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Abstract: Carbon monoxide can cause severe harm to humans even at low concentrations. Metal
Oxide Semiconductor (MOS) carbon monoxide gas sensors have excellent sensing performance
regarding sensitivity, selectivity, response speed, and stability, making them very desirable candidates
for carbon monoxide monitoring. However, MOS gas sensors generally work at temperatures higher
than room temperature, and need a heating source that causes high power consumption. High
power consumption is a great problem for long-term portable monitoring devices for point-of-care or
wireless sensor nodes for IoT application. Room-temperature MOS carbon monoxide gas sensors can
function well without a heater, making them rather suitable for IoT or portable applications. This
review first introduces the primary working mechanism of MOS carbon monoxide sensors and then
gives a detailed introduction to and analysis of room-temperature MOS carbon monoxide sensing
materials, such as ZnO, SnO2, and TiO2. Lastly, several mechanisms for room-temperature carbon
monoxide sensors based on MOSs are discussed. The review will be interesting to engineers and
researchers working on MOS gas sensors.

Keywords: carbon monoxide; Metal Oxide Semiconductor; sensing mechanism; noble metals; gas
sensors; room temperature

1. Introduction

Carbon monoxide (CO) can cause headaches, discomfort, and the possibility of collapse
when humans are exposed to it for two hours at a concentration of 200 ppm. At 3000 ppm,
CO will cause human death after exposure for 20 min [1–5]. Thus, convenient and precise
monitoring of CO is crucial for safety reasons. Electrochemical sensors, infrared sensors,
and semiconductor sensors are several common sensors for measuring CO concentration.
Electrochemical CO sensors have a short lifetime and high cost. Infrared CO sensors have
a large volume and high price. Compared with their counterpart like an electrochemical
CO sensor, semiconductor CO sensors have several advantages such as low cost, high
robustness, and a long lifetime, thus are widely applied in CO monitoring [6–22]. Many
semiconductors such as carbon nanotubes, metal oxides, and organic compounds have
been studied for use in CO sensors [23–26]. Among all the semiconductor sensing materials,
metal oxides are the cheapest and most stable ones [6–22]. It is a trend to incorporate MOS
CO sensors into mobile phones or other portable devices to facilitate CO measurement [27].
MOS CO sensors employ metal oxides like SnO2 as sensing elements. SnO2 CO sensors
usually work at temperatures higher than room temperature, so a heater is necessary to
provide the optimum working temperature. The heater will consume great amounts of
electrical power, increasing the overall power consumption of the CO sensors. High power
consumption gives rise to a problem for portable and IoT applications of MOS CO sensors,
since a large lithium battery will be needed for the power supply.
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Room-temperature MOS CO gas sensors are promising for IoT applications due to the
removal of the heater and reduction in power consumption. Recent years have witnessed
many findings regarding MOS room-temperature CO sensing. SnO2, ZnO, and TiO2
composites, especially with tailored nanostructures and doping elements, can respond
to CO with high sensitivity and selectivity at room temperature. No specific review on
room-temperature MOS CO sensors has been published yet, although some reviews on
CO sensors above room temperature can be found [28]. This review will introduce the
basic concept of sensor parameters and the sensing model first. Then, the performance
and sensing mechanisms of different MOS materials are presented. A discussion of the
sensing mechanisms is given after the materials section. Lastly, the conclusion with future
perspectives is provided. Advances in room-temperature CO sensors will promote the
application of flexible sensors since these typically need to work at room temperature
on flexible substrates. Flexible sensors will be very useful in healthcare, environmental
monitoring, and industrial safety [29].

2. General Definition and Sensing Model

The most critical parameters of MOS CO sensors are sensitivity, selectivity, response
time, and recovery time [30]. The value of response/sensitivity is larger than 1. It is defined
as Rair/Rgas or Rgas/Rair, where Rair is the resistance of the sensor in pure air, and Rgas
refers to the resistance of the sensor in the measured gas. Selectivity between two gases is
defined as the ratio between two responses for different gases. Response time is the period
for a sensor to reach 90% of the step value between Rair and Rgas. Recovery time is the
timeframe for a gas sensor to change back to 90% of the step between Rgas and Rair.

