-

ture. It is also beneficial for some graph tasks, as preserving symmetry be�er captures the

relationships between nodes and can produce stable feature representations that are rela-

tively stable to noise and variation in the graph data. The advantage of random walk as a

normalization module is its ability to capture local and global information between nodes,

thereby generating rich feature representations. This feature representation includes the

structural properties of nodes in the graph, which helps to improve the performance of

the model. It has a wide range of applications, and its design does not depend on the

specific graph structure, so it has strong generality and applicability.

Calculation module: According to the different calculation methods of the GNN layer

for the feature topology structure, the following two methods are proposed:

MLP: �(�) = �(���(���(���)�(�))) (4)

Additive: �(�) = �(����(���)�(�)), ��(���) = �(�(���)) (5)

IL: �(�) = �(���
�

�

��) (6)

Equation (4) is the calculation formula of the multi-layer perceptron, where MLP(·)

is the multi-layer perceptron function. Equation (5) is the calculation formula for the ad-

ditive method and f(·) is the original characteristic function. Equation (6) is the calculation

formula of the incremental learning method, where �� is the initial learning rate and ��

is the learning rate parameter.

The MLP contains two hidden layers, each containing 128 neurons, and uses ReLU

as the activation function. In order to improve the efficiency of the model, by increasing

the depth and width of the hidden layer, the complex features in the network data can be

be�er captured to improve the accuracy and generalization ability of the model. In addi-

tion, we experimentally select a learning rate of 0.001, a regularization parameter of 0.01,

and a batch size of 64. Through hyper parameter optimization, these hyper parameters

are adjusted to improve the model’s performance further and make it more suitable for

this model. The appropriate learning rate and batch size can speed up the convergence

speed of the model to save training time. The appropriate regularization can improve the

model’s generalization ability, reduce the error on unseen data, and control the

Figure 1. Schematic diagram of GNN model design.

Mathematics 2024, 12, 1534 5 of 11

Normalization module: The two methods are expressed as:

Symmetric : O(l) = σ((ÂaXθ(0))θ(l)) (2)

Random walk : O(l) = σ((ÂaXW(0))W(l)) (3)

σ(·) is the activation function, and Softmax is used as the activation function. Equation (2)
is the calculation formula of the symmetric method, and Equation (3) is the calculation
formula of the random walk method, where Âa is the symmetric normalized adjacency
matrix; X is the input node characteristic matrix, which is used to standardize the features
before aggregation; and θ and W represent the weight matrix. Both normalization methods
are defined below as F.

The advantage of symmetric as a normalization module is that it can maintain the
symmetry of the graph data and will not break the symmetry property in the graph
structure. It is also beneficial for some graph tasks, as preserving symmetry better captures
the relationships between nodes and can produce stable feature representations that are
relatively stable to noise and variation in the graph data. The advantage of random walk
as a normalization module is its ability to capture local and global information between
nodes, thereby generating rich feature representations. This feature representation includes
the structural properties of nodes in the graph, which helps to improve the performance
of the model. It has a wide range of applications, and its design does not depend on the
specific graph structure, so it has strong generality and applicability.

Calculation module: According to the different calculation methods of the GNN layer
for the feature topology structure, the following two methods are proposed:

MLP : O(l) = σ(MLP(FO(l−1)W(l))) (4)

Additive : O(l) = σ(FÕ(l−1)W(l)), Õ(l−1) = f (O(l−1)) (5)

IL : O(l) = σ(η0e
− 1

lp) (6)

Equation (4) is the calculation formula of the multi-layer perceptron, where MLP(·) is
the multi-layer perceptron function. Equation (5) is the calculation formula for the additive
method and f (·) is the original characteristic function. Equation (6) is the calculation
formula of the incremental learning method, where η0 is the initial learning rate and lp is
the learning rate parameter.

