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Abstract: Understanding breast cancer drug response mechanisms can play a crucial role in im-
proving treatment outcomes and survival rates. Existing bioinformatics-based approaches are far
from perfect and do not adopt computational methods based on advanced artificial intelligence
concepts. Therefore, we introduce a novel computational framework based on an efficient support
vector machine (esvm) working as follows: First, we downloaded and processed three gene ex-
pression datasets related to breast cancer responding and non-responding to treatments from the
gene expression omnibus (GEO) according to the following GEO accession numbers: GSE130787,
GSE140494, and GSE196093. Our method esvm is formulated as a constrained optimization problem
in its dual form as a function of λ. We recover the importance of each gene as a function of λ, y,
and x. Then, we select p genes out of n, which are provided as input to enrichment analysis tools,
Enrichr and Metascape. Compared to existing baseline methods, including deep learning, results
demonstrate the superiority and efficiency of esvm, achieving high-performance results and having
more expressed genes in well-established breast cancer cell lines, including MD-MB231, MCF7, and
HS578T. Moreover, esvm is able to identify (1) various drugs, including clinically approved ones (e.g.,
tamoxifen and erlotinib); (2) seventy-four unique genes (including tumor suppression genes such as
TP53 and BRCA1); and (3) thirty-six unique TFs (including SP1 and RELA). These results have been
reported to be linked to breast cancer drug response mechanisms, progression, and metastasizing.
Our method is available publicly on the maGENEgerZ web server.

Keywords: breast cancer; drug response; gene expression; machine learning; deep learning;
AI application in cancer clinical trials

MSC: 92B05; 68T09

1. Introduction

The ability to elucidate various mechanisms underlying breast cancer drug response
and resistance is a critical part of the clinical decision-making process, not only aiding in
finding out the potential effectiveness of a drug compound but also spanning to (1) reducing
the search space for candidate compounds; (2) having a greater awareness and management
of probable adverse reactions before conducting clinical trials [1]; and (3) identifying
potential drug targets associated with drug compounds. Studies have been conducted to
analyze gene expression data obtained from biological experiments pertaining to breast
cancer drug responses to unveil various molecular mechanisms. Du et al. [2] utilized a
bioinformatics approach to identify important genes that play a key role in overcoming
breast cancer drug resistance, working as follows: First, two gene expression datasets were
downloaded from the gene expression omnibus (GEO) database based on GEO accession
numbers GSE28694 (Miller and Payne grades 4 and 5) and GSE28826 (Miller and Payne
grades 1 and 2). The GSE28694 dataset had 13 samples treated as the drug-sensitive group,
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while the GSE28826 dataset had 28 samples treated as the drug-resistant group. Both
processed datasets were provided as input to limma to identify 255 differentially expressed
genes (DEGs) with p < 0.05, assigned to the enrichment analysis tool ClusterProfiler. The
protein–protein interaction with the use of random walk identified three genes (i.e., PRC1,
GGTLC1, and IRS1) that are involved in immune pathways and involved in the breast
cancer drug resistance mechanism. Further validation of the importance of these three
genes was performed using additional datasets from the GEO and TCGA databases.

Wu et al. [3] utilized a bioinformatics approach to identify a gene signature that
aids in predicting neoadjuvant chemotherapy response for breast cancer patients. They
downloaded a gene expression dataset from the GEO database according to the GEO
accession number GSE25066. The processed dataset had 508 samples, of which 16 were
excluded because of missing data, resulting in 492 samples. To perform differential gene
expression analysis, limma was applied to drug-resistant tumor samples and drug-sensitive
tumor samples, identifying 347 DEGs. Then, they applied limma within the drug-resistant
cell line samples against wild-type cell samples to identify 296 DEGs. Then, 36 genes were
identified that were common between the 347 and 296 DEGs. The 36 genes were provided
as input to enrichment analysis, finding out 12 hub genes considered as a gene signature
(HJURP, IFI27, RAD51AP1, EZH2, DNMT3B, SLC7A5, DBF4, USP18, ELOVL5, PTGER3,
KIAA1324, and CYBRD1) from the PPI that has been validated to assess its discriminative
power using lasso, in which the same GSE25066 dataset was divided into training and
validation sets.

Freitas et al. [4] performed a bioinformatics analysis to identify reliable biomarkers for
adding carboplatin to the standard anthracycline/taxane treatment, which can aid in iden-
tifying triple-negative breast cancer (TNBC) patients achieving a pathologically complete
response to neoadjuvant chemotherapy (NAC). Therefore, TNBC patients with expected
poor clinical outcomes can be provided with other treatment options. The processed gene
expression data were for 66 patients, of whom 33 were treated with carboplatin + paclitaxel
(composed of 19 having RD and 14 achieving PCR), while the remaining 33 were treated
with paclitaxel (composed of 23 having RD and 10 achieving PCR). In the 33 patients
treated with carboplatin + paclitaxel, they applied limma to identify 37 DEGs between RD
and PCR, while 27 DEGs were identified between RD and PCR in patients treated only
with paclitaxel. Moreover, 24 DEGs were identified between RD and PCR patients among
the 66 patients. Then, 10 statistically significant genes (BNIP3, ZBTB16, KCNB1, HAS1,
HEMK1, TFF1, PLA2G4F, SNAI1, C5orf38, and GRIN2A) were selected out of the 37 and
27 DEGs, and 3 statistically significant genes (ALDH1A1, MCM2, and CXADR) out of the
27 DEGs. These 13 genes acted as gene signatures, and the reported results demonstrated
their feasibility to discriminate between patients with RD and those achieving PCR.

Stevens et al. [5] aimed to unveil the molecular mechanism behind inducing chemother-
apy resistance in inflammatory breast cancer (IBC) patients. They had a dataset of 131 samples
between IBC and non-IBC patients derived from several profiling methods distributed
based on 14 samples using ChIP-seq profiling, 84 samples using RNA-seq profiling,
3 samples using single-cell RNA-seq profiling, and 30 samples using RNA-seq II profiling.
The dataset was deposited into the GEO database with accession number GSE163397. Bioin-
formatics analysis coupled with enrichment analysis revealed that JAK2/STAT3 signaling
is a key player in driving chemoresistance in IBC. Therefore, inhibition of JAK2/STAT3
coupled with the use of paclitaxel can overcome therapeutic resistance in IBC patients.
Debets et al. [6] performed a bioinformatics analysis coupled with enrichment analysis to
identify a molecular signature (ER2, HER4, ER, IGF1R, and Kalirin) predictive of treatment
response and resistance in HER2-positive breast cancer patients. Miri et al. [7] performed
a bioinformatics analysis to identify critical genes and pathways that play a key role in
doxorubicin resistance in breast cancer. They downloaded two gene expression datasets
from GEO with GSE24460 and GSE76540 accession numbers. Then, limma was applied to
normal and resistant samples of doxorubicin in which 1108 and 3207 DEGs were identified
in GSE24460 and GSE76540, respectively. Pearson correlation was performed to select
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36 and 406 significant genes in GSE24460 and GSE76540. Gene co-expression network
(GCN) analysis was performed to identify 18 and 115 genes in GSE24460 and GSE76540,
respectively. Nine genes (ABCB1, MMP1, TCEAL2, AKAP12, PLS3, LDHB, NEFH, CNN3,
and VIM) were common between the two datasets and reported to play a key role in
doxorubicin resistance. Other studies aimed to unveil various mechanisms leading to drug
resistance in breast cancer patients [8–13].

Although current advances in breast cancer drug mechanisms within clinical testing
mainly depend on bioinformatics-driven computational approaches with existing off-the-
shelf tools, AI-driven computational frameworks are needed to unveil vast biological
insights and to properly promote the use of AI in real clinical settings. The availability
of such AI tools can help clinical oncologists avoid therapeutic targets associated with
poor treatment responses early, thereby advancing clinical understanding and reducing the
search space for potential drugs with adverse effects. The novelty of our study is attributed
to the following major contributions:

1. We introduce an AI-driven computational approach consisting of efficient support
vector machines (esvm) combined with enrichment analysis tools (Enrichr and Metas-
cape), unveiling various molecular mechanisms pertaining to breast cancer drug
response [14–16].

2. We downloaded and processed three gene expression datasets pertaining to breast
cancer drug response according to the following GEO accession numbers: GSE130787,
GSE140494, and GSE196093.

3. Performing an extensive experimental study from biological and classification perspec-
tives, comparing our method against other bioinformatics-based methods (limma [17],
sam, t-test [18,19], and lasso [20]) and adapted deep learning methods (DeepLIFT [21],
DeepSHAP [22], and LRP [23]).

4. Compared to all methods, including deep learning-based methods, experimental
results based on enrichment analysis demonstrate that our method (esvm) identified
more expressed genes in three well-established breast cancer cell lines, including
MD-MB231, MCF7, and HS578T. Moreover, we identified various drugs for breast
cancer, including FDA-approved ones such as gemcitabine (Gemzar) and tamoxifen
(Nolvadex). Moreover, 74 unique genes were identified, including tumor suppression
genes such as TP53, PTEN, BRCA1, and RB1. A total of 36 unique TFs were reported,
including SP1, NFKB1, and RELA. All of these have been reported to play a key role
in breast cancer drug response and resistance mechanisms. In terms of the running
time for learning-based methods, lasso was faster than our method, esvm, both of
which were computationally faster than all other deep learning-based methods.

5. Results from a classification perspective demonstrated the superiority of the gene
set obtained via our method when coupled with learning algorithms. Specifically, in
Dataset1, when balanced accuracy (BAC) is considered, SVM coupled with a gene set
from our method achieved a 32.4% performance improvement over the second-best for
SVM with all genes (named None) (see Table S4 in the Supplementary Additional File).
In Dataset2 using the BAC performance measure (see Table S5 in the Supplementary
Additional File), ours, when coupled with SVM, had a 38.1% performance improve-
ment when compared to the second-best for SVM coupled with the gene set from sam.
In the last dataset (i.e., Dataset3), as shown in Table S5 of the Supplementary Addi-
tional File, SVM coupled with the gene set from our method had a 6.1% performance
improvement over the second-best for SVM coupled with the gene set from DeepLIFT.
The same holds true when we evaluated the classification performance using lasso as
a learning algorithm coupled with a gene set from our method.

6. For reproducibility of the analysis in this study, we made a publicly available imple-
mentation of our method, esvm, within the maGENEgerZ web server at https://aibio.
shinyapps.io/maGENEgerZ/. Moreover, we included the processed datasets within
the Supplementary Datasets folder. We also provided a Supplementary maGE-
NEgerZ_Screenshots.docx file to show the use of our web tool.

https://aibio.shinyapps.io/maGENEgerZ/
https://aibio.shinyapps.io/maGENEgerZ/
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2. Materials and Methods
2.1. Gene Expression Profiles

In this work, we retrieved three datasets from different gene expression experiments
with different GEO accession numbers [24].

2.1.1. GSE130787: Dataset1

For this dataset derived from the gene expression experiment at the GEO database, we
had 89 samples and 5267 genes. As a result, we encoded the dataset as an 89 × 5268 matrix,
including drug responses as a column vector. The 89 samples were distributed in terms of
treatment into three groups, as follows: Twenty-six samples were used for patients treated
with docetaxel, carboplatin, and trastuzumab (TCH). Thirty-eight samples were used for
patients treated with docetaxel, carboplatin, trastuzumab, and lapatinib (TCHTy). Twenty-
five samples were used for patients with docetaxel, carboplatin, and lapatinib (TCTy). In
terms of the distribution of drug responses, thirty-eight BC patients achieved pathological
complete response (PCR), while fifty-one BC patients achieved residual disease (RD). The
gene expression experiment was performed using the microarray platform Agilent-014850
Whole Human Genome Microarray 4x44K G4112F (Probe Name version). This dataset is
referred to as Dataset1.