The traditional sensing model of MOS CO sensors can be explained in terms of three
different aspects, i.e., receptor function, transducer function, and utility factor [31], as
seen in Figure 1. The receptor function means an intraparticle model, which is in close
relationship to the adsorption and reaction of CO molecules with the oxygen species that is
adsorbed onto the surface of the MOS, inducing variation in the width of the space charge
layer of the MOS.
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Figure 1. Basic sensing model of MOS CO gas sensors. Revised with permission from Ref. [31].

The possible CO sensing mechanism of the MOS is as follows: The oxygen species
can be O2−, O−, or O2−, determined by the working temperatures [32]. The following
possible reactions between CO and the adsorbed oxygen species will change the resistance
of the sensing particles (Table 1). Meanwhile, the transducer function, i.e., interparticle
model, is connected to the change in the height of the double Schottky barrier, causing
changes in the resistance of the sensors. In addition, the utility factor is an assembly model,
which suggests that the sensing characteristics of the MOS are also related to the pore
configurations and film thickness of the MOS that determine the diffusion length of CO in
the MOS materials. Moreover, water molecules are believed to interact with CO during the
room-temperature sensing process as well, which has been studied by Diffuse Reflectance
Infrared Fourier Transform Spectroscopy. This will be discussed further below in relation
to the SnO2-Pd samples.
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Table 1. Reaction between CO and the oxygen species adsorbed on the surface of MOS at elevated
temperatures.

Possible Reaction Temperature Range

2CO + O2
− (ads)→ 2CO2 + e− T < 150 ◦C (1)

CO + O− (ads)→ CO2 + e− 150 ◦C ≤ T ≤ 300 ◦C (2)
CO + O2− (ads)→ CO2 + 2e− T > 300 ◦C (3)

In situ measurement is very powerful for the investigation of the detailed mechanism
of CO sensing [33], as shown in Figure 2. X-ray diffraction and X-ray absorption spectro-
scopies can be employed to study the structure information of the sensing materials. Diffuse
Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) or Raman spectroscopy
can be used to study the surface chemical information of the sensing materials. DRIFTS
has been shown to be very effective for studying the sensing mechanism of CO gas based
on a MOS. Its advantages include easy operation, direct usage of the sample, and simple
sample preparation. Several examples of mechanism study using DRIFTS can be found in
the next section.
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Figure 2. Illustration of in situ spectroscopy for studying the working mechanisms of a MOS for CO
sensing [33].

3. MOS Sensing Materials
3.1. SnO2

SnO2 is the most commonly employed metal oxide for CO detection because of its
excellent self-catalysis effect due to its dual valences +2, +4. Its band gap is 3.6 eV. The
Fermi level of SnO2 is −4.7 eV [34]. Generally, it can be produced through the wet or dry
method (sputtering or chemical vapor deposition) [32,35–40]. The wet method is more
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popular than the sputtering method due to its ability to adjust morphologies in a simple
way. For example, the hydrothermal method can produce various morphologies of SnO2,
adjusting the CO sensing performance in a large range [41], as seen in Figure 3. At first,
Sn4+ ions and OH− react with each other and form precipitation. Some SnO2 nuclei will
form from dehydration of the Sn4+ ions. Next, the small SnO2 nuclei will grow bigger.
Nanoparticles, nanospheres, nanowires, or nanorods can be obtained by controlling the
reactant and additives.
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However, pure SnO2 is seldom reported to be sensitive to CO at room temperature. Au,
Pt, or Pd are usually added to the surface of SnO2 to promote room-temperature CO sensing.
Table 2 summarizes the comparison of the performance of SnO2 composites for room-
temperature CO sensing. Nanosized SnO2 can be obtained by the hydrothermal method by
employing poly ethylene glycol (PEG-6000) [42]. Au impregnation was performed with
gold chloride (HAuCl4·3H2O). The optimum Au-SnO2 sample can respond to 500 ppm CO
with a response of about 50 in 20 s. The humidity effect was checked, and the optimum
Au-SnO2 response was almost the same under RH 55% and RH 70%. The mechanisms of
room-temperature CO sensing using Au-SnO2 can be attributed to two aspects: First, Au
has a catalytic effect through chemical sensitization via the spillover effect. Second, Au
will increase the surface resistance of the Au-SnO2 composite through the Schottky barrier
effect, as discussed by Yamazoe [43].