The MLP contains two hidden layers, each containing 128 neurons, and uses ReLU
as the activation function. In order to improve the efficiency of the model, by increasing
the depth and width of the hidden layer, the complex features in the network data can
be better captured to improve the accuracy and generalization ability of the model. In
addition, we experimentally select a learning rate of 0.001, a regularization parameter of
0.01, and a batch size of 64. Through hyper parameter optimization, these hyper parameters
are adjusted to improve the model’s performance further and make it more suitable for
this model. The appropriate learning rate and batch size can speed up the convergence
speed of the model to save training time. The appropriate regularization can improve the
model’s generalization ability, reduce the error on unseen data, and control the complexity
of the model. Therefore, the efficiency and practicability of the model improve. Moreover,
the choice of activation function can reduce the model’s computational complexity and
accelerate the model’s reasoning speed so that the network intrusion detection system can
detect and respond to the network traffic faster.

For the additive calculation module, we experimentally select a learning rate of 0.001,
a regularization parameter of 0.01, and a batch size of 64. For the IL calculation module,
we experimentally select a learning rate of 0.01, a regularization parameter of 0.001, and a
batch size of 64.

The most notable characteristic of MLP as a calculation module is that it is a feedfor-
ward neural network and can deal with nonlinear relationships. The multi-layer structure

Mathematics 2024, 12, 1534 6 of 11

of MLP allows it to capture complex nonlinear relationships in graph data, and it can also
adapt to different data complexity by adjusting the size and number of hidden layers,
making it suitable for tasks that need to capture complex relationships in graph data. The
characteristic of additive as a calculation module is that it can combine features in an addi-
tive way and capture the interaction between features. The additive method is generally
fast to compute and easy to implement and debug, making it suitable for graph data tasks
that require simple and efficient feature representations and strong model interpretability.
The characteristic of IL as a calculation module is that it allows the model to learn online
after receiving new data without retraining the entire model. IL can process new data in real
time so that the model can be continuously optimized over time. It also avoids the overhead
of repeatedly training the whole model, saves computing resources, and is suitable for
tasks that need to process dynamic graph data or continuously receive new data.

By combining the different methods of the normalization and calculation modules,
we obtain six GNN models. We then train these models and collect the corresponding
experimental data. The pseudo-code of the algorithm is in Algorithm 1:

Algorithm 1 GNN model training process of virus transmission network

Input: original datasets D;
Output: Accuracy and interpretability scores r of six GNN models;
1. Raw data preprocessing;
2. while original datasets D do;
3. Edges with scores greater than or equal to the critical value are taken out to form a star
topology model;
4. end while;
5. Design and training of GNN model for virus transmission network detection:
6. GNN layer design: Determine the normalization method and calculation method;
7. Train the GNN model;
8. while star topology A, node feature X do;
9. Through O = GNNΦ(A, X), get input A get;
10. end while;
11. GNN model analysis;
12. Calculate the detection accuracy ACCd of the GNN model according to (7);
13. Calculate the interpretability score r of the GNN model according to (9);
14. return ACCd, r;

4. Results and Analysis
4.1. Experimental Datasets

We conducted experiments on the CTU-13 network intrusion detection dataset, which
was created by the Czech University of Technology (CTU) in the Czech Republic in 2011.
The purpose of this dataset was to capture real network traffic mixed with regular and back-
ground traffic on a large scale. It comprises 13 scenarios representing virus transmission
networks, including IRC, SPAM, CF, PS, DDoS, FF, P2P, US, and HTTP. Each scenario depicts
a specific virus propagation network that utilizes different protocols and performs various
operations. The characteristics of the virus spread network scenarios are summarized in
Table 1. From this dataset, we selected specific scenarios and generated 1320 graphs. These
graphs were randomly divided into training, validation, and test sets, with proportions of
70%, 20%, and 10%, respectively. Each graph has a varying number of nodes and edges,
approximately containing 28,200 nodes and 719,000 edges per graph. In addition, all graphs
include a predetermined number of abnormal nodes, with 3000 abnormal nodes present in
each graph.

Mathematics 2024, 12, 1534 7 of 11

Table 1. CTU-13 datasets analysis and statistics.