2.1.2. GSE140494: Dataset2

For this second dataset derived from the performed gene expression experiment, we
had 91 samples and 5313 genes, which were approved as protein-coding genes (PCGs)
by domain experts from HUGO Gene Nomenclature Committee (HGNC) Biomart at
https://biomart.genenames.org/ (accessed on 17 March 2023) [25,26]. Thus, we encoded
the dataset as a 91 × 5314 matrix, including a column vector for drug responses. The
drug responses were distributed as follows: Nineteen BC patients achieved a resistant
response, while seventy-two were sensitive to the treatment (i.e., docetaxel, followed by
5-fluorouracil, epirubicin, and cyclophosphamide (TFEC). The gene expression experiment
was performed using the microarray platform of the Affymetrix Human Genome U133
Plus 2.0 Array. This dataset is referred to as Dataset2.

2.1.3. GSE196093: Dataset3

For this third dataset, we had 736 samples and 118 genes. Consequently, we encoded
the dataset as a 736 × 119 matrix, including a column vector for drug responses, in which
256 BC patients achieved a complete response (CR) while 480 had a failed complete response
(FCR). We had 11 treatments in which the 736 samples were distributed accordingly as fol-
lows: paclitaxel (169), paclitaxel + ABT 888 + carboplatin (63), paclitaxel + AMG-386 (110),
paclitaxel + AMG-386 + trastuzumab (18), paclitaxel + MK-2206 (56), paclitaxel + MK-2206
+ trastuzumab (31), paclitaxel + neratinib (105), paclitaxel + pembrolizumab (67), paclitaxel +
pertuzumab + trastuzumab (43), paclitaxel + trastuzumab (25), and T-DM1 + pertuzumab (49).
The gene expression data were performed using a reverse phase protein array (RPPA) mi-
croarray at George Mason University. This dataset is referred to as Dataset3. Table 1
provides an overview of the three-studied datasets.

Table 1. Overview of the three studied breast cancer drug response datasets downloaded from the
gene expression omnibus database.

Dataset Samples Responder Non-Responder Genes Platform Organism Experiment Type

GSE130787 89 38 51 5267 GPL6480 Homo sapiens Expression profiling by array

GSE140494 91 72 19 5313 GPL570 Homo sapiens Expression profiling by array

GSE196093 736 256 480 118 GPL28470 Homo sapiens Protein profiling by protein array

https://biomart.genenames.org/
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2.2. Computational Framework

In Figure 1, we outline the main steps pertaining to our computational framework. In
terms of the preprocessing part, biopsy samples were obtained from breast cancer patients.
Then, collected samples were prepared and provided to a biological technology, measuring
the gene expression levels [27]. In the machine learning part, the input data correspond
to a gene expression dataset, where xi represents the ith sample and yi is the associated
drug response. In our study, yi is a binary class label (e.g., {pathological complete response
(PCR), residual disease (RD)}). The entire samples xi (for i = 1, ..., m) were encoded as an
m × n matrix, in which m and n are the number of samples and genes, respectively. All
drug responses yi (where i = 1, ..., m) are encoded as a 1 × m column vector. To identify
p important genes out of the n genes in which p ≪ n, we used to find arguments (i.e.,
w = [w1. . .wn] and b ∈ R) that minimize the objective function in Equation (1) subject to
the linear constraints as in [28,29]. After solving the optimization problem in Equation (1),
weights in w correspond to the importance of genes, with higher weights indicating how
important these genes are. However, the main issue is as follows:
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Figure 1. Flowchart of the introduced AI-based framework identifying drugs, drug targets, critical
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The optimization problem in Equation (1) depends on w and b, where |w| is equal
to n, which is way larger than m (i.e., m ≪ n) in genomic sciences [30]. That makes the
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solution for the optimization problem in Equation (1) computationally expensive [31,32],
where the number of genes (n) is typically larger than the number of samples (m).

min
w,b

∥w∥2

2 + C
m
∑

i=1
ξk

i

subject to yi(w · xi + b) ≥ 1 − ξi, i = 1, 2, . . . , m
ξi ≥ 0

(1)

Therefore, we seek to solve the dual form of SVM (see Equation (2)) [31]. It can be
seen that the optimization problem now depends on finding the Lagrange multiplier (λ), in
which each xi is associated with λi. This is way faster than finding w in Equation (1) [31].

max
λ

m
∑

i=1
λi − 1

2

m
∑

i=1

m
∑

j=1
λiλjyiyjK(xi, xj)

subject to 0 ≤ λi ≤ C and
m
∑

i=1
λiyi = 0, i = 1, 2, . . . , m

(2)

In Equation (3) [31], we recover w from λ in Equation (2) as follows:

w =
m
∑

i=1
λiyixi (3)

For any xj associated with 0 < λj < C, b is recovered as

b = yj −
m
∑

i=1
λiyiK(xi, xj) (4)

where K
(
xi, xj

)
is a similarity measure K (usually called kernel) of xi and xj.

A testing example z is predicted as

y′ = sign(
m
∑

i=1
λiyiK(xi, z) + b) (5)

where sign() is an indicator function mapping to 1 (corresponding to RD) if its argument
is greater than or equal to 0. Otherwise, it is mapped to −1 (corresponding to PCR).
Equations (S1)–(S5) in the Supplementary Additional File show 5 popular kernels used
with SVM [31]. When a linear kernel is used, the prediction model becomes as

y′ = sign(
m
∑

i=1
λiyi(xi.z) + b) (6)

We used CVXR in R to solve the dual form of SVM in Equation (2) and to find
λ [33]. In terms of the enrichment analysis part, we uploaded the p genes as input
to Enricher and Metascape, where these p genes are weighted with the top p weights
(|w1|>|w2|>. . .>|wp|). Then, we interpret and identify biologically related terms, in-
cluding key expressed genes, drugs, drug targets, transcription factors, and others, which
are provided in the next section.

3. Experiments and Results
3.1. Experimental Methodology

We compared our method, esvm, against the following baseline methods: linear mod-
els for microarray data (limma) [17], significance analysis of microarrays (sam), Student’s
t-test (t-test), and least absolute shrinkage and selection operator (lasso) [18]. The input
to the five studied methods is labeled gene expression data. Because the prediction in our
efficient SVM-based model (named esvm) is defined as the sign(∑m

i=1 λiK(xi, z) + b) , we
had to recover w as ∑m

i=1 λiyixi and then select p genes associated with the top p weights
(i.e., w = [|w1|. . .|wp|]), which correspond to the top p important genes. For lasso, the
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model is expressed as β0 + βx, and we selected the p genes associated with top p coefficients
(i.e., β = [|β1|. . .|βp|]) (excluding genes associated with zero coefficients). For limma,
sam, and t-test baseline methods, genes were selected based on significantly adjusted
p-values < 0.01.

To perform enrichment analysis and evaluate the results from a biological perspective,
we uploaded genes obtained from each method to Enrichr (https://maayanlab.cloud/
Enrichr/, accessed on 3 October 2023) and Metascape (https://metascape.org/gp/index.
html, accessed on 21 September 2023) [14,16]. When retrieved terms are related to breast
cancer, a method that has terms associated with more genes is considered the superior
method. Furthermore, we assessed the performance from the classification perspective
against lasso as a baseline, reporting area under the ROC curve (AUC) as a performance
measure, followed by conducting a statistical significance test and reporting the running
time. In this study, we utilized R to run the experiments [34]. Specifically, we used the
CVXR package in R to aid in solving the formulated optimization problem [33]. We
employed the siggenes package to run sam [35], and we employed the limma package in R
to run the limma using the two functions lmFit and eBayes [17]. In terms of the t-test, we
employed the t-test function within the stats package [34]. To run lasso, we used the glmnet
package [20], in which we set λ = 0.05 and also utilized cross-validation on the training
set to find the optimal λ when using lasso for classification. For sam, limma, and t-test,
to compute adjusted p-values, we employed the p.adjust function with the “BH”, setting
p < 0.01 as in [29,36]. We used DeepLift, DeepSHAP, and LRP functions in the innsight
package in R to run DeepLIFT, DeepSHAP, and LRP, respectively [37].

For Dataset1, the gene expression experiment is to analyze and evaluate neoadjuvant
docetaxel and carboplatin plus trastuzumab and/or lapatinib for patients with HER2+
breast cancer, obtained from the School of Medicine at the University of California, Los
Angeles, USA. We retrieved gene expression profiles of patients responding to the treatment
(labeled as pathological complete response (PCR)) and those not completely responding to
the treatment (labeled as a residual disease (RD)) from the gene expression omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/, accessed on 17 March 2023) with GEO
accession number GSE130787. We utilized the getGEO() function within the GEOquery
package [38] to download and obtain the gene expression data. We utilized the fData()
function from the Biobase package [39] to process and obtain gene names; the pData()
function within the Biobase package was used to obtain drug responses (i.e., PCR and RD)
associated with each sample; the exprs() function within the Biobase package to obtain
expression values; and the missForest() function within the missForest package to impute
missing values [40,41]. We selected 5267 protein-coding genes (PCGs) according to Biomart
domain experts at the HUGO Gene Nomenclature Committee (see Section 2.1.1).

For Dataset2, the gene expression experiment is for predicting neoadjuvant chemother-
apy response in early breast cancer, obtained from the Leibniz Research Centre for Working
Environment and Human Factors, located in Dortmund, Germany. We retrieved gene
expression profiles of breast cancer patients responding (labeled as PCR and pathological
partial response (PPR)) and those not responding to treatment (labeled as pathological no
change (PNC)) from the GEO database at NIH under GEO accession number GSE140494.
As in Dataset1, we used the five functions (i.e., getGEO(), fData(), pData(), exprs(), and
missForest()) to download, prepare, and impute Dataset2. Moreover, we selected 5313
PCGs according to BioMart domain experts at the HUGO Gene Nomenclature Committee
(see Section 2.1.2).

For Dataset3, the gene expression experiment is for the I-SPY 2 neoadjuvant chemother-
apy/targeted therapy trial for early-stage breast cancer patients with high risk, obtained
from the University of California, San Francisco, CA, USA. Gene expression profiles per-
taining to breast cancer patients responding to treatment (labeled as a complete response)
against those not responding properly to the treatment (labeled as a failed complete re-
sponse) were obtained from the GEO database under GEO Accession number GSE196093.

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
https://metascape.org/gp/index.html
https://metascape.org/gp/index.html
https://www.ncbi.nlm.nih.gov/geo/
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As in Dataset2, we used the five functions (i.e., getGEO(), fData(), pData(), exprs(), and
missForest()) to download, prepare, and impute Dataset3.