A comparison of the performance of SnO2 composites is shown in Table 2. Pt decora-
tion has been shown to enhance the sensitivity of SnO2 to CO, showing a response value of
64.5 to 100 ppm at room temperature [43]. It can be confirmed that both components and
structures of SnO2 composites can influence the sensing performance of the composites.
For example, Pt-doped SnO2 porous nanosolid shows a much higher response than that
of Pt-doped SnO2 nanoparticles [44,45]. The inclusion of perovskite and Pd-Au not only
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enhances the response of SnO2, but also shortens the response time and recovery time to
around 30 s [46].

Table 2. Comparison of performance of different SnO2 composites for CO sensing at room temperature.

Sensing Material CO Concentration (ppm) Response Response
Time (s)

Recovery
Time (s) Reference

Au-SnO2 500 ~50 20 (50 ◦C) NA [42]
Pt- SnO2 nanoparticle 5000 3.57 ~720 NA [45]
Pt-SnO2 porous nanosolid 100 64.5 144 882 [44]
Pd-SnO2 nanoparticle 50 ~5 20 40 [47]
Polyaniline-Pd-SnO2 300 4 88 62 [48]
CH3NH3SnI3/SnO2/Pd/Au 50 68 25 32 [46]
CNT-Co3O4− SnO2 1000 1.46 (Va/Vg) 120 150 [2]

SnO2 can be doped with Pt by mixing hexachloro-platinic acid (H2PtCl6) with rutile
SnO2 powder [44]. The samples were sintered at 600, 700, and 800 ◦C. It was found that
heat-treating at 800 ◦C will lead to grain growth and surface area reduction, thus lowering
the sensitivity. The SnO2-Pt sample annealed at 700 ◦C has the highest sensitivity among
all the samples. Moreover, 1 wt% Pt-doped SnO2 powder can respond to 5000 ppm CO
with a sensitivity of 3.57. H2PtCl6 was loaded onto SnO2 porous nanosolid (PNS) as well.
The mixture was sintered in nitrogen at a temperature ranging from 400 to 600 ◦C. It was
found that 500 ◦C is the optimum calcining temperature.

Doped SnO2 PNS with a 0.5 mm thickness can respond to 100 ppm CO with a sensitiv-
ity of 64.5, as shown in Figure 4a. The sensor has excellent selectivity to CO compared to
H2 or CH4, as seen in Figure 4b. The mechanism of the excellent CO sensing performance
of the Pt-loaded SnO2 PNS can be explained by the electrical and chemical effects. The
electrical effect was further studied by Hall effect measurement. The electron concentration
n and mobility µ before and after exposure to 1000 ppm CO were compared. It was found
that the carrier concentration of the best sample increased by almost 50 times after exposure.
Meanwhile, the carrier mobility of the best sample increased by 4.76 times after exposure.
This phenomenon is in line with the neck control model, i.e., the carrier concentration
is determined by the depletion layer and the mobility is controlled by the width of the
conduction channel at the grain neck.

As seen in Figure 4c, surface-adsorbed oxygen molecules will change into oxygen ions
by drawing electrons from SnO2. The oxygen ions will form a depletion layer on the surface
of SnO2. Pt decoration will promote dissociation of the oxygen molecules, increasing the
width of the surface depletion layer, as shown in Figure 4d. When exposed to CO, surface Pt
clusters will catalyze the oxidation reaction between the CO and surface-adsorbed oxygen
species. The reaction will cause the re-injection of electrons into the SnO2 nanoparticles.
The resistance of the materials will decrease since the width of the conduction channel will
be expanded.