ID IRC SPAM CF PS DDOS FF P2P US HTTP Abnormal Edge Normal Edge Background Flow

1 ✓ ✓ ✓ 39,933 30,387 2,753,290
2 ✓ ✓ ✓ 18,839 9120 1,778,061
3 ✓ ✓ ✓ 26,759 116,887 4,566,929
4 ✓ ✓ ✓ 1719 25,268 1,094,040
5 ✓ ✓ ✓ 695 4679 124,252
6 ✓ 4431 7494 546,795
7 ✓ 37 1677 112,337
8 ✓ 5052 72,822 2,875,282
9 ✓ ✓ ✓ ✓ 179,880 43,340 2,525,565
10 ✓ ✓ ✓ 106,315 15,847 1,187,592
11 ✓ ✓ ✓ 8161 2718 96,369
12 ✓ 2143 7628 315,675
13 P ✓ ✓ 38,791 31,939 1,853,217

4.2. Scoring Criteria

After several pre-tests, we determined a critical value based on several groups of
data obtained in advance. We removed the edges with scores greater than or equal to
the essential value to form a model of the star topology structure. Our experiment must
improve the accuracy of abnormal edge detection and reduce the percentage of selected
edges. Therefore, we set two factors to reflect the detection precision: ACCd and extraction
density ρ, respectively. After many experiments, we found that the general rule is that the
abnormal edges of the star topology are usually distributed outward from the central node.
Therefore, when we count the number of abnormal edges, we can start to search from the
peripheral father node, find the first abnormal node, stop searching, and then count the
number of normal edges on this link. When we have traversed all the links, we can identify
the number of abnormal edges by subtracting the number of normal edges from the total
number of edges. Since the number of normal edges is much smaller than the number of
abnormal edges in most individuals of the star topology, counting the number of abnormal
edges in this way can significantly optimize the algorithm time. The calculation formula
for detection precision ACCd and extraction density ρ is given below:

ACCd=
Sall − Snor

Gabn
(7)

ρ =
Sall
Gall

(8)

where Sall is the total number of edges in the star topology, Snor is the statistical number
of normal edges in the star topology, Gabn is the number of abnormal edges in the initial
graph, and Gall is the total number of edges in the initial graph. Then, through integrated
analysis of these two factors, we obtained a model scoring formula r:

r =
ACCd − lnρ

2 − 2 × lnρmin
(9)

4.3. Experimental Results and Analysis

(1) We must determine the optimal depth of each GNN model based on the performance
of different GNN models at different depths to ensure that different GNN models
are in the best state during the comparison. We conducted experiments on the
virus transmission network using different models. To demonstrate objectivity and
simplicity, we used the line chart in Figure 2 to show the changes in the models with
varying performances under different depths. Depth 5–9 was selected for the chart
description. It can be seen from Figure 2 that different design models all performed
well. The F1, Acc, and AUC values of varying design models at different depths are

Mathematics 2024, 12, 1534 8 of 11

more significant than 0.96, 0.99, and 0.97, respectively. Since the value of F1 has the
most significant variation amplitude under the same model, we choose the value of
F1 as the index to select the optimal depth under the same model.

(2) We can evaluate the model numerically using the extraction density, detection accu-
racy, and model score value, making it more standardized, specific, and reliable.

(3) As can be seen from Table 2, when the extraction densities of the six models are
close, the detection accuracy of GNN model 4, which is composed of the random
walk method and multi-layer perceptron, is 91.7%, which is much higher than that
of the other six models. Its model score is 0.683, which is the highest among the six
groups. Moreover, we find that when the calculation modules are the same, and
the normalization module is the random walk method, the variance in the detection
accuracy is generally smaller than that when the normalization module is symmetric,
indicating better detection stability.

(4) It can be seen from Figure 3 that the variation curves of each model at different
depths and the comparison between each model show that the GNN model formed
by stacking random walk and MLP has higher detection accuracy than other models
at different depths. According to Table 3, the detection accuracy ACCd of the GNN
model formed by random walk and the MLP stack is higher than that of the machine
learning model and deep learning model, and the model score value r of this GNN
model is much higher than that of other models.

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 12

Figure 2. Performance comparison of the GNN model (a) symmetric and additive (b) symmetric

and MLP (c) symmetric and incremental learning (d) random walk and additive (e) random walk

and MLP (f) random walk and incremental learning at different depths.

Figure 3. The detection model of each model at different depths.