3.2. Results
3.2.1. Dataset1

In Table 2, we report terms obtained from Enrichr based on input genes provided via
each method. Terms in Table 2(a) show expressed genes within breast tissues according to
each method. The more expressed genes, the better the computational method is. Table 2(a)
demonstrates that esvm outperformed all compared methods, obtaining 28 expressed
genes (SLC22A3, FKBP10, GRP, STAB2, LPL, GLI3, ADCY5, OBP2A, SOSTDC1, APOD,
HMGCS2, GABRE, CCL21, TMEM61, BBOX1, GFRA1, IGF1, BMP6, APLN, CAPN13,
NR4A1, C1ORF116, ANGPTL7, KCNS3, SSPN, PGR, FGFR2, and LTF) within the breast
tissue. The second-best method is limma with 14 expressed genes (TMEM86B, LRP1,
MEOX1, PLCZ1, OBP2A, PPP1R1B, LRIG1, ECHDC3, MAFK, MZF1, A2M, RNF186, FMOD,
and KANK3) within the breast tissue. The worst-performing method is lasso, in which eight
expressed genes (DGAT1, RNASE7, FXYD1, VEGFB, ROR2, FGF1, HSPA12A, and PTPN14)
are expressed in the breast tissue. In Table 2(b), we show retrieved terms (i.e., cancer cell
lines) and expressed genes within NCI-60 cancer cell lines. Our method, esvm, performed
better than other methods, obtaining a total of eight expressed genes within the retrieved
breast cancer cell lines. Specifically, three genes (PNMT, COL13A1, and BCAS1) were
expressed within MD-MB231, three genes (MYO5C, GFRA1, and FGFR2) were expressed
within MCF7, and two genes (COL13A1 and FAR2) were expressed within HS578T. The
second-best method is limma (tied with sam), both having four expressed genes within
two breast cancer cell lines. In terms of limma, one gene (ECHDC3) was expressed within
MD-MB231, whereas three genes (RBM8A, USP18, and PI4K2A) were expressed within
MCF7. For sam, one gene (CLSPN) was expressed within MD-MB231, and three genes
(TFAP2C, GFRA1, and CNNM3) were expressed within MCF7. The worst-performing
method is a lasso, which has two expressed genes within breast cancer cell lines. These
results demonstrate the superiority of our method (i.e., esvm) in identifying breast tissue as
well as breast cancer cell lines used in cancer research. In Supplementary Table1_A and
Table1_B, we include enrichment analysis results for ARCHS4 tissues and NCI-60 cancer
cell lines, respectively.

In Figure 2a, we provide a visualization of intersected genes produced by all computa-
tional methods. It can be seen that esvm has 94 unique genes out of 100 when compared to
all other methods. This implies that each method generates a different list of genes. For
example, limma, sam, t-test, and lasso had unique genes of 96, 95, 94, and 38, respectively.
It can also be seen that the number of common genes between any pair of methods is at
most 2. This indicates that each method generated a different gene set, and the similarity
among methods is minimal. In Supplementary DataSheet1_B, we list the genes according
to the UpSet plot in Figure 2a.

As esvm demonstrated superiority over the other computational methods, we pro-
vided the 100 genes produced via esvm to Metascape for further enrichment analysis.
Figure 2b displays the following 44 genes obtained from protein–protein interaction: GRP,
TRH, LTF, TTR, APOD, CSSC4, CAPN9, CAPN13, S100A6, S100A2, CARTPT, DUSP13B,
FKBP10, GGH, ERP27, POF1B, SOSTDC1, CEACAM5, BMP6, CHRDL2, GSTA1, QDPR,
NDRG1, NR4A1, SOCs4, PPBP, CCL21, APLN, TRIM63, ADCY5, CALML4, MYO5C,
RAB38, AQP3, TUBA3C, PTP4A3, FOS, MS4A2, MMP1, MMP3, MMP12, FGFR2, IGF1, and
PGR. The enrichment analysis showed that 10 genes (BMP6, IGF1, MMP1, MMP3, MMP12,
PPBP, S100A2, S100A6, CCL21, CHRDL2) were related to NABA MATRISOME ASSOCI-
ATED, 7 genes (BMP6, IGF1, PPBP, S100A2, S100A6, CCL21, CHRDL2) were related to
NABA SECRETED FACTORS, and 6 genes (BMP6, FGFR2, NR4A1, IGF1, MMP12, APLN)
were related to positive regulation of epithelial cell proliferation. It has been reported that
the NABA MATRISOME ASSOCIATED and NABA SECRETED FACTORS pathways play
a key role in breast cancer metastasis through their involvement with extracellular matrix
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proteins [42,43]. Also, genes linked to the positive regulation of epithelial cell proliferation
biological processes are related to the induction of metastasis and inhibition of breast cancer
cell apoptosis through the promotion of epithelial cell proliferation via estrogen [44,45].
These results demonstrate the effectiveness of our computational method in unveiling
important molecular mechanisms pertaining to breast cancer pathogenesis and metastasis.

Table 2. Enriched terms were obtained from (a) ARCHS4 Tissues and (b) NCI-60 Cancer Cell Lines
via Enrichr according to the genes produced by each method when using Dataset1. The best result is
shown in bold.

(a) ARCHS4 Tissues

Method Rank Term Overlap p-Value Adjusted p-Value

esvm 10 BREAST (BULK TISSUE) 28/2316 5.92 × 10−6 5.81 × 10−5

limma 18 BREAST (BULK TISSUE) 14/2316 2.65 × 10−1 9.99 × 10−1

sam 19 BREAST (BULK TISSUE) 13/2316 3.72 × 10−1 9.99 × 10−1

t-test 49 BREAST (BULK TISSUE) 9/2316 8.32 × 10−1 9.99 × 10−1

lasso 1 BREAST (BULK TISSUE) 8/2316 9.50 × 10−2 9.87 × 10−1

(b) NCI-60 Cancer Cell Lines

Method Rank Term Overlap p-Value Adjusted p-Value

esvm 12 MD-MB231 3/150 3.94 × 10−2 2.50 × 10−1

33 MCF7 3/397 3.19 × 10−1 7.21 × 10−1

24 HS578T 2/176 2.19 × 10−1 6.63 × 10−1

limma 45 MD-MB231 1/150 5.29 × 10−1 7.74 × 10−1

29 MCF7 3/397 3.19 × 10−1 6.74 × 10−1

- HS578T - - -
sam 46 MD-MB231 1/150 5.29 × 10−1 8.85 × 10−1

29 MCF7 3/397 3.19 × 10−1 7.83 × 10−1

- HS578T - - -
t-test - MD-MB231 - - -

46 MCF7 2/397 5.93 × 10−1 8.72 × 10−1

45 HS578T 1/176 5.87 × 10−1 8.72 × 10−1

lasso 26 MD-MB231 1/150 2.65 × 10−1 5.11 × 10−1

- MCF7 - - -
29 HS578T 1/176 3.04 × 10−1 5.24 × 10−1

Figure 2c reports 12 transcription factors (TFs): NFKBIA, FOS, RELA, STAT3, JUN,
BRCA1, SP1, USF1, ETS1, CREB1, NFKB1, and MYC. BRCA1 is known to play a key role in
various biological processes in breast cancer [46–50]. TFs such as ETS1 and STAT3 have been
reported as potential therapeutic targets in breast cancer [51]. Suppression of NFKBIA and
CREB1 has been reported to be related to the inhibition of breast cancer progression [52,53].
These 12 TFs can (1) aid in understanding breast cancer molecular mechanisms and (2) act
as potential therapeutic targets for breast cancer treatment. In Figure 2d, genes provided via
esvm are related to various biological processes and pathways in breast cancer progression.
The top-enriched term is the vitamin D receptor pathway, which ameliorates breast cancer
by contributing to the growth regulation of breast cancer cells [54,55]. Other enriched
terms, such as NABA MATRISOME ASSOCIATED, mammary gland development, and
extracellular matrix organization, have been reported to play a key role in various biological
processes related to breast cancer progression and treatment [56–60]. In Supplementary
Enirchment_Dataset1, we list Metascape enrichment analysis results related to Dataset1.

In Table 3, we report terms (i.e., drugs) and expressed genes (i.e., drug targets) within
IDG Drug Targets 2022. Tamoxifen and Fulvestrant are antiestrogen inhibitors (hormone
therapy) that have been approved for breast cancer treatment (see Figure 3) [61–63]. Both
drugs identified two drug targets, PGR and ATP1A2. Cisplatin is a chemotherapy used
for breast cancer treatment [64,65]. ATP1A2 was a drug target reported in association with
cisplatin. The obtained biological knowledge contributes to a better understanding of breast
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cancer progression and treatment. In Supplementary Table1_C, we provide enrichment
analysis results pertaining to IDG Drug Targets 2022.
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Table 3. Enriched terms from IDG Drug Targets 2022 via Enrichr were retrieved according to uploaded
genes from esvm using Dataset1, showing genes (column: genes) associated with drugs (column:
term). The rank column shows the order of terms when retrieved.

Rank Term Class Genes

35 Tamoxifen Antiestrogen PGR and ATP1A2
37 Fulvestrant Estrogen Receptor Antagonist PGR
64 Cisplatin Platinum Coordination Complex ATP1A2

3.2.2. Dataset2

In Table 4(a), we report retrieved breast tissue terms associated with expressed genes,
while Table 4(b) reports breast cancer cell line terms with expressed genes after uploading
genes produced via all computational methods. It can be seen from Table 4(a) that our
method (esvm) performed better than its competing baseline methods. Particularly, esvm
had breast tissue terms with 20 expressed genes (COL15A1, PFKFB3, VCAM1, TAT, TNC,
PLAT, LAMC2, ACTG2, NR4A1, CYP2A6, KRT19, KRT18, COL5A1, DUOXA1, SCNN1A,
FOSB, KCNN4, CD300LG, LTF, and MPZL2) out of 2316. The second-best method was
sam with 13 expressed genes (DSP, IGFBP5, ODF3, TACSTD2, KLK8, SLC5A6, EFEMP1,
FABP4, PER3, SLPI, CRTAC1, STAB1, and DACT2) out of 2316. Limma and t-test were tied
for the third-best performing methods, with both having 11 expressed genes within the
breast tissue. Limma had the expressed genes, namely CAMSAP3, FABP4, JUP, TRAF4,
SLFNL1, TRIM29, WNT9A, A2M, PCDH1, LOXL1, and SLC9A1, while the t-test had
the following genes: SLC22A23, MUCL1, GIPC3, PACS2, FZD7, PADI2, CLEC4F, CFB,
KIAA0040, SYT7, and EGFR. The worst-performing method was lasso with 7 expressed
genes (RECQL4, NR4A1, SLC44A4, GJD3, CLDN7, SHB, and LZTR1) out of 2316. Table 4(b)
demonstrates enriched breast cancer cell line terms from NCI-60 cancer cell lines obtained
via Enrichr. The best-performing method is esvm, with a total of seven expressed genes
within MCF7 and HS578T breast cancer cell lines, distributed as follows: Six expressed
genes (DCTN5, KRT19, DAAM1, KYNU, TRIM37, and MPZL2) out of 397 within the MCF7
breast cancer cell line, while one expressed gene (ACTG2) within the HS578T breast cancer
cell line. In terms of the MD-MB231 breast cancer cell line, esvm had no retrieved results.
Therefore, results were designated as “-.” The second best-performing method was sam,
which resulted in five expressed genes within MD-MB231 and MCF7 breast cancer cell
lines. Two expressed genes (RHEB and GARNL3) out of 150 were expressed within the
MD-MB231 breast cancer cell line, whereas three genes (PIAS3, DCTN5, and CTCF) out
of 397 were expressed within the MCF7 breast cancer cell line. For the HS578T breast cancer
cell line, no retrieved results were reported for sam (see “-”). The worst-performing method
was lasso with three expressed genes within MD-MB231, MCF7, and HS578T breast cancer
cell lines. These results demonstrate the good performance of esvm in identifying breast
tissues and cancer cell lines. In Supplementary DataSheet2_A, we include genes obtained
from computational methods provided to Enrichr to derive enrichment analysis results.
Additionally, enrichment analysis results related to Table 4 are included in Supplementary
Table2_A and Table2_B. Figure 4a displays the UpSet plot in terms of intersection lists
of genes from all computational methods. A total of 91 unique genes were attributed to
esvm. sam, limma, t-test, and lasso had 94, 93, 92, and 33 unique genes, respectively. These
results indicate that each method incorporated different computational steps, resulting in
different lists of genes. The number of intersected genes between each pair of computational
methods is upper-bounded by 4. In Supplementary DataSheet2_B, we include gene lists of
computational methods related to Figure 4a.
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Table 4. Enriched terms were obtained from (a) ARCHS4 Tissues and (b) NCI-60 Cancer Cell Lines
via Enrichr according to the genes produced by each method when using Dataset2. The best result is
shown in bold.