Pd-SnO2 was an excellent candidate for room-temperature CO sensing as well [47].
The sample with a Pd content less than or equal to 2% and heating temperature higher
than 1000 ◦C can respond to 500 ppm CO in 30 s with a response value of 5. The response
of the 1 wt% Pd sample heated at 1000 ◦C to 0.04% CO-N2 is ten times larger than that to
0.04% CO-20% O2-N2. This is because that the chemisorption of CO onto SnO2 will transfer
two electrons to SnO2. Chemisorption of CO onto SnO2 will be hindered heavily when
oxygen species are present on the surface of SnO2. It was confirmed by XRD analysis that
PdO forms when the samples are heat-treated at 800 ◦C, while metallic Pd forms when the
samples are heat-treated at 1000 ◦C instead, as seen in Figure 5a. Furthermore, the XPS
results in Figure 5b show that metallic Pd is in the Pd2+ state for the 5 wt% Pd sample heat-
treated at 1000 ◦C. Figure 5c proves that Pd2+ and Pd0 can be found in Pd nanoparticles.
Figure 5d shows a pronounced decrease in the Pd0 ratio in all Pd species, which may be
due to electron transfer from Pd to SnO2 at room temperature. Figure 5e shows that Pd2+
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and Pd4+ can be observed in the sample of 1 wt% Pd heat-treated at 1000 ◦C. It can be
concluded from Figure 5b–e that the ratio of Pd to SnO2 is crucial for the surface states of
Pd. The configurations of the Pd-SnO2 species are visualized in Figure 5f–h. Three cases
are presented: (1) Pd-SnO2 heated at a temperature lower than 900 ◦C: PdO was formed
on the surface of SnO2, with no response to CO at room temperature; (2) Pd-SnO2 with
Pd content > 2 wt% heated at 1000 ◦C: Pd was formed on the surface of SnO2, with no
response to CO at room temperature; and (3) Pd-SnO2 with Pd content ≤ 2 wt% heated at
1000 ◦C: Pd was formed on the surface of SnO2 with Pd4+ states, with a response to CO
at room temperature. The room-temperature sensing mechanisms of Pd-SnO2 may be the
chemisorption of CO on the Pd nanoparticles at the Pd4+ sites and the spillover effect of
CO toward SnO2.
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The room-temperature CO sensing mechanisms of PdO-modified SnO2 have also
been investigated by the DRIFT method. As seen in Figure 6a, the peaks at 2090 cm−1

and 1840 cm−1 only appear for the SnO2/PdOx sample [49]. The peaks confirmed the
occurrence of CO chemisorption on the reduced Pd species. The first peak refers to linear
carbonyl binding to metallic sites with π-back donation from a metal, i.e., Pd0-bound CO.
The other peak corresponds to carbonyls bound to Pd atoms in a bridging configuration.
After CO is substituted by air, the strength of the OH stretching band at 3600–3200 cm−1
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declines. This phenomenon is due to the hydrogen bonds between the OH groups. OH
species will interact with CO at room temperature following the equation below:

CO + OH→ CO2 + H+ + e− (4)
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Figure 5. (a) XRD patterns for Pd-SnO2 of 10 wt% Pd heat-treated at 800 ◦C and 1000 ◦C, separately.
(b–e) XPS spectra of Pd3d5/2, 3d3/2 electrons in different samples: (b) 5 wt% Pd-doped SnO2 heat-
treated at 1000 ◦C, (c) pure Pd nanoparticles without SnO2, (d) a dried nanomixture of both Pd
and SnO2 containing 2 wt% Pd in powder form, (e) 1 wt% Pd-doped SnO2 heat-treated at 1000 ◦C.
(f–h) Three configurations for Pd-SnO2 composites and their interactions with CO molecules at
room temperature: (f) PdO-SnO2 composites with no interactions with CO molecules; (g) Pd-SnO2

composites, whose Pd nanoparticles are in Pd2+ states on the surface, with no interactions with CO;
(h) Pd-SnO2 composites, whose Pd nanoparticles are in the states of Pd2+ and Pd4+ on the surface;
in this case, CO molecules are chemisorbed on both Pd4+ sites of Pd nanoparticles and surface of
SnO2 [47].

As shown in Figure 7a, first tin dioxide nanoparticles were obtained by the hydrother-
mal and drying method [50]. Then, graphene in different amounts was dispersed in ethanol
and then sonicated. Then, 1 g tin oxide was added into the dispersion solution. The 0.5 wt%
graphene-decorated SnO2 has the highest response to 40 ppm CO, as shown in Figure 7b.
The 0.5 wt% graphene-decorated SnO2 can also respond to and recover from 40 ppm CO in
less than 45 s, as shown in Figure 7c.
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3.2. ZnO

ZnO is one of the most commonly employed CO sensing materials because of its
variable morphologies and easy doping processes [51]. Compared to other semiconductor
materials, ZnO has many excellent properties, such as a simple synthesis, wide bandgap of
3.37 eV, and binding energy of exciton of 60 meV [52–54]. ZnO can be grown in a controlled
manner by the sputtering, CVD, or solution method, of which the solution method is the
most popular [54–56]. For example, ZnO nanorods can be formed using Zn(OH)2−