Table 3. Performance comparison of each model.

Category Algorithm Detection Accuracy ���� Score r

Machine learning
SVM 74.4% 0.446

Adaptive Boosting 73.1% 0.439

Deep learning
RNN 85.1% 0.468

CNN 81.7% 0.454

GNN Random walk + MLP 91.7% 0.683

Figure 2. Performance comparison of the GNN model (a) symmetric and additive (b) symmetric and
MLP (c) symmetric and incremental learning (d) random walk and additive (e) random walk and
MLP (f) random walk and incremental learning at different depths.

Mathematics 2024, 12, 1534 9 of 11

Table 2. Six GNN models in the best state of the indicators.

GNN
Model Normalization Calculation Extraction

Density ρ

Detection Accuracy
ACCd

Score r Variance of
Detection Accuracy

1 Symmetric MLP 24.3% 65.1% 0.428 0.0058
2 Symmetric Additive 24.2% 63.2% 0.459 0.0061
3 Symmetric IL 25.1% 67.3% 0.512 0.0052
4 Random walk MLP 25.4% 91.7% 0.683 0.0023
5 Random walk Additive 25.2% 68.9% 0.487 0.0032
6 Random walk IL 25.4% 63.5% 0.493 0.0029

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 12

Figure 2. Performance comparison of the GNN model (a) symmetric and additive (b) symmetric

and MLP (c) symmetric and incremental learning (d) random walk and additive (e) random walk

and MLP (f) random walk and incremental learning at different depths.

Figure 3. The detection model of each model at different depths.

Table 3. Performance comparison of each model.

Category Algorithm Detection Accuracy ���� Score r

Machine learning
SVM 74.4% 0.446

Adaptive Boosting 73.1% 0.439

Deep learning
RNN 85.1% 0.468

CNN 81.7% 0.454

GNN Random walk + MLP 91.7% 0.683

Figure 3. The detection model of each model at different depths.

Table 3. Performance comparison of each model.

Category Algorithm Detection Accuracy ACCd Score r

Machine learning SVM 74.4% 0.446
Adaptive Boosting 73.1% 0.439

Deep learning RNN 85.1% 0.468
CNN 81.7% 0.454

GNN Random walk + MLP 91.7% 0.683

5. Conclusions

In this paper, we proposed an intrusion detection model based on a graph-based neural
network for a virus propagation network. Then, we explained each part of the model in
detail, including the algorithm process, the model scoring formula, etc., and compared the
model with other classical neural network structure models. We used experiments and
formulas to obtain the test accuracy and model evaluation values. Through theoretical
derivation and comparison, we concluded that our GNN Model 4, which is composed
of the random walk method and multi-layer perceptron, can detect virus propagation
networks with higher precision.

This model is of great significance to the intrusion detection of virus propagation
networks. However, this paper still has some shortcomings and some aspects of the
findings should be studied further. For example, although the amount of data used in
this paper is already large, it is still necessary to further supplement the data of different
virus propagation network sample scenarios in the later stage to ensure the authenticity
and accuracy of the experiment. The experiment in this paper was only implemented
on the existing fixed datasets and has not been used for detection in the natural network
environment. In the later stage, it needs to perform the detection in real time by crawling a
large number of network data to evaluate its performance. Training and deploying a GNN
model usually requires a large amount of computing resources, memory requirements,

Mathematics 2024, 12, 1534 10 of 11

and computational complexity, which are also potential limitations of the proposed model.
Moreover, there are many aspects that can be optimized and enhanced to further improve
the detection accuracy and precision of the model. For example, a new formula can be
designed to find a computing module that is more suitable for a virus propagation network
and to form a new GNN model with the random walk method. Researchers can also
consider optimizing the parameters of the original formula. These provide the direction for
further improving the precision of the model and give the research important theoretical
and practical significance and scientific research value.

Author Contributions: Conceptualization, X.Y.; writing—review and editing, M.P.; original draft,
X.C.; editing and revision, Y.Z.; formal analysis, B.G.; software, Z.Z.; writing—supervision, J.L.
and D.L.; project administration, J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Humanities and Social Sciences Planning Foundation of
the Ministry of Education of China under Grant no. 22YJAZH063, in part by the University Student
Science and Technology Innovation Activity Plan (Xinmiao Talent Plan) of Zhejiang Province under
Grant no. 2023R465015 and in part by the College Students Innovation and Entrepreneurship Training
Program of China under Grant no. 202310349030.