(a) ARCHS4 Tissues

Method Rank Term Overlap p-Value Adjusted p-Value

esvm 21 BREAST (BULK TISSUE) 20/2316 1.00 × 10−2 4.91 × 10−2

limma 26 BREAST (BULK TISSUE) 11/2316 6.18 × 10−1 9.99 × 10−1

sam 11 BREAST (BULK TISSUE) 13/2316 3.72 × 10−1 9.99 × 10−1

t-test 17 BREAST (BULK TISSUE) 11/2316 6.18 × 10−1 9.99 × 10−1

lasso 6 BREAST (BULK TISSUE) 7/2316 1.03 × 10−1 8.76 × 10−1

(b) NCI-60 Cancer Cell Lines

Method Rank Term Overlap p-Value Adjusted p-Value

esvm - MD-MB231 - - -
4 MCF7 6/397 1.47 × 10−2 2.75 × 10−1

58 HS578T 1/176 5.87 × 10−1 7.72 × 10−1

limma - MD-MB231 - - -
43 MCF7 2/397 5.93 × 10−1 8.36 × 10−1

- HS578T - - -
sam 32 MD-MB231 2/150 1.72 × 10−1 4.48 × 10−1

41 MCF7 3/397 3.19 × 10−1 6.46 × 10−1

- HS578T - - -
t-test - MD-MB231 - - -

32 MCF7 3/397 3.19 × 10−1 6.80 × 10−1

49 HS578T 1/176 5.87 × 10−1 8.43 × 10−1

lasso 14 MD-MB231 1/150 2.31 × 10−1 6.54 × 10−1

33 MCF7 1/397 5.04 × 10−1 6.54 × 10−1

15 HS578T 1/176 2.66 × 10−1 6.54 × 10−1

As esvm performed better than baseline computational methods, we provided genes
obtained from esvm to Metascape to unveil biological insights within breast cancer drug
responses. Figure 4b reports the following 12 genes obtained from the PPI network:
ACTG2, PRKAR2B, ALDH2, PRKACB, KRT19, KRT18, WASF3, DLG5, TRIM37, GSTM3,
GSTA1, and CYP2A6. Four genes (KRT18, KRT19, PLCB4, and PRKACB) were related to the
estrogen signaling pathway, which is reported to play a key role in breast cancer progression
and treatment [66–68]. Three genes (CYP2A6, GSTA1, and GSTM3) were linked to chemical
carcinogenesis—the DNA adduct pathway—involved in cancer development [69,70]. In
Figure 4c, we report the following 18 transcription factors: SP1, RELA, NFKB1, HIF1A,
STAT3, ZEB1, FOXO3, NFE2L2, JUN, NRC1, SP3, EP300, E2F1, CEBPB, USF1, HDAC1,
ETS1, and STAT1. STAT3 is involved in breast cancer progression [71]. E2F1 and EP300 have
been reported to be involved in breast cancer development and metastasis [72–74]. These
results demonstrate the importance of these TFs, and such mutations or alterations can affect
gene regulation and thereby contribute to breast cancer development. In Figure 4d, the top-
enriched term was the nuclear receptor meta-pathway. Ten genes (CYP2A6, GSTA1, GSTM3,
HMOX1, ME1, S100P, SCNN1A, ABCC4, PLK2, and B3GNT5) were linked to the nuclear
receptor meta-pathway, which has been related to breast cancer cell growth via nuclear
receptors such as estrogen receptors [75]. Moreover, the 13 genes (AGT, BCL6, CDKN2C,
FGFR3, GJA1, TNC, MT1X, S100A8, S100A9, SYT1, SOCS2, SEMA3C, and CHPT1) were
related to the regulation of the growth process, which is linked to breast cancer cell growth.
Eleven genes (AGT, BIRC5, CCND2, FGFR3, GSTA1, GSTM3, HMOX1, CXCL8, LAMC2,
PLCB4, and PRKACB) were related to pathways in cancer, which are linked to breast cancer
development and metastasis [76]. Six genes (BCL6, CCND2, CDKN2C, CXCL8, PLAT,
and PROM1) were related to transcriptional misregulation in cancer, which is linked to
mutations and altered gene expression in breast cancer [77]. Enrichment analysis results
obtained from Metascape are provided in Supplementary Enrichment_Dataset2.
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Table 5 shows drugs and drug targets within the IDG Drug Targets 2022. Hydroxycar-
bamide and gemcitabine are ribonucleotide reductase enzyme (RNR) inhibitors that have
been used for breast cancer treatment (see Figure 5) [78,79]. The two drugs are associated
with RRM2 as a drug target [80]. Daunorubicin inhibits DNA replication and cyclophos-
phamide, causing damage to the DNA of cancer cells and thereby causing cancer cells to
die. TOP2A was a drug target for daunorubicin, whereas RRM2 was a drug target for
cyclophosphamide. In Supplementary Table2_C, we report enrichment analysis results for
IDG Drug Targets 2022.

Table 5. Enriched terms from IDG Drug Targets 2022 via Enrichr were retrieved according to uploaded
genes from esvm using Dataset2, showing genes (column: genes) associated with drugs (column:
term). The rank column shows the order of terms when retrieved.

Rank Term Class Genes

5 hydroxycarbamide Antimetabolite RRM2
13 daunorubicin Anthracycline TOP2A
19 cyclophosphamide Alkylating Agent RRM2
20 gemcitabine Antimetabolite RRM2
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3.2.3. Dataset3

After uploading produced genes via each method to Enrichr, we show retrieved breast
tissue terms within ARCHS4 tissues (See Table 6(a)) and breast cancer cell lines terms within
NCI-60 cancer cell lines (see Table 6(b)). From Table 6(a), we can see that esvm generated
the best results. Particularly, esvm had six expressed genes (CSF1, CCND1, ERBB3, IRS1,
ERBB2, and ESR1) out of 2316 within breast tissue, followed by sam and t-test, both having
four common expressed genes (RET, CCND1, IRS1, and ERBB2) out of 2316 within breast
tissue. Lasso had two (ESR1 and EGFR) expressed genes out of 2316 within breast tissue,
while limma was the worst-performing method, having one expressed gene (ABL1) out
of 2316 within the breast tissue. In Table 6(b), esvm is also the best-performing method
by having 3 expressed genes out of 397 within the MCF7 breast cancer cell line. No
results were associated with MD-MB231 and HS578T breast cancer cell lines. Therefore,
we indicated results by “-”. Both the sam and t-test were tied by having two expressed
genes out of 397 within the MCF7 breast cancer cell line. As for esvm, no reported results
were found for the other two breast cancer cell lines (i.e., MD-MB231 and HS578T). The
worst-performing method was limma, where no reported results were found for the three
breast cancer cell lines. These results demonstrate the superiority of esvm when identifying
breast cancer tissue and cell lines. We include enrichment analysis results regarding Table 6
in Supplementary Table3_A and Table3_B.

In Figure 6a, we show the UpSet plot showing the intersection of produced genes
among all methods when Dataset3 is used. From the leftmost, it appears that esvm
differs from all other methods by having 20 unique genes. Limma and lasso have 17 and
6 unique genes, respectively. esvm, sam, and t-test share 13 genes. Limma and esvm share
12 genes. sam and the t-test share eight genes. Lasso and esvm share three genes. sam,
t-test, and lasso share two genes. It can also be seen that the number of common genes
between the remaining intersections of methods is 1. These results demonstrate that our
method is different from the remaining methods, attributed to the different computational
steps involved in the computation of esvm. In Supplementary DataSheet3_B, we report
genes related to the UpSet plot. Figure 6b reports the following 19 genes obtained from
the PPI network: AR, BIRC5, CCND1, RB1, STAT1, STAT3, ESR1, IRS1, PTEN, ERBB2,
ERBB3, ALK, AKT1, MET, JAK2, IGFIR, EGFR, TP53, and MTOR. Thirteen genes (AKT1,
ARAF, CCND1, EGFR, ERBB2, ERBB3, MTOR, IGF1R, JAK2, MET, PTEN, RAF1, and
STAT3) were linked to EGFR tyrosine kinase inhibitor resistance, involved in the resistance
mechanism of EGFR inhibitors, and thereby breast cancer progression [81]. Twelve genes
(AKT1, CCND1, ERBB2, ESR1, MTOR, IRS1, JAK2, NOS3, PTEN, RAF1, STAT1, and
STAT3) were involved in the leptin signaling pathway, which is related to breast cancer
malignancy [82,83]. Five genes (BIRC5, CCND1, ESR1, RB1, and CHEK2) were involved in
the PID FOXM1 PATHWAY, which has been reported as a crucial oncogenic transcription
factor that promotes breast cancer progression and growth [84,85].



Mathematics 2024, 12, 1536 15 of 27

Table 6. Enriched terms were obtained from (a) ARCHS4 Tissues and (b) NCI-60 Cancer Cell Lines
via Enrichr according to the genes produced by each method when using Dataset3. The best result is
shown in bold.

(a) ARCHS4 Tissues

Method Rank Term Overlap p-Value Adjusted p-Value

esvm 3 BREAST (BULK TISSUE) 6/2316 5.28 × 10−1 9.97 × 10−1

limma 40 BREAST (BULK TISSUE) 1/2316 9.78 × 10−1 9.78 × 10−1

sam 4 BREAST (BULK TISSUE) 4/2316 2.99 × 10−1 9.47 × 10−1

t-test 4 BREAST (BULK TISSUE) 4/2316 2.99 × 10−1 9.47 × 10−1

lasso 9 BREAST (BULK TISSUE) 2/2316 4.12 × 10−1 7.71 × 10−1

(b) NCI-60 Cancer Cell Lines

Method Rank Term Overlap p-Value Adjusted p-Value

esvm - MD-MB231 - - -
3 MCF7 3/397 7.68 × 10−2 5.88 × 10−1

- HS578T - - -
limma - MD-MB231 - - -

- MCF7 - - -
- HS578T - - -

sam - MD-MB231 - - -
3 MCF7 2/397 8.14 × 10−2 4.41 × 10−1

- HS578T - - -
t-test - MD-MB231 - - -

3 MCF7 2/397 8.14 × 10−2 4.41 × 10−1

- HS578T - - -
lasso - MD-MB231 - - -

18 MCF7 1/397 2.13 × 10−1 3.08 × 10−1

- HS578T - - -

In Figure 6c, we report the following 20 transcription factors (TFs): TP53, BRCA1,
HDAC1, RELA, STAT3, E2F1, SP1, NFKB1, YBX1, ESR1, NKX3-1, AR, VHL, PAX5, CTNNB1,
PPARG, PGR, JUN, KDM4B, and DNMT1. Interestingly, the TP53 mutation has been
reported to be the most frequently occurring in breast cancer [86,87]. Patients with BRCA1
mutations are at higher risk of developing breast cancer and are thereby considered an
important biomarker [88,89]. HDAC1 has been reported to be related to breast cancer
cell proliferation [90]. These results demonstrate the importance of these TFs and can
aim to develop therapeutic strategies for breast cancer treatment. Figure 6d reports the
top-enriched terms regarding processes and pathways. Twenty-one genes (AKT1, ALK,
BIRC5, AR, ARAF, CCND1, CASP7, EGFR, ERBB2, ESR1, MTOR, IGF1R, JAK2, MET,
PTEN, RAF1, RB1, STAT1, STAT3, TP53, and FADD) were linked to pathways in cancer
(hsa05200), coinciding with recently reported results as one of the top-enriched pathways
in breast cancer [91].