4 and
CTAB aqueous solutions, in which CTAB functions as a structure director [57]. A ZnO
nanorod array was realized on a (100) silicon wafer on a 5 nm thick ZnO seed layer by
sputtering using ammonia and zinc chloride solution [58]. ZnO hierarchical nanostructures
can be grown using sequential nucleation and growth methods [59,60]. The comparison
of the performance of various ZnO materials is shown in Table 2. For example, ZnO
nanocomb can be synthesized by chemical vapor deposition first. Then, the nanocomb
can be drop-casted on SiO2-p-Si substrate with a patterned Ti/Au electrode array on top.
The sample can respond to CO at room temperature [61]. In addition, ZnO thin films and
nanoneedles are reported to be able to respond to CO at room temperature as well [62]. Au
decoration with gold chloride solution, HAuCl4, is an effective way to synthesize Au-ZnO
composites for room-temperature CO sensing. Table 3 shows that the base material, ZnO,
can finally determine the sensing performance of two similar samples, such as the response
time after a comparison of two Au-ZnO samples in [63,64].

Table 3. Comparison of performance of ZnO composites for room-temperature CO sensing.

Sensing Material
CO

Concentration
(ppm)

Response Response
Time (s)

Recovery
Time (s) Reference

ZnO nanocomb 250 7.22 200 50 [61]
ZnO thin films 50 1.10 ~180 - [65]
ZnO nanoneedles 375 1.51 186 38 [62]
Au-ZnO nanowires 100 ~5 - - [63]
Au-ZnO nanostars 500 55.3 41 40 [64]
SnSe2-ZnO polyhedron 200 1.17 19 13 [66]
Pt-ZnO-CuO 1000 2.64 81 81 [67]

Notably, Au-ZnO nanostars can respond to 500 ppm CO in 41 s with a response
value over 55 under dynamic mode, which is the highest response value of ZnO room-
temperature sensing materials [64]. This high response is due to three aspects (Figure 8):
Firstly, the ZnO nanostars are composed of many ultrafine nanoparticles with a typical size
of around 20 nm, which offers more reaction sites for adsorption of oxygen. Secondly, the
spillover effect of gold nanoparticles can facilitate dissociation of oxygen molecules over
ZnO, decreasing the CO sensing temperature. It is believed that this chemical sensitization
function should be the predominant mechanism for room-temperature CO sensing of Au-
ZnO. The third effect is the work function modulation through the creation of a nanoscopic
depletion region at the Au-ZnO surface, altering the Schottky barrier height, as seen
in Figure 8b. In addition, ZnO-SnSe2 was reported to sense CO at room temperature
with excellent resistance to humidity interference [66]. The author also found that UV
illumination can improve the sensitivity of the material. This phenomenon is similar to that
of the MoS2 composite, which will be discussed further below.
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3.3. Other Metal Oxides

Besides SnO2 and ZnO, CuO, doped TiO2, and other metal oxides have been reported
to respond to CO at room temperature. TiO2 is another interesting sensing material
for room-temperature CO sensing. TiO2 was widely employed for photocatalysis at the
beginning. Solution growth of TiO2 can be well controlled through the organic capping
method [68]. Later, TiO2 nanotubes were synthesized by electrochemical anodization
and employed for sensing CO, ethanol, and hydrogen [69]. Moreover, porous TiO2 was
reported to be suitable for chemical sensors in cyber chemical systems [70]. The latest
progress in TiO2 nanostructures for gas sensing can be found in another review [71]. WO3
is an excellent material for CO sensing as well [72,73]. It was reported that CeO2-WO3 can
respond to CO very well at 430 ◦C. The response and recovery time of the sensor is less
than 60 s [74]. Nanocomposites of graphene and WO3 can respond to 10 ppm CO at room
temperature with a low response value of 1.03. The graphene–WO3 nanocomposites can
respond to 100 ppm CO at 300 ◦C with a response value of 21.5 under dynamic mode [75].
The comparison of the performance of temperature sensors based on other metal oxides is
shown in Table 4.
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Table 4. Comparison of performance of composites of other materials for room-temperature
CO sensing.