Data Availability Statement: Data and material are available at https://github.com/Xian-20145131
/Research_on_Virus_Propagation_Network_Intrusion_Detection_based_on_Graph_Neural_Network.
git (accessed on 4 April 2024).

Acknowledgments: We are grateful to reviewer for his/her effort reviewing our paper.

Conflicts of Interest: The authors declare that they have no conflicts of interest.

References
1. Dung, N.Q.; Viet, L.H. Directed-System-Call-Graph Feature for IoT Botnet Detection. J. Intell. Fuzzy Syst. 2022, 43, 5453–5470.

[CrossRef]
2. Rezaei, A. Using Ensemble Learning Technique for Detecting Botnet on IoT. SN Comput. Sci. 2021, 2, 148. [CrossRef]
3. Popoola, S.I.; Adebisi, B.; Hammoudeh, M.; Gui, G.; Gacanin, H. Hybrid Deep Learning for Botnet Attack Detection in the

Internet-of-Things Networks. IEEE Internet Things J. 2021, 8, 4944–4956. [CrossRef]
4. Wan Nur Hidayah, I.; Anuar, S.; Selamat, A.; Krejcar, O.; Crespo, R.G.; Herrera-Viedma, E.; Fujita, H. Multilayer Framework for

Botnet Detection Using Machine Learning Algorithms. IEEE Access 2021, 9, 48753–48768.
5. Alothman, Z.; Alkasassbeh, M.; Al Haj Baddar, S. An efficient approach to detect IoT botnet attacks using machine learning. J.

High Speed Netw. 2020, 26, 241–254. [CrossRef]
6. Hiebeler, D.E.; Audibert, A.; Strubell, E.; Michaud, I.J. An epidemiological model of internet worms with hierarchical dispersal

and spatial clustering of hosts. J. Theor. Biol. 2017, 418, 8–15. [CrossRef]
7. Maniriho, P.; Mahmood, A.N.; Chowdhury, M.M. A study on malicious software behaviour analysis and detection techniques:

Taxonomy, current trends and challenges. J. Theor. Biol. 2017, 418, 8–15. [CrossRef]
8. Ashik, M.; Jyothish, A.; Anandaram, S.; Vinod, P.; Mercaldo, F.; Martinelli, F.; Santone, A. Detection of Malicious Software by

Analyzing Distinct Artifacts Using Machine Learning and Deep Learning Algorithms. Electronics 2021, 10, 1694. [CrossRef]
9. Dounavi, H.M.; Mpanti, A.; Nikolopoulos, S.D.; Polenakis, I. A graph-based framework for malicious software detection and

classification utilizing temporal-graphs. Electronics 2021, 10, 1694. [CrossRef]
10. Ali, M.; Shiaeles, S.; Clarke, N.; Kontogeorgis, D. A proactive malicious software identification approach for digital forensic

examiners. J. Inf. Secur. Appl. 2019, 47, 139–155. [CrossRef]
11. Awad, M.; Fraihat, S.; Salameh, K.; Al Redhaei, A. Examining the Suitability of NetFlow Features in Detecting IoT Network

Intrusions. Sensors 2022, 22, 6164. [CrossRef] [PubMed]
12. Tao, Y.; Ruiqi, Y. Detecting Abnormal Interactions among Intranet Groups Based on Netflow Data. IOP Conf. Ser. Earth Environ.

Sci. 2020, 428, 012039.
13. Tania, K.P.; Putra, N.S.; Made, D.W. NetFlow dalam Monitoring Penggunaan Internet. Maj. Ilm. Teknol. Elektro 2017, 16, 86.
14. Liu, L.; Wang, P.; Lin, J.; Liu, L. Intrusion Detection of Imbalanced Network Traffic Based on Machine Learning and Deep Learning.