Thirteen genes (AKT1, ARAF, CCND1, EGFR, ERBB2, ERBB3, MTOR, IGF1R, JAK2,
MET, PTEN, RAF1, and STAT3) were related to EGFR tyrosine kinase inhibitor resistance
(WP4806), which was reported as a significant pathway associated with breast cancer [77,92].
Twelve genes (AKT1, CCND1, ERBB2, ESR1, MTOR, IRS1, JAK2, NOS3, PTEN, RAF1,
STAT1, and STAT3) were linked to the leptin signaling pathway (WP2034) and reported
to have a key role in breast cancer tumorigenesis [93]. Nine genes (AKT1, EGFR, ERBB2,
ERBB3, ESR1, MTOR, IRS1, MET, and PTEN) were linked to PI3K/AKT signaling in cancer
(R-HSA-2219528), whose inactivation suppressed the proliferation of breast cancer cells,
thereby inducing apoptosis [94]. Seven genes (AKT1, BIRC5, ATM, CASP7, RAF1, TP53,
and FADD) were related to apoptosis (hsa04210), which plays a key role in controlling the
excessive proliferation of breast cancer cells [95]. In Supplementary Enrichment_Dataset3,
we include enrichment analysis results obtained from Metascape pertaining to Dataset3.
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Figure 6. (a) UpSet plot of gene lists provided by the computational methods when using Dataset3.
(b) Three clusters in a protein–protein interaction based on genes of esvm coupled with Metascape.
(c) Twenty transcription factors, according to Metascape, when coupled with genes from esvm.
(d) Process and pathway enrichment analysis provided by Metascape according to the genes of esvm.

Table 7 reports drug terms and drug targets within the IDG Drug Targets 2022. Ceri-
tinib aims to inhibit the anaplastic lymphoma kinase (ALK) enzyme, thereby blocking the
ability of tumors to grow and promoting apoptosis (see Figure 7) [96]. Erlotinib inhibits
the effect of the tyrosine kinase enzyme on the epidermal growth factor receptor (EGFR),
thereby preventing the proliferation of cancer cells and inducing apoptosis. In the Supple-
mentary Table3_C, we report enrichment analysis results regarding drug terms within IDG
Drug Targets 2022.
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Table 7. Enriched terms from IDG Drug Targets 2022 via Enrichr were retrieved according to uploaded
genes using Dataset3, showing genes (column: genes) associated with drugs (column: term). The
rank column shows the order of terms when retrieved.

Rank Term Class Genes

1 Ceritinib Tyrosine Kinase Inhibitor ALK; JAK2; MET; IGF1R
2 Erlotinib Tyrosine Kinase Inhibitor ALK; ERBB3; ERBB2; JAK2; MET
3 Entrectinib Kinase Inhibitor ALK; JAK2; IGF1R

3.3. Models Introspection
3.3.1. Dataset1

In Figure 8, we aim to obtain computational insights pertaining to learning-based
models studied and applied in the Results Section. Figure 8a demonstrates that our method
esvm leads to non-zero weights, while lasso in Figure 8b leads to a sparser representation
and thereby many zero coefficients, attributed to the L1 penalty as in [28]. In Figure 8c,
it can be seen that the lasso is ~6.14 × faster than the esvm. Figure 8d,e for esvm and
lasso, respectively, demonstrate that prediction differences between breast cancer patients
achieving pathological complete response against those having residual disease were
statistically significant (p-value of all models < 2.2 × 10−16, obtained from a t-test).
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As shown in Figure 9, different aspects related to models are reported as follows: 

Figure 9a shows that esvm leads to a non-sparse representation in which the weight vector 
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that lasso is 44 × faster than esvm. 

Figure 8. Classification models are compared for predicting the drug responses of TCH, TCHTy, and
TCTy in breast cancer (BC) patients when Dataset1 is used. Gene importance when esvm (a) and
lasso (b) are applied. Computational running time (c) for esvm and lasso. Boxplot and strip chart of
drug sensitivity prediction for BC patients using esvm (d) and lasso (e). ROC curve (f) demonstrates
the prediction performance. TCH is docetaxel, carboplatin, and trastuzumab. TCHTy is docetaxel,
carboplatin, trastuzumab, and lapatinib. TCTy is docetaxel, carboplatin, and lapatinib. PCR is a
pathological complete response. RD is a residual disease.
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These results show that both induced models using Dataset1 are expected to be general
predictors for drugs with PCR and RD responses. For the ROC curves of esvm and lasso in
Figure 8f, both models achieved an area under the ROC curve (AUC) of 1.00.

3.3.2. Dataset2

As shown in Figure 9, different aspects related to models are reported as follows:
Figure 9a shows that esvm leads to a non-sparse representation in which the weight vector
w consists of non-zero weights. On the other hand, Figure 9b demonstrates that lasso leads
to a sparse representation in which many of the coefficients β are zeros. Figure 9c displays
that lasso is 44 × faster than esvm.
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Figure 9. Classification models are compared for predicting TFEC drug responses in breast cancer
(BC) patients when Dataset2 is used. Gene importance when esvm (a) and lasso (b) are applied.
Computational running time (c). Boxplot and strip chart of drug sensitivity prediction for BC
patients sensitive against those resistant to the drug treatment for esvm (d) and lasso (e). ROC
curve (f) demonstrates the prediction performance. TFEC is docetaxel, 5-fluorouracil, epirubicin,
and cyclophosphamide.

Figure 9d for esvm demonstrates that prediction differences between sensitive breast
cancer patients and those with resistant drug responses were statistically significant
(p-value < 2.2 × 10−16, obtained from a t-test). For lasso in Figure 9e, prediction differ-
ences between the two groups (i.e., BC patients sensitive to a drug against those having
a resistant response) were not statistically significant (p-value = 1, obtained from a t-test).
These results show that esvm is expected to be a general predictor of drug sensitivity and
resistance. Lasso tends to be a specific predictor. Figure 9f displays the ROC curves for
esvm and lasso, where the former has an AUC of 1.00 and the latter has an AUC of 0.947.
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3.3.3. Dataset3

Figure 10 reports various computational aspects of the studied models from a classifi-
cation perspective. It can be easily noticed that esvm does not shrink weights w to zero
(Figure 10a), while lasso has a sparser representation attributed to the L1 regularization
shrinking coefficients β to zero (see Figure 10b). In terms of efficiency, Figure 10c shows
that lasso is 1974 × faster than esvm. In terms of generalization, Figure 10d,e demonstrate
that the prediction differences in esvm and lasso between breast cancer patients achieving
complete response (CR) and those achieving failed complete response (FCR) were statisti-
cally significant (p-value < 2.2 × 10−16, obtained from a t-test). However, esvm had a better
AUC of 0.722, while lasso had a lower AUC of 0.555 (see Figure 10f).
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Figure 10. Classification models are compared for predicting multiple drug combination responses in
breast cancer (BC) patients when Dataset3 is used. Gene importance when esvm (a) and lasso (b) are
applied. Computational running time (c). Boxplot and strip chart of drug sensitivity prediction for
BC patients sensitive against those resistant to the drug treatment for esvm (d) and lasso (e). ROC
curve (f) demonstrates the prediction performance.

These performance results indicate that the prediction performance difference between
esvm and lasso is 16.7% when AUC is considered.

3.3.4. Scalability

In Figure 11a–j, we report the computational running time for increased dimensionality,
starting from 50,000 dimensions to 500,000 dimensions and fixing the number of rows to 100.
The generation of x was conducted according to the uniform distribution U(0, 1), and y was
generated in which the class distribution was balanced. When the number of dimensions is
50,000 (see Figure 11a), the lasso was 27 and 121.5 × faster than esvm and SVM, respectively.
Our method, esvm, was 4.5 times faster than the baseline SVM. The average running times
for esvm, SVM, and lasso spanning over all results in Figure 11a–j are 3.54 s, 23.88, and
0.275, respectively. That means our method, esvm, on average, is 6.74 × faster than SVM,
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while lasso was 12.87 and 86.83 × faster than esvm and SVM, respectively. These results
demonstrate the computational efficiency of our method over the SVM implementation
using the e1071 package in R. In Supplementary Running_Time, we include all running
time results related to Figure 11a–j.
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Figure 11. Computational running time for our model esvm against baseline methods (SVM and
lasso) using simulated data of increased dimensionality.

4. Discussion

Identifying critical genes, drugs, drug targets, and transcription factors plays a key
role in unveiling the underlying drug response mechanism of breast cancer. Therefore, we
introduced an AI-based computational framework that functions as follows: First, because
gene expression datasets consist of many genes compared to the number of samples, the
optimization problem formulation of SVM in terms of finding weight vector w and bias
term b is impractical (see Equation (1)). Therefore, we employ the dual form of the SVM
optimization problem formulated in terms of finding lambda λ as shown in Equation (2).
Then, we recover the weight vector w using Equation (3). Our method, esvm, takes as
input gene expression data along with breast cancer drug responses obtained from the GEO
database. The output is a list of the selected 100 genes according to the top 100 correspond-
ing weights in w. Then, we performed enrichment analysis by providing the output genes
to two enrichment analysis tools, Enrichr and Metascape. When Enrichr is considered, our
method outperformed the baseline methods by having more expressed genes in breast
cancer cell lines, including MD-MB231, MCF7, and HS578T. Moreover, our method, esvm,
had more expressed genes in breast tissue. For Metascape, our method identified important
genes, including tumor suppressor genes (e.g., TP53 and BRCA1), TFs, drugs, drug targets,
pathways, and biological processes that play a key role in understanding breast cancer
drug response mechanisms.

As computational running time plays a key role in the gene selection process, our
method, esvm, was way faster than the baseline SVM. Although lasso was the fastest
method, esvm had more expressed genes in breast cancer cell lines as well as breast tissues
when compared to lasso. Therefore, the improvements in esvm are attributed to (1) the
superiority of computational efficiency when compared to the baseline SVM and (2) high-
performance results measured using the AUC when compared to lasso. Another advantage
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of esvm attributed to its computational efficiency is its computational feasibility to explicitly
change the data representation and apply esvm to identify important genes. As a result,
esvm can aid in analyzing gene expression data coupled with clinical data and other
profiling datasets.

Drug responses in this study were classified as follows: For Dataset1, the treated
groups were classified during the Phase II trial as (1) pathological complete response,
referring to the absence of invasive cancer in the axilla and breast, and (2) residual disease,
referring to the presence of invasive cancer in the breast and axilla. In terms of Dataset2,
treated groups after neoadjuvant therapy within the Phase II multicenter trial were clas-
sified as (1) sensitive, referring to patients completely responding to the treatment, and
(2) resistant, referring to patients not completely responding to the treatment. Regard-
ing Dataset3, the treated groups were categorized during the neoadjuvant I-SPY2 trial as
(1) complete response when responding to the treatment and (2) failed complete response
when not completely responding to the treatment.