Sensing Material CO Concentration
(ppm) Response Response

Time (s)
Recovery
Time (s) Reference

Pt-Co3O4-In2O3 5 4 NA NA [76]
Dumbbell CoOOH nanostructures 50 NA ~20 ~18 [77]
Fe-TiO2 100 ~4.8 43 25 [78]
Atomically dispersed Pd-TiO2 100 125.49 28 70 [79]
Self-doped Ti3+-porous TiO2 5000 ~2 ~10 ~30 [80]
Mg-TiO2 thin films 120 8.40(CO+Ar) 62 30 [81]
CuO-TiO2 heterojunction 1 ~2.2 NA NA [82]
CuO (111) nanosheets 100 39.6 100 72.4 [83]
RuOx (OH)y 250 ~2 NA NA [84]

Recently, Xu synthesized atomically dispersed Pd over TiO2 nanoflower through a
simple and mild photochemical method at room temperature [79]. SEM of Pd1-TiO2 shows
a nanoflower morphology, as seen in Figure 9a. Figure 9b shows that no Pd nanoparticles
can be found in Pd1-TiO2. An interplanar spacing of 0.35 nm is assigned to (100) of TiO2. As
seen in Figure 9d, 336.2 and 341.4 eV of Pd1-TiO2 belong to Pd2+ and Pd0, indicating partial
oxidation of Pd atoms. Figure 9e suggests that the Pd species is in the form of isolated
single atoms. Figure 9f shows the uniform distribution of Ti, O, and Pd on nanoflowers.

Chemosensors 2024, 12, x FOR PEER REVIEW 11 of 19 
 

 

Dumbbell CoOOH nanostructures 50 NA ~20 ~18 [77] 
Fe-TiO2 100 ~4.8 43 25 [78] 
Atomically dispersed Pd-TiO2 100 125.49 28 70 [79] 
Self-doped Ti3+-porous TiO2 5000 ~2 ~10 ~30 [80] 
Mg-TiO2 thin films 120 8.40(CO+Ar) 62 30 [81] 
CuO-TiO2 heterojunction 1 ~2.2 NA NA [82] 
CuO (111) nanosheets 100 39.6 100 72.4 [83] 
RuOx (OH)y 250 ~2 NA NA [84] 

Recently, Xu synthesized atomically dispersed Pd over TiO2 nanoflower through a 
simple and mild photochemical method at room temperature [79]. SEM of Pd1-TiO2 shows 
a nanoflower morphology, as seen in Figure 9a. Figure 9b shows that no Pd nanoparticles 
can be found in Pd1-TiO2. An interplanar spacing of 0.35 nm is assigned to (100) of TiO2. 

As seen in Figure 9d, 336.2 and 341.4 eV of Pd1-TiO2 belong to Pd2+ and Pd0, indicating 
partial oxidation of Pd atoms. Figure 9e suggests that the Pd species is in the form of iso-
lated single atoms. Figure 9f shows the uniform distribution of Ti, O, and Pd on nanoflow-
ers.  

 
Figure 9. Characterization results of the Pd1-TiO2 sample: (a–c) SEM, TEM, and high-resolution 
TEM images; (d) deconvoluted narrow-scan Pd 3d XPS spectrum; (e) ac-HAADF-STEM image, 
where the red circle shows that Pd species are in the form of isolated single stoms; and (f) STEM-
EDS elemental mapping images [79]. 

The TiO2, Pd NPs-TiO2, and Pd1-TiO2 samples all presented a P-type nature according 
to the analysis results from the UPS and UV-vis spectra. Thus, the oxygen molecules ad-
sorbed on these materials will increase the densities of holes and increase the conductivity. 
When exposed to CO as a reductive analyte, free electrons will be injected into the mate-
rials and decrease the conductivity. Oads refers to the adsorbed active oxygen species, i.e., 
mainly O  at room temperature. The relative percentage of Oads increased from 8.02% to 
52.12% for TiO2 and Pd1-TiO2 (Figure 10b). Figure 10c shows that the CO adsorption ability 
is in the order TiO2 < Pd NPs-TiO2 < Pd1-TiO2. Meanwhile, the adsorption intensity of CO2 
production of Pd1-TiO2 is greater than that of Pd NPs-TiO2, revealing higher room-tem-
perature CO oxidation efficiency. Furthermore, the adsorption energy of CO on Pd1-TiO2 

is -0.77 eV, which is the lowest among all the calculated gases, and accounts for the high 
selectivity of the sample to CO (Figure 10d). 

Figure 9. Characterization results of the Pd1-TiO2 sample: (a–c) SEM, TEM, and high-resolution TEM
images; (d) deconvoluted narrow-scan Pd 3d XPS spectrum; (e) ac-HAADF-STEM image, where the
red circle shows that Pd species are in the form of isolated single stoms; and (f) STEM-EDS elemental
mapping images [79].