IEEE Access 2021, 9, 7550–7563. [CrossRef]
15. Li, Z.; Hou, J.; Wang, H.; Wang, C.; Kang, C.; Fu, P. Ethereum Behavior Analysis with NetFlow Data. IEICE Proceeding Ser. 2019,

59, TS2–TS4.
16. Sun, A.Y.; Jiang, P.; Yang, Z.L.; Xie, Y.; Chen, X. A graph neural network (GNN) approach to basin-scale river network learning:

The role of physics-based connectivity and data fusion. Hydrol. Earth Syst. Sci. 2022, 26, 5163–5184. [CrossRef]

https://github.com/Xian-20145131/Research_on_Virus_Propagation_Network_Intrusion_Detection_based_on_Graph_Neural_Network.git
https://github.com/Xian-20145131/Research_on_Virus_Propagation_Network_Intrusion_Detection_based_on_Graph_Neural_Network.git
https://github.com/Xian-20145131/Research_on_Virus_Propagation_Network_Intrusion_Detection_based_on_Graph_Neural_Network.git
https://doi.org/10.3233/JIFS-211882
https://doi.org/10.1007/s42979-021-00585-w
https://doi.org/10.1109/JIOT.2020.3034156
https://doi.org/10.3233/JHS-200641
https://doi.org/10.1016/j.jtbi.2017.01.035
https://doi.org/10.1016/j.future.2021.11.030
https://doi.org/10.3390/electronics10141694
https://doi.org/10.3233/JCS-210057
https://doi.org/10.1016/j.jisa.2019.04.013
https://doi.org/10.3390/s22166164
https://www.ncbi.nlm.nih.gov/pubmed/36015924
https://doi.org/10.1109/ACCESS.2020.3048198
https://doi.org/10.5194/hess-26-5163-2022

Mathematics 2024, 12, 1534 11 of 11

17. Govindaraju, S.; Vinisha WV, R.; Shajin, F.H.; Sivasakthi, D.A. Intrusion detection framework using auto-metric graph neural
network optimized with hybrid woodpecker mating and capuchin search optimization algorithm in IoT network. Concurr.
Comput. Pract. Exp. 2022, 34, e7197. [CrossRef]

18. Sun, L.; Liu, T.; Wang, D.; Huang, C.; Xie, Y. Deep learning method based on graph neural network for performance prediction of
supercritical CO2 power systems. Appl. Energy 2022, 324, 119739. [CrossRef]

19. Chen, Y.; Tang, X.; Qi, X.; Li, C.G.; Xiao, R. Learning graph normalization for graph neural networks. Neurocomputing 2022, 493,
613–625. [CrossRef]

20. Peng, L.; Hu, R.; Kong, F.; Gan, J.; Mo, Y.; Shi, X.; Zhu, X. Reverse Graph Learning for Graph Neural Network. IEEE Trans. Neural
Netw. Learn. Syst. 2022, 35, 4530–4541. [CrossRef]

21. Zhou, J.; Li, L.; Zeng, A.; Fan, Y.; Di, Z. Random walk on signed networks. Phys. A Stat. Mech. Its Appl. 2018, 508, 558–566.
[CrossRef]

22. Xu, X.K.; Zhu, J.J. Flexible sampling large-scale social networks by self-adjustable random walk. Phys. A Stat. Mech. Its Appl. 2016,
463, 356–365. [CrossRef]

23. Hilário, M.; Den Hollander, F.; Sidoravicius, V.; Soares dos Santos, R.; Teixeira, A. Random walk on random walks. Electron. J.
Probab. 2015, 20, 1–35. [CrossRef]

24. Naskath, J.; Sivakamasundari, G.; Begum, A.A.S. A Study on Different Deep Learning Algorithms Used in Deep Neural Nets:
MLP SOM and DBN. Wirel. Pers. Commun. 2022, 21–24. [CrossRef] [PubMed]

25. Kumar, M.; Verma, G. Machine Learning Intrusion Detection System Based on MLP and RNN Stochastic Optimization Technology.
J. Res. Sci. Eng. 2022, 4. [CrossRef] [PubMed]