We specify the parameters of the methods in our study for gene selection as follows.
esvm (C = 2), lasso (λ = 0.05), and SVM (setting parameters associated with the linear
kernel to their default values). Each method produces a gene list, and the probability of each
method coinciding with our method, esvm, is estimated as follows: For Dataset1, Dataset2,
and Dataset3, the probabilities are equal to 1

(5267
100 )

, 1
(5313

100 )
, and 1

(118
50 )

, respectively; (n
k) indicates

the binomial coefficient, in which n is the total number of genes in the considered dataset
and k is the total number of genes produced by esvm. Therefore, the odds of having a
method producing results like ours are unlikely to occur.

We evaluated the performance of selected genes from a biological perspective against
deep learning methods, including DeepLIFT, DeepSHAP, and LRP. In the three datasets
(see Supplementary Additional File: Tables S1(b), S2(b), and S3(b)), our method had more
expressed genes in breast cancer cell lines (MD-MB231, MCF7, and HS578T). Specifically,
in Dataset1, esvm had a total of eight expressed genes compared to six (two and four) for
DeepLIFT (DeepSHAP and LRP). For Dataset2, esvm had a total of seven expressed genes,
while DeepLIFT, DeepSHAP, and LRP had a total of five, five, and six, respectively. In
terms of Dataset3, esvm had a total of three expressed genes, while each deep learning
method had a total of two expressed genes. In our study, we identified genes enriched in
terms related to breast cancer cell lines, and our method was the best. On the other hand,
when considering genes in breast tissue irrespective of cell types, DeepLIFT was the best
(see Supplementary Additional File: Tables S1(a), S2(a), and S3(a)). As a fraction of genes
are expressed in each breast cancer cell line, our method had more expressed genes related
to the studied breast cancer cell lines. Therefore, these results demonstrate the superiority
of esvm. Additional details for the studied deep learning models are in the Supplementary
Additional File (Figures S1 and S2) and Supplementary DLModels.

To further demonstrate the effectiveness of esvm as a gene selection method, we
assessed the performance from a classification perspective of our method against adapted
deep learning methods for gene selection, including Deep Learning Important FeaTures
(DeepLIFT) [8], Deep SHapley Additive exPlanations (DeepSHAP) [9], and Layer-wise
relevance propagation (LRP) [10]. Tables S4–S6 in the Supplementary Additional File
demonstrate the performance results (and standard deviation) when SVM is coupled with
each gene set produced by each method for the three datasets. It can be seen from Table S4
in the Supplementary Additional File that when SVM is coupled with Dataset1 of selected
genes via esvm, it generates the highest accuracy (ACC) of 0.921, the highest balanced
accuracy (BAC) of 0.935, and the highest Matthews correlation coefficient (MCC) of 0.849.
For Dataset2 (see Table S5 in Supplementary Additional File), SVM, when coupled with the
gene set via esvm in Dataset2, generated the highest ACC of 0.978, the highest BAC of 0.960,
the highest F1 of 0.950, and the highest MCC of 0.944. The same holds true for Dataset3,
in which SVM, when coupled with a dataset of genes selected from esvm, achieved the
highest performance results based on the four performance measures (see Table S6 in the
Supplementary Additional File).
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When evaluating the performance from a classification perspective for the three
datasets using lasso (rather than SVM) as a learning algorithm (see Supplementary Addi-
tional File: Tables S7–S9), Table S7 in Supplementary Additional File, demonstrates that
lasso when coupled with Dataset1 of genes selected via esvm generated the highest ACC of
0.662, the highest BAC of 0.660, the highest F1 of 0.738. In terms of Dataset2 (see Table S8
in Supplementary Additional File), lasso, when coupled with Dataset2 with selected genes
from esvm, generated the highest BAC of 0.537, while other methods had marginal im-
provements over our method (esvm) when the ACC performance measure was considered.
The same holds true for Dataset3, in which lasso, when coupled with Dataset3 of genes
from esvm, achieved the highest performance results using two performance metrics in im-
balanced classification. Particularly, lasso with genes from esvm achieved the highest BAC
of 0.627 and the highest MCC of 0.280. These results demonstrate the effectiveness of our
method in exploring discriminatory genes. Combined confusion matrices for performance
results using SVM and lasso are provided in the Supplementary Additional File, displayed
in Figures S3–S8, and the sum of entries in each confusion matrix is equal to the number of
samples in the corresponding dataset.

In terms of the number of common genes in Dataset1, it can be seen from Figure 2a that
the number of common genes (if they exist) between any pair of methods does not exceed 2.
For example, limma and sam had two common genes (ATP2B1 and RNF186), esvm and
t-test had two common genes (RAB38 and ABHD1), and sam and t-test had two common
genes (MFN2 and RPS24). The rest of the intersections are provided in Supplementary
DataSheet1_B. For Dataset2, Figure 4a shows that esvm and t-test had four common genes
(PTCHD1, CTSB, ALDH2, and CHGB), while limma and sam had three common genes
(FABP4, SNX32, and GBP6). In Supplementary DataSheet2_B, we include the rest of the
common genes. For Dataset3, Figure 6a shows that esvm, sam, and t-tests had 13 common
genes (CCND1, EGFR.3, EIF4GI, ERBB2, ERBB3.1, ESR1.1, IGF1R, IRS1, JAK2, KS6B1.2,
PD1L1.3, STAT1, and STA5A). The rest of the intersections are provided in Supplementary
DataSheet3_B. In Dataset1, Figure 2b–d are presented in tabular format in Tables S10–S12 in
the Supplementary Additional File. For Dataset2, the corresponding tables for Figure 4b–d
are Tables S13–S15 in the Supplementary Additional File. For Dataset3, Tables S16–S18
correspond to Figure 6b–d in the Supplementary Additional File.

It is worth noting that Tables 2, 4 and 6 were populated based on results from an
enrichment analysis tool, Enrichr. For a set of terms in a category, testing the null hypoth-
esis can tell if a user’s gene list enriched in a given term (i.e., overlap column) is more
than a random chance (or not) compared to that term’s gene list in the human genome
background [18]. The terms in a category are ranked by p-values, which were derived
using Fisher’s exact test, and the adjusted p-values were corrected based on the Benjamini–
Hochberg procedure [15]. In our study, we had two categories in Enrichr: ARCHS4 tissues
and NCI-60 cancer cell lines, reporting one term (BREAST (BULK TISSUE)) in the former
and three terms (MD-MB231, MCF7, and HS578T) in the latter. These breast cancer cell lines
are well-established in biology and medicine when analyzing breast cancer, as in [97–102].

5. Conclusions and Future Work

In this paper, we present a computational framework based on machine learning
and enrichment analysis, unveiling critical genes, drugs, drug targets, and other biolog-
ical knowledge underlying breast cancer drug response mechanisms. Our framework
receives as an input a gene expression dataset pertaining to breast cancer patients respond-
ing and not responding to a treatment; we downloaded three different gene expression
datasets from the GEO database according to the following accession numbers: GSE130787,
GSE140494, and GSE196093. As n ≫ m arises challenge in computational genomics in
which n and m are the numbers of genes and samples, respectively, we formulate our
method according to the dual form in which we solve the optimization problem as a func-
tion of λ associated with m (instead of the formulation as a function of w associated with n).
Then, we perform mathematical calculations to efficiently recover w as a function of three
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inputs (λ, y, x) and then identify important p genes out of n, provided to enrichment analysis
tools Enrichr and Metascape. In addition to (1) significantly achieving the highest perfor-
mance results in terms of the area under the curve and (2) being more computationally
efficient than the baseline SVM, results demonstrate that our method esvm outperformed
existing baseline methods, including deep learning in (1) breast cancer cell line identifica-
tion, showing more expressed genes; and (2) achieving the highest performance results from
a classification perspective when coupled with SVM. Moreover, we reported several drugs
(including tamoxifen, cisplatin, and erlotinib), 36 unique TFs (e.g., SP1, NFKB1, RELA),
and 74 unique genes (including tumor suppression genes such as TP53, BRCA1, and RB1)
that have been reported to be connected to drug response and resistance mechanisms,
progression, and metastasis of breast cancer. We made our computational method available
publicly on the maGENEgerZ web server at https://aibio.shinyapps.io/maGENEgerZ/.

Future work includes (1) utilizing our framework to unveil various biological knowl-
edge behind drug response mechanisms related to different cancer types such as pancreatic
cancer, liver cancer, and multiple myeloma; (2) collaborating with clinical research physi-
cians to apply our tool to analyze drug response mechanisms in the neoadjuvant setting;
and (3) integrating different profiling data related to cancer drug response and performing
an assessment from a biological perspective.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math12101536/s1.
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50. Gajda-Walczak, A.; Potęga, A.; Kowalczyk, A.; Sek, S.; Zięba, S.; Kowalik, A.; Kudelski, A.; Nowicka, A.M. New, fast and cheap

prediction tests for BRCA1 gene mutations identification in clinical samples. Sci. Rep. 2023, 13, 7316. [CrossRef] [PubMed]
51. Chakraborty, S.; Banerjee, S. Multidimensional computational study to understand non-coding RNA interactions in breast cancer

metastasis. Sci. Rep. 2023, 13, 15771. [CrossRef] [PubMed]
52. Yang, W.; Li, J.; Zhang, M.; Yu, H.; Zhuang, Y.; Zhao, L.; Ren, L.; Gong, J.; Bi, H.; Zeng, L.; et al. Elevated expression of the rhythm

gene NFIL3 promotes the progression of TNBC by activating NF-κB signaling through suppression of NFKBIA transcription.
J. Exp. Clin. Cancer Res. 2022, 41, 67. [CrossRef] [PubMed]

53. Chen, S.; Shao, F.; Zeng, J.; Guo, S.; Wang, L.; Sun, H.; Lei, J.H.; Lyu, X.; Gao, S.; Chen, Q.; et al. Cullin-5 deficiency orchestrates the
tumor microenvironment to promote mammary tumor development through CREB1-CCL2 signaling. Sci. Adv. 2023, 9, eabq1395.
[CrossRef]

54. Huss, L.; Butt, S.T.; Borgquist, S.; Elebro, K.; Sandsveden, M.; Rosendahl, A.; Manjer, J. Vitamin D receptor expression in invasive
breast tumors and breast cancer survival. Breast Cancer Res. 2019, 21, 84. [CrossRef]

55. Sannappa Gowda, N.G.; Shiragannavar, V.D.; Puttahanumantharayappa, L.D.; Shivakumar, A.T.; Dallavalasa, S.; Basavaraju, C.G.;
Bhat, S.S.; Prasad, S.K.; Vamadevaiah, R.M.; Madhunapantula, S.V.; et al. Quercetin activates vitamin D receptor and ameliorates
breast cancer induced hepatic inflammation and fibrosis. Front. Nutr. 2023, 10, 1158633. [CrossRef] [PubMed]

56. Ray, A.; Provenzano, P.P. Aligned forces: Origins and mechanisms of cancer dissemination guided by extracellular matrix
architecture. Curr. Opin. Cell Biol. 2021, 72, 63–71. [CrossRef] [PubMed]