The TiO2, Pd NPs-TiO2, and Pd1-TiO2 samples all presented a P-type nature according
to the analysis results from the UPS and UV-vis spectra. Thus, the oxygen molecules
adsorbed on these materials will increase the densities of holes and increase the conduc-
tivity. When exposed to CO as a reductive analyte, free electrons will be injected into the
materials and decrease the conductivity. Oads refers to the adsorbed active oxygen species,
i.e., mainly O−2 at room temperature. The relative percentage of Oads increased from 8.02%
to 52.12% for TiO2 and Pd1-TiO2 (Figure 10b). Figure 10c shows that the CO adsorption
ability is in the order TiO2 < Pd NPs-TiO2 < Pd1-TiO2. Meanwhile, the adsorption inten-
sity of CO2 production of Pd1-TiO2 is greater than that of Pd NPs-TiO2, revealing higher
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room-temperature CO oxidation efficiency. Furthermore, the adsorption energy of CO on
Pd1-TiO2 is -0.77 eV, which is the lowest among all the calculated gases, and accounts for
the high selectivity of the sample to CO (Figure 10d).
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3.4. Metal Oxide–2D Material Composites

Two-dimensional materials are very absorbing due to their unique structures and
electronic properties. MoS2 is widely applied in room-temperature gas sensing materi-
als [85,86]. It has many excellent properties, such as the very high luminescence quantum
efficiency of single-layer MoS2. MoS2 has already been used for room-temperature sensing
H2S, NO2, and SO2 [87–91]. Recently, several works have been reported regarding room-
temperature CO sensing based on MoS2-MOS composites. For example, Ag-ZnO-MoS2 was
prepared by the layer-by-layer (LBL) self-assembly method [92]. The sample can respond
to 100 ppm CO with a response value of 1.05. Both the response and recovery processes
take less than 60 s. This fast process under room temperature is due to the catalytic effect
of Ag and synthetic effect of ZnO and MoS2. Co-In2O3-MoS2 can be prepared by LBL
self-assembly as well [93]. The sample can achieve a response value of 1.08 to 10 ppm CO
in 39 s. It is the Co2+ doping and heterojunction formation from both Co-In2O3 and MoS2
that contributes to the excellent CO sensing behavior. Moreover, SnO2-MoS2 was reported
to respond to 40 ppm CO at room temperature with a response value of 4.97 under UV light
illumination [94]. The sensing mechanism is shown in Figure 11. First, MoS2 can prevent
interparticle aggregation of SnO2 nanoparticles and provide more sites for the adsorption
of CO molecules from SnO2, thus increasing the sensitivity. Moreover, MoS2 provides direct
conduction paths for charge carriers, because of its high charge carrier mobility. Moreover,
MoS2 and SnO2 can form a p-n junction that can improve the electron–hole separation
under UV irradiation.
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When UV light is employed, the photogenerated electron–hole pairs are excited and
separated by the built-in electric fields in SnO2. The photogenerated electrons on the
conduction band of MoS2 can readily be transferred to SnO2, and the photogenerated holes
on the valence band of SnO2 can be transferred to MoS2. The photogenerated electrons
will then be captured by O2 and yield new O2−. Simultaneously, the reaction of the
photogenerated holes with the adsorbed oxygen ions on the surface of the sensing material
occurs according to Equations (5) and (6) shown below:

hυ→ h+ + e− (5)

O2 + e− (hυ)→ O2
− (hυ) (6)

h+ (hυ) + O2
− (ads)→ O2 (gas) (7)

The photogenerated electron hole can be separated efficiently at the interface, prevent-
ing recombination and enhancing the sensing performance. Once SnO2 is exposed to CO
gas, CO adsorbed on the surface of SnO2 can also react with photogenerated electrons, as
seen in Equation (8):

2CO (gas) + O2
− (hυ)→ 2CO2 (gas) + e− (8)

In addition, a SnO2-MoSe2 nanoflower was synthesized through the hydrothermal
method. The composite can respond to 1 ppm CO very quickly, with higher sensitivity
than the pristine MoSe2 or SnO2. The sensing mechanism may be the formation of n-n
junctions between n-type SnO2 and n-type MoSe2 [95]. A comparison of MoS2 composites
for room-temperature CO sensors can be found in Table 5.
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Table 5. Comparison of performance of composites of MoS2 for room-temperature CO sensing.