26. Ding, Q.; Yin, S.; Liu, L.; Wang, C. Hardware Trojan detection research based on MLP. J. Phys. Conf. Ser. 2020, 1684, 012065.
[CrossRef]

27. Buczak, A.L.; Guven, E. A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE
Commun. Surv. Tutor. 2015, 18, 1153–1176. [CrossRef]

28. Ahmad, I.; Basheri, M.; Iqbal, M.J.; Rahim, A. Performance comparison of support vector machine, random forest, and extreme
learning machine for intrusion detection. IEEE Access 2018, 6, 33789–33795. [CrossRef]

29. Hu, C.J.; Wang, J. The SVM and Layered Intrusion Detection System Based on Network Hierarchical. In Internet of Things,
Proceedings of the International Workshop, IOT 2012, Changsha, China, 17–19 August 2012; Springer: Berlin/Heidelberg, Germany,
2012; Volume 312, p. 312.

30. Manghnani, T.; Thirumaran, T. Computational CBGSA–SVM Model for Network Based Intrusion Detection System. In Applications
and Techniques in Information Security, Proceedings of the 10th International Conference, ATIS 2019, Thanjavur, India, 22–24 November
2019; Springer: Singapore, 2019; Volume 1116, p. 1116.

31. Louk, M.H.L.; Tama, B.A. Dual-IDS: A bagging-based gradient boosting decision tree model for network anomaly intrusion
detection system. Expert Syst. Appl. 2023, 213, 119030. [CrossRef]

32. Srikanth, Y.M.; Kalpana, R. Recurrent nonsymmetric deep auto encoder approach for network intrusion detection system. Meas.
Sens. 2022, 24, 100527.

33. Shen, Y. An Intrusion Detection Algorithm for DDoS Attacks Based on DBN and Three-way Decisions. J. Phys. Conf. Ser. 2022,
2356, 012044. [CrossRef]

34. Wang, J.; Liu, H.; Liu, F. Research on Deep Learning Method Based on Blockchain and Intrusion Detection Model. J. Phys. Conf.
Ser. 2022, 2356, 012057. [CrossRef]

35. Deore, B.; Bhosale, S. Intrusion Detection System Based on RNN Classifier for Feature Reduction. SN Comput. Sci. 2022, 3, 114.
[CrossRef]

36. Sheikhan, M.; Jadidi, Z.; Farrokhi, A. Intrusion detection using reduced-size RNN based on feature grouping. Neural Comput.
Appl. 2012, 21, 1185–1190. [CrossRef]

37. Gan, B.; Chen, Y.; Dong, Q.; Guo, J.; Wang, R. A convolutional neural network intrusion detection method based on data
imbalance. J. Supercomput. 2022, 78, 19401–19434. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/cpe.7197
https://doi.org/10.1016/j.apenergy.2022.119739
https://doi.org/10.1016/j.neucom.2022.01.003
https://doi.org/10.1109/TNNLS.2022.3161030
https://doi.org/10.1016/j.physa.2018.05.139
https://doi.org/10.1016/j.physa.2016.07.055
https://doi.org/10.1214/EJP.v20-4437
https://doi.org/10.1007/s11277-022-10079-4
https://www.ncbi.nlm.nih.gov/pubmed/36276226
https://doi.org/10.53469/jrse.2022.04(06).02
https://www.ncbi.nlm.nih.gov/pubmed/17140543
https://doi.org/10.1088/1742-6596/1684/1/012065
https://doi.org/10.1109/COMST.2015.2494502
https://doi.org/10.1109/ACCESS.2018.2841987
https://doi.org/10.1016/j.eswa.2022.119030
https://doi.org/10.1088/1742-6596/2356/1/012044
https://doi.org/10.1088/1742-6596/2356/1/012057
https://doi.org/10.1007/s42979-021-00991-0
https://doi.org/10.1007/s00521-010-0487-0
https://doi.org/10.1007/s11227-022-04633-x

	Introduction
	Related Work
	Virus Transmission Detection Model Based on Graph Neural Network
	Model Overview
	GNN Model of Virus Transmission Network Detection

	Results and Analysis
	Experimental Datasets
	Scoring Criteria
	Experimental Results and Analysis

	Conclusions
	References