57. Jones, C.E.; Sharick, J.T.; Sizemore, S.T.; Cukierman, E.; Strohecker, A.M.; Leight, J.L. A miniaturized screening platform to
identify novel regulators of extracellular matrix alignment. Cancer Res. Commun. 2022, 2, 1471–1486. [CrossRef] [PubMed]

58. Wiseman, B.S.; Werb, Z. Stromal effects on mammary gland development and breast cancer. Science 2002, 296, 1046–1049.
[CrossRef]

59. Hannan, F.M.; Elajnaf, T.; Vandenberg, L.N.; Kennedy, S.H.; Thakker, R.V. Hormonal regulation of mammary gland development
and lactation. Nat. Rev. Endocrinol. 2023, 19, 46–61. [CrossRef] [PubMed]

60. Batbayar, G.; Ishimura, A.; Lyu, H.; Wanna-Udom, S.; Meguro-Horike, M.; Terashima, M.; Horike, S.-I.; Takino, T.; Suzuki, T.
ASH2L, a COMPASS core subunit, is involved in the cell invasion and migration of triple-negative breast cancer cells through the
epigenetic control of histone H3 lysine 4 methylation. Biochem. Biophys. Res. Commun. 2023, 669, 19–29. [CrossRef] [PubMed]

61. Bradley, R.; Braybrooke, J.; Gray, R.; Hills, R.K.; Liu, Z.; Pan, H.; Peto, R.; Dodwell, D.; McGale, P.; Taylor, C. Aromatase inhibitors
versus tamoxifen in premenopausal women with oestrogen receptor-positive early-stage breast cancer treated with ovarian
suppression: A patient-level meta-analysis of 7030 women from four randomised trials. Lancet Oncol. 2022, 23, 382–392. [CrossRef]
[PubMed]

62. Wang, J.; Cai, L.; Song, Y.; Sun, T.; Tong, Z.; Teng, Y.; Li, H.; Ouyang, Q.; Chen, Q.; Cui, S. Clinical efficacy of fulvestrant versus
exemestane as first-line therapies for Chinese postmenopausal oestrogen-receptor positive/human epidermal growth factor
receptor 2-advanced breast cancer (FRIEND study). Eur. J. Cancer 2023, 184, 73–82. [CrossRef] [PubMed]

63. Torrisi, R.; Vaira, V.; Giordano, L.; Destro, A.; Basilico, V.; Mazzara, S.; Salvini, P.; Gaudioso, G.; Fernandes, B.; Rudini, N.
Predictors of fulvestrant long-term benefit in hormone receptor-positive/HER2 negative advanced breast cancer. Sci. Rep. 2022,
12, 12789. [CrossRef]

64. Sultan, M.H.; Moni, S.S.; Madkhali, O.A.; Bakkari, M.A.; Alshahrani, S.; Alqahtani, S.S.; Alhakamy, N.A.; Mohan, S.; Ghazwani,
M.; Bukhary, H.A. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific
injectable nano-formulations for combating cancer. Sci. Rep. 2022, 12, 468. [CrossRef]

https://doi.org/10.1093/bioinformatics/btr597
https://www.ncbi.nlm.nih.gov/pubmed/22039212
https://doi.org/10.7717/peerj.15703
https://doi.org/10.1186/s12885-021-08645-3
https://doi.org/10.1038/s41598-023-39474-y
https://doi.org/10.3389/fmed.2023.1168977
https://www.ncbi.nlm.nih.gov/pubmed/37457559
https://doi.org/10.1038/s41467-022-29151-5
https://www.ncbi.nlm.nih.gov/pubmed/35304461
https://doi.org/10.1016/j.biopha.2022.114090
https://www.ncbi.nlm.nih.gov/pubmed/36493696
https://doi.org/10.1038/s41419-023-05845-6
https://www.ncbi.nlm.nih.gov/pubmed/37198153
https://doi.org/10.1038/s41568-023-00580-8
https://www.ncbi.nlm.nih.gov/pubmed/37101004
https://doi.org/10.1038/s41598-023-34588-9
https://www.ncbi.nlm.nih.gov/pubmed/37147448
https://doi.org/10.1038/s41598-023-42904-6
https://www.ncbi.nlm.nih.gov/pubmed/37737288
https://doi.org/10.1186/s13046-022-02260-1
https://www.ncbi.nlm.nih.gov/pubmed/35180863
https://doi.org/10.1126/sciadv.abq1395
https://doi.org/10.1186/s13058-019-1169-1
https://doi.org/10.3389/fnut.2023.1158633
https://www.ncbi.nlm.nih.gov/pubmed/37153919
https://doi.org/10.1016/j.ceb.2021.05.004
https://www.ncbi.nlm.nih.gov/pubmed/34186415
https://doi.org/10.1158/2767-9764.CRC-22-0157
https://www.ncbi.nlm.nih.gov/pubmed/36530465
https://doi.org/10.1126/science.1067431
https://doi.org/10.1038/s41574-022-00742-y
https://www.ncbi.nlm.nih.gov/pubmed/36192506
https://doi.org/10.1016/j.bbrc.2023.05.061
https://www.ncbi.nlm.nih.gov/pubmed/37262949
https://doi.org/10.1016/S1470-2045(21)00758-0
https://www.ncbi.nlm.nih.gov/pubmed/35123662
https://doi.org/10.1016/j.ejca.2023.02.007
https://www.ncbi.nlm.nih.gov/pubmed/36905771
https://doi.org/10.1038/s41598-022-16409-7
https://doi.org/10.1038/s41598-021-04427-w


Mathematics 2024, 12, 1536 26 of 27

65. Fatehi, R.; Rashedinia, M.; Akbarizadeh, A.R.; Firouzabadi, N. Metformin enhances anti-cancer properties of resveratrol in MCF-7
breast cancer cells via induction of apoptosis, autophagy and alteration in cell cycle distribution. Biochem. Biophys. Res. Commun.
2023, 644, 130–139. [CrossRef] [PubMed]

66. Bu, J.; Zhang, Y.; Niu, N.; Bi, K.; Sun, L.; Qiao, X.; Wang, Y.; Zhang, Y.; Jiang, X.; Wang, D. Dalpiciclib partially abrogates ER
signaling activation induced by pyrotinib in HER2+ HR+ breast cancer. elife 2023, 12, e85246. [CrossRef] [PubMed]

67. Bjørklund, S.S.; Aure, M.R.; Häkkinen, J.; Vallon-Christersson, J.; Kumar, S.; Evensen, K.B.; Fleischer, T.; Tost, J.; Bathen, T.F.;
Borgen, E.; et al. Subtype and cell type specific expression of lncRNAs provide insight into breast cancer. Commun. Biol. 2022,
5, 834. [CrossRef] [PubMed]

68. Kanyomse, Q.; Le, X.; Tang, J.; Dai, F.; Mobet, Y.; Chen, C.; Cheng, Z.; Deng, C.; Ning, Y.; Yu, R.; et al. KLF15 suppresses tumor
growth and metastasis in Triple-Negative Breast Cancer by downregulating CCL2 and CCL7. Sci. Rep. 2022, 12, 19026. [CrossRef]
[PubMed]

69. Chen, H.; Wang, X.; Lan, X.; Yu, T.; Li, L.; Tang, S.; Liu, S.; Jiang, F.; Wang, L.; Zhang, J. A radiomics model development via the
associations with genomics features in predicting axillary lymph node metastasis of breast cancer: A study based on a public
database and single-centre verification. Clin. Radiol. 2023, 78, e279–e287. [CrossRef] [PubMed]

70. Liao, H.; Li, H.; Song, J.; Chen, H.; Si, H.; Dong, J.; Wang, J.; Bai, X. Expression of the prognostic marker IL-8 correlates with
the immune signature and epithelial-mesenchymal transition in breast cancer. J. Clin. Lab. Anal. 2023, 37, e24797. [CrossRef]
[PubMed]

71. Bi, J.; Wu, Z.; Zhang, X.; Zeng, T.; Dai, W.; Qiu, N.; Xu, M.; Qiao, Y.; Ke, L.; Zhao, J. TMEM25 inhibits monomeric EGFR-mediated
STAT3 activation in basal state to suppress triple-negative breast cancer progression. Nat. Commun. 2023, 14, 2342. [CrossRef]
[PubMed]

72. Huo, Y.; Li, X.; Xu, P.; Bao, Z.; Liu, W. Analysis of breast cancer based on the dysregulated network. Front. Genet. 2022, 13, 856075.
[CrossRef] [PubMed]

73. Ring, A.; Kaur, P.; Lang, J.E. EP300 knockdown reduces cancer stem cell phenotype, tumor growth and metastasis in triple
negative breast cancer. BMC Cancer 2020, 20, 1076. [CrossRef]

74. Li, C.H.; Fang, C.Y.; Chan, M.H.; Lu, P.J.; Ger, L.P.; Chu, J.S.; Chang, Y.C.; Chen, C.L.; Hsiao, M. The activation of EP300 by F11R
leads to EMT and acts as a prognostic factor in triple-negative breast cancers. J. Pathol. Clin. Res. 2023, 9, 165–181. [CrossRef]

75. Ma, S.; Tang, T.; Probst, G.; Konradi, A.; Jin, C.; Li, F.; Gutkind, J.S.; Fu, X.-D.; Guan, K.-L. Transcriptional repression of estrogen
receptor alpha by YAP reveals the Hippo pathway as therapeutic target for ER+ breast cancer. Nat. Commun. 2022, 13, 1061.
[CrossRef] [PubMed]

76. Mo, D.; Jiang, P.; Yang, Y.; Mao, X.; Tan, X.; Tang, X.; Wei, D.; Li, B.; Wang, X.; Tang, L. A tRNA fragment, 5′-tiRNAVal, suppresses
the Wnt/β-catenin signaling pathway by targeting FZD3 in breast cancer. Cancer Lett. 2019, 457, 60–73. [CrossRef] [PubMed]

77. McBean, B.N.; Michmerhuizen, A.R.; Wilder-Romans, K.; Chandler, B.C.; Lerner, L.M.; Ward, C.; Liu, M.; Boyle, A.P.; Speers, C.W.
Molecular mechanisms of intrinsic radioresistance in breast cancer. Cancer Res. 2023, 83, 2401. [CrossRef]

78. Zuo, Z.; Zhou, Z.; Chang, Y.; Liu, Y.; Shen, Y.; Li, Q.; Zhang, L. Ribonucleotide reductase M2 (RRM2): Regulation, function and
targeting strategy in human cancer. Genes Dis. 2024, 11, 218–233. [CrossRef]

79. Gordon, D.; Croushore, E.; Koppenhafer, S.; Goss, K.; Geary, E. Activator protein-1 (AP-1) signaling inhibits the growth of Ewing
sarcoma cells in response to DNA replication stress. Cancer Res. 2023, 83, 3532. [CrossRef]

80. Rudd, S.G.; Tsesmetzis, N.; Sanjiv, K.; Paulin, C.B.; Sandhow, L.; Kutzner, J.; Hed Myrberg, I.; Bunten, S.S.; Axelsson, H.; Zhang,
S.M. Ribonucleotide reductase inhibitors suppress SAMHD 1 ara-CTP ase activity enhancing cytarabine efficacy. EMBO Mol.
Med. 2020, 12, e10419. [CrossRef]

81. Li, X.; Zhao, L.; Chen, C.; Nie, J.; Jiao, B. Can EGFR be a therapeutic target in breast cancer? Biochim. Biophys. Acta (BBA)-Rev.
Cancer, 2022; 1877, 188789.