Sensing Material CO Concentration (ppm) Response Response
Time (s)

Recovery
Time (s) Reference

Ag-ZnO-MoS2 100 1.05 45 40 [92]
Co-In2O3-MoS2 10 1.08 ~39 ~18 [93]
SnO2-MoS2 UV 40 4.97 43 36 [94]

4. Discussion of Sensing Mechanism

The CO sensing mechanisms of MOSs at temperatures higher than room temperature
have been reported in several papers already [96–98]. While a precise understanding of the
CO sensing mechanisms of MOSs at room temperature is still in its early stages, a general
model can be deduced from the works reported already. Below are some critical factors:

(1) Structures of MOS nanostructures

The structure (crystal plane, grain size, morphology, and so on) of the sensing materials
will significantly influence the sensing performance. On one hand, MOSs with smaller
grain size will usually have a higher response to CO at room temperature, which is in
line with the grain size sensing model in Figure 3. For example, the ZnO thin films with
the smallest grain size among all three types of samples have the highest response to
CO at room temperature [65]. In addition, specific crystal planes and more active defects
can enhance CO sensing at room temperature. For instance, it was reported that CuO
nanosheets with exposed (111) crystal facets and more oxygen vacancies have a higher
response to and lower detection limit of CO at room temperature.

(2) Surface modification of MOSs

There are two main surface modification methods for MOSs, i.e., doping of noble
metals or formation of heterojunctions. Doping of noble metals is the most common method
to enhance room-temperature CO sensing based on MOSs. The chemical sensitization effect
is the main contributing factor in lowering the working temperature. The chemical states
and dispersion states of noble metals on the surface of a MOS play a vital role in its CO
sensing performance at room temperature, as shown in the case of the Pd-MOS system [47].
In addition, a heterojunction of a MOS will enhance the room-temperature CO sensing at
both the receptor and transducer point. For example, CuO-TiO2 composite can respond
to CO at room temperature [82]. CuO materials have excellent CO adsorption properties,
enhancing the receptor performance of the composites. Moreover, CuO-TiO2 can form a
p-n junction, creating a space charge region at the interface of the two materials.

(3) Annealing effect

The annealing effect, like the annealing atmosphere and annealing temperature, can
also influence the room-temperature CO sensing performance of the MOS material. Consid-
ering SnO2-Pt composites, the SnO2-Pt composite annealed in nitrogen has a much higher
response than that annealed in air [44]. The reason is twofold: First, the atmosphere can
determine the chemical state of the loaded Pt. More Pt2+ with a much higher catalyzing
activity will be present in SnO2-Pt annealed in nitrogen. Second, SnO2-Pt annealed in nitro-
gen has more oxygen vacancies that can be sites for chemisorption of oxygen. Furthermore,
higher annealing temperatures can increase the crystallinity of the sensing material, as
they did in Au-In2O3 [99]. However, too high a temperature, like 600 ◦C, may destroy the
nanorod and make Au agglomerate in Au-In2O3.

(4) UV activation

UV activation on the photosensitive materials will generate more electrons, thus
forming more O−2 at the surface, enhancing the reaction between oxygen species and CO at
room temperature. For example, ZnO and TiO2 are very sensitive to UV light. MoS2 and
SnSe2 have higher sensing performance under UV as well [95].
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5. Conclusions

In this review, the typical studies of MOSs for room-temperature CO sensors have
been summarized and discussed. For example, noble metal-doped SnO2 can function
well for room-temperature CO sensing. ZnO with smaller diameters can sense CO at
room temperature. Self-doped or Pd-doped TiO2 can respond to CO very well at room
temperature as well. The room-temperature CO sensing mechanism of MOSs can be
categorized into four parts: the structures of MOSs, surface modification effects, UV
activation, and the annealing effect. MOSs with a smaller diameters usually have better
CO sensing performance at room temperature. A noble metal or heterojunction effect at the
surface of MOSs can facilitate room-temperature CO sensing. Moreover, UV activation can
promote room-temperature CO sensing in some materials such as ZnO, TiO2, or MoS2. Both
the annealing atmosphere and temperature can effect room-temperature CO performance.
The future characteristics of room-temperature CO sensors will be higher sensitivity, a
lower detection limit and cost, and a smaller size for integration and portable devices.
Combining material engineering and MEMS technology is another promising field. This
review will be of interest to many researchers and engineers working on sensor materials
or in the safety monitoring sensor field.
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