82. Wang, Y.; Du, L.; Jing, J.; Zhao, X.; Wang, X.; Hou, S. Leptin and leptin receptor expression as biomarkers for breast cancer: A
retrospective study. BMC Cancer 2023, 23, 260. [CrossRef]

83. Hu, Y.; Liu, L.; Chen, Y.; Zhang, X.; Zhou, H.; Hu, S.; Li, X.; Li, M.; Li, J.; Cheng, S.; et al. Cancer-cell-secreted miR-204-5p induces
leptin signalling pathway in white adipose tissue to promote cancer-associated cachexia. Nat. Commun. 2023, 14, 5179. [CrossRef]
[PubMed]

84. Katzenellenbogen, B.S.; Guillen, V.S.; Katzenellenbogen, J.A. Targeting the oncogenic transcription factor FOXM1 to improve
outcomes in all subtypes of breast cancer. Breast Cancer Res. 2023, 25, 76. [CrossRef]

85. Ziegler, Y.; Laws, M.J.; Sanabria Guillen, V.; Kim, S.H.; Dey, P.; Smith, B.P.; Gong, P.; Bindman, N.; Zhao, Y.; Carlson, K.; et al.
Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. NPJ Breast Cancer
2019, 5, 45. [CrossRef]

86. Shahbandi, A.; Nguyen, H.D.; Jackson, J.G. TP53 mutations and outcomes in breast cancer: Reading beyond the headlines. Trends
Cancer 2020, 6, 98–110. [CrossRef] [PubMed]

87. Mitri, Z.I.; Abuhadra, N.; Goodyear, S.M.; Hobbs, E.A.; Kaempf, A.; Thompson, A.M.; Moulder, S.L. Impact of TP53 mutations in
Triple Negative Breast Cancer. npj Precis. Oncol. 2022, 6, 64. [CrossRef] [PubMed]

88. Liu, F.; Xie, B.; Ye, R.; Xie, Y.; Zhong, B.; Zhu, J.; Tang, Y.; Lin, Z.; Tang, H.; Wu, Z. Overexpression of tripartite motif-containing 47
(TRIM47) confers sensitivity to PARP inhibition via ubiquitylation of BRCA1 in triple negative breast cancer cells. Oncogenesis
2023, 12, 13. [CrossRef] [PubMed]

https://doi.org/10.1016/j.bbrc.2022.12.069
https://www.ncbi.nlm.nih.gov/pubmed/36641965
https://doi.org/10.7554/eLife.85246
https://www.ncbi.nlm.nih.gov/pubmed/36602226
https://doi.org/10.1038/s42003-022-03559-7
https://www.ncbi.nlm.nih.gov/pubmed/35982125
https://doi.org/10.1038/s41598-022-23750-4
https://www.ncbi.nlm.nih.gov/pubmed/36347994
https://doi.org/10.1016/j.crad.2022.11.015
https://www.ncbi.nlm.nih.gov/pubmed/36623978
https://doi.org/10.1002/jcla.24797
https://www.ncbi.nlm.nih.gov/pubmed/36725216
https://doi.org/10.1038/s41467-023-38115-2
https://www.ncbi.nlm.nih.gov/pubmed/37095176
https://doi.org/10.3389/fgene.2022.856075
https://www.ncbi.nlm.nih.gov/pubmed/35242172
https://doi.org/10.1186/s12885-020-07573-y
https://doi.org/10.1002/cjp2.313
https://doi.org/10.1038/s41467-022-28691-0
https://www.ncbi.nlm.nih.gov/pubmed/35217640
https://doi.org/10.1016/j.canlet.2019.05.007
https://www.ncbi.nlm.nih.gov/pubmed/31078732
https://doi.org/10.1158/1538-7445.AM2023-2401
https://doi.org/10.1016/j.gendis.2022.11.022
https://doi.org/10.1158/1538-7445.AM2023-3532
https://doi.org/10.15252/emmm.201910419
https://doi.org/10.1186/s12885-023-10617-8
https://doi.org/10.1038/s41467-023-40571-9
https://www.ncbi.nlm.nih.gov/pubmed/37620316
https://doi.org/10.1186/s13058-023-01675-8
https://doi.org/10.1038/s41523-019-0141-7
https://doi.org/10.1016/j.trecan.2020.01.007
https://www.ncbi.nlm.nih.gov/pubmed/32061310
https://doi.org/10.1038/s41698-022-00303-6
https://www.ncbi.nlm.nih.gov/pubmed/36085319
https://doi.org/10.1038/s41389-023-00453-7
https://www.ncbi.nlm.nih.gov/pubmed/36906594


Mathematics 2024, 12, 1536 27 of 27

89. Mateos, M.R.-C.; Santiago-Freijanes, P.; Röder, J.; Oberoi, P.; Vigo, N.; Almenar, E.; Chucla, T.C.; Mosquera, J.; Acea-Nebril, B.;
Wels, W. 17P New therapeutic target in triple-negative breast cancer for enhancing PARP inhibitor efficacy and stimulating the
anti-tumour immune response. ESMO Open 2023, 8, 100983. [CrossRef]

90. Hu, Z.; Wei, F.; Su, Y.; Wang, Y.; Shen, Y.; Fang, Y.; Ding, J.; Chen, Y. Histone deacetylase inhibitors promote breast cancer
metastasis by elevating NEDD9 expression. Signal Transduct. Target. Ther. 2023, 8, 11. [CrossRef]

91. Khanal, P.; Patil, V.S.; Bhandare, V.V.; Patil, P.P.; Patil, B.; Dwivedi, P.S.; Bhattacharya, K.; Harish, D.R.; Roy, S. Systems and in vitro
pharmacology profiling of diosgenin against breast cancer. Front. Pharmacol. 2023, 13, 1052849. [CrossRef] [PubMed]

92. Deng, Z.; Chen, G.; Shi, Y.; Lin, Y.; Ou, J.; Zhu, H.; Wu, J.; Li, G.; Lv, L. Curcumin and its nano-formulations: Defining triple-
negative breast cancer targets through network pharmacology, molecular docking, and experimental verification. Front. Pharmacol.
2022, 13, 920514. [CrossRef] [PubMed]

93. Kong, X.; Yan, W.; Sun, W.; Zhang, Y.; Yang, H.J.; Chen, M.; Chen, H.; de Vere White, R.W.; Zhang, J.; Chen, X. Isoform-specific
disruption of the TP73 gene reveals a critical role for TAp73γ in tumorigenesis via leptin. eLife 2023, 12, e82115. [CrossRef]
[PubMed]

94. Lin, X.; Chen, D.; Chu, X.; Luo, L.; Liu, Z.; Chen, J. Oxypalmatine regulates proliferation and apoptosis of breast cancer cells by
inhibiting PI3K/AKT signaling and its efficacy against breast cancer organoids. Phytomedicine 2023, 114, 154752. [CrossRef]

95. Yuan, L.; Cai, Y.; Zhang, L.; Liu, S.; Li, P.; Li, X. Promoting apoptosis, a promising way to treat breast cancer with natural products:
A comprehensive review. Front. Pharmacol. 2022, 12, 801662. [CrossRef]

96. Dong, S.; Yousefi, H.; Savage, I.V.; Okpechi, S.C.; Wright, M.K.; Matossian, M.D.; Collins-Burow, B.M.; Burow, M.E.; Alahari, S.K.
Ceritinib is a novel triple negative breast cancer therapeutic agent. Mol. Cancer 2022, 21, 138. [CrossRef] [PubMed]

97. Jiang, W.; Zhang, M.; Gao, C.; Yan, C.; Gao, R.; He, Z.; Wei, X.; Xiong, J.; Ruan, Z.; Yang, Q. A mitochondrial EglN1-AMPKα axis
drives breast cancer progression by enhancing metabolic adaptation to hypoxic stress. EMBO J. 2023, 42, e113743. [CrossRef]
[PubMed]

98. Chen, J.; Ma, D.; Zeng, C.; White, L.V.; Zhang, H.; Teng, Y.; Lan, P. Solasodine suppress MCF7 breast cancer stem-like cells via
targeting Hedgehog/Gli1. Phytomedicine 2022, 107, 154448. [CrossRef] [PubMed]

99. Balogh, B.; Vecsernyés, M.; Veres-Székely, A.; Berta, G.; Stayer-Harci, A.; Tarjányi, O.; Sétáló Jr, G. Urocortin stimulates ERK1/2
phosphorylation and proliferation but reduces ATP production of MCF7 breast cancer cells. Mol. Cell. Endocrinol. 2022,
547, 111610. [CrossRef] [PubMed]

100. Janacova, L.; Stenckova, M.; Lapcik, P.; Hrachovinova, S.; Bouchalova, P.; Potesil, D.; Hrstka, R.; Müller, P.; Bouchal, P. Catechol-O-
methyl transferase suppresses cell invasion and interplays with MET signaling in estrogen dependent breast cancer. Sci. Rep.
2023, 13, 1285. [CrossRef] [PubMed]

101. Park, J.D.; Jang, H.J.; Choi, S.H.; Jo, G.H.; Choi, J.-H.; Hwang, S.; Park, W.; Park, K.-S. The ELK3-DRP1 axis determines the
chemosensitivity of triple-negative breast cancer cells to CDDP by regulating mitochondrial dynamics. Cell Death Discov. 2023,
9, 237. [CrossRef]

102. Lei, M.; Zhang, Y.-L.; Huang, F.-Y.; Chen, H.-Y.; Chen, M.-H.; Wu, R.-H.; Dai, S.-Z.; He, G.-S.; Tan, G.-H.; Zheng, W.-P. Gankyrin
inhibits ferroptosis through the p53/SLC7A11/GPX4 axis in triple-negative breast cancer cells. Sci. Rep. 2023, 13, 21916.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.esmoop.2023.100983
https://doi.org/10.1038/s41392-022-01221-6
https://doi.org/10.3389/fphar.2022.1052849
https://www.ncbi.nlm.nih.gov/pubmed/36686654
https://doi.org/10.3389/fphar.2022.920514
https://www.ncbi.nlm.nih.gov/pubmed/36003508
https://doi.org/10.7554/eLife.82115
https://www.ncbi.nlm.nih.gov/pubmed/37650871
https://doi.org/10.1016/j.phymed.2023.154752
https://doi.org/10.3389/fphar.2021.801662
https://doi.org/10.1186/s12943-022-01601-0
https://www.ncbi.nlm.nih.gov/pubmed/35768871
https://doi.org/10.15252/embj.2023113743
https://www.ncbi.nlm.nih.gov/pubmed/37661833
https://doi.org/10.1016/j.phymed.2022.154448
https://www.ncbi.nlm.nih.gov/pubmed/36116198
https://doi.org/10.1016/j.mce.2022.111610
https://www.ncbi.nlm.nih.gov/pubmed/35219718
https://doi.org/10.1038/s41598-023-28078-1
https://www.ncbi.nlm.nih.gov/pubmed/36690660
https://doi.org/10.1038/s41420-023-01536-5
https://doi.org/10.1038/s41598-023-49136-8

	Introduction 
	Materials and Methods 
	Gene Expression Profiles 
	GSE130787: Dataset1 
	GSE140494: Dataset2 
	GSE196093: Dataset3 

	Computational Framework 

	Experiments and Results 
	Experimental Methodology 
	Results 
	Dataset1 
	Dataset2 
	Dataset3 

	Models Introspection 
	Dataset1 
	Dataset2 
	Dataset3 
	Scalability 


	Discussion 
	Conclusions and Future Work 
	References

