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Abstract: In the case of strong non-Gaussian noise in the measurement information of the distribution
network, the strong non-Gaussian noise significantly interferes with the filtering accuracy of the state
estimation model based on deep learning. To address this issue, this paper proposes an enhanced
kernel ridge regression state estimation method based on ensemble empirical mode decomposition.
Initially, ensemble empirical mode decomposition is employed to eliminate most of the noise data
in the measurement information, ensuring the reliability of the data for subsequent filtering. Sub-
sequently, the enhanced kernel ridge regression state estimation model is constructed to establish
the mapping relationship between the measured data and the estimation residuals. By inputting the
measured data, both estimation results and estimation residuals can be obtained. Finally, numerical
simulations conducted on the standard IEEE-33 node system and a 78-node system in a specific city
demonstrate that the proposed method exhibits high accuracy and robustness in the presence of
strong non-Gaussian noise interference.

Keywords: distribution system; state estimation; kernel ridge regression; ensemble empirical
mode decomposition

1. Introduction

With the integration of large-scale renewable energy sources, it is essential to integrate
and process the data information in the distribution network to improve security, reliability,
and efficiency. These functions are implemented based on the distribution management
system (DMS), which can monitor, protect, and control the whole distribution system [1].
As an important part of the DMS, state estimation utilizes real-time measurement infor-
mation collected by supervisory control and data acquisition (SCADA) and the Wide-area
Measurement System (WMS) to estimate the state of the system [2]. The essence of state
estimation is the process of mapping measurement information to state variables [3]. Cur-
rently, most measurement information is collected from SCADA. However, during the data
collection and transmission processes, the measurement information will inevitably be
affected by measurement noise and transmission noise, resulting in the inclusion of abnor-
mal data in the measurement information, which significantly affects the accuracy of state
estimation. In [4], a detailed overview of the current mainstream state estimation methods,
future challenges, and development prospects is provided. However, in the research on
distribution network state estimation, how to handle non-Gaussian noise and improve the
accuracy of filtering models remains a key issue that urgently needs to be addressed.

Forecasting-aided state estimation (FASE) takes into account the state transition charac-
teristics of the system over time and can reflect the essence of quasi-steady state changes in
the power system [5]. With the rapid development of modern information technology, the
performance of FASE has been effectively improved, and it can provide prediction data for
multiple samples at each time step. While state estimation based on the Kalman filter can
effectively address filtering problems in linear systems, it is challenging to apply directly to
nonlinear systems [6]. Consequently, a series of improved algorithms based on the Kalman
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filter have been proposed to address the FASE problem in nonlinear systems [7]. In [8], the
extended Kalman filter algorithm is used to perform a Taylor series expansion of the non-
linear measurement equation to achieve linearization of the state estimation model. In [9],
a state transition model based on Holt’s two-parameter exponential smoothing method is
proposed, which reduces the prediction deviation caused by load transients. Building on
Holt’s method, a sliding surface-enhanced fuzzy control FASE model is proposed in [10],
which combines fuzzy mathematics with the extended Kalman filter algorithm to mitigate
the negative impacts of load transients on state estimation. In [11], to enhance the robust-
ness of state estimation, an exponential function weight function is formulated using the
absolute residual vector, which improves the robustness of the filtering model.

The above models are still essentially first-order Taylor series approximations of
nonlinear models, which ignore the influence of higher-order components, leading to
biases in the filtering results. The unscented Kalman filter (UKF) is another commonly
used nonlinear state estimation model that uses the unscented transformation to solve
the mean and covariance matrix to achieve an approximation of nonlinear models [12,13].
However, this method is sensitive to non-Gaussian noise. To further improve estimation
performance, a series of state estimation methods based on deep neural networks have
gradually been applied to the power system [14]. In [15], the KRR-UKF is used in state
estimation, which can be applied without considering the actual physical model. It filters
unknown measurements in the power system, thereby improving system accuracy, but it
does not consider the economic aspects of system operation in practical applications. In [16],
a robust adaptive unscented Kalman filter is proposed, which can detect and identify gross
errors and improve the robustness of UKF. In [17,18], the particle filter is integrated with
long short-term memory (LSTM), and a power flow calculation is conducted based on
pseudo-measurements predicted by LSTM to complement the missing state quantities,
thereby enhancing the robustness and accuracy of state estimation.

Due to the low redundancy of measurements in the distribution network, it is necessary
to use pseudo-measurements to ensure the observability of the system [19]. In [20], the node
injection power and branch power are equivalently converted into current measurements,
which improves the accuracy of state estimation. However, as the Jacobian matrix still needs
to be updated in each iteration, the estimation efficiency of this method is relatively low. A
distributed multi-agent-based method is proposed in [21] to deal with the complexity of
active distribution networks by using an artificial bee colony algorithm, which improves the
efficiency of state estimation. In [22], the iterative procedure of Broyden’s rank-one update
is used to approximate the time-varying process and measurement Jacobian matrices in EKF,
which can significantly reduce the computation time. In [23], particle filtering is combined
with a convolutional neural network for state estimation, which effectively improves the
accuracy of state estimation. In [24], kernel ridge regression is used to handle uncertainty
in the system, improving the accuracy of state estimation after collecting a large amount of
measurement data. However, in practical applications, the presence of non-Gaussian noise
can reduce the accuracy of system state estimation. Further research is needed to investigate
how to handle non-Gaussian noise in measurement information. In [25], a robust cubature
particle filter algorithm is proposed by integrating multiple time-scale factors with the
traditional cubature particle filter algorithm, which effectively enhances the estimation
performance of the system, especially in the presence of non-Gaussian measurement noise.

The enhanced kernel ridge regression state estimation (EKRRSE) method for distribu-
tion network state estimation based on ensemble empirical mode decomposition (EEMD)
is introduced in this study. The main problems addressed are as follows:

(1) To solve the problem of the increased estimation error of KRRSE caused by mea-
surement noise, EEMD is employed to suppress the noise in measurement data to improve
the filtering effect of KRRSE.

(2) Kernel ridge regression is used to express the mapping relationship between
measurement data and the estimation error to further improve the estimation accuracy.
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2. Ensemble Empirical Mode Decomposition and Enhanced Kernel Ridge
Regression Filtering
2.1. Measurement Noise Reduction Based on EEMD

EEMD separates multiple intrinsic mode functions (IMFs) and a residual component
function from the original measurement, where each IMF represents the dynamic variation
pattern at a specific instantaneous frequency, highlighting the local features of the measure-
ment data, while the residual component reflects the overall trend of the measurement data.
Decomposing the measurement data using EEMD involves first calculating all the extreme
points of the measurement data ze. Next, the upper and lower envelopes of the original
measurement xe are obtained through cubic spline interpolation, and the mean value curve
le
1 of these envelopes is computed; then a new denoised measurement component he

1, which
excludes low frequencies, is obtained as follows:

he
1 = ze − le

1 (1)

If a component he
1 satisfies the condition where the number of extreme points and

zero-crossing points in the entire measurement data is equal or differs by at most one, and
the average of the upper and lower envelopes determined by cubic spline interpolation is
zero, then he

1 is considered the first-order IMF of the measurement data ze. Otherwise, he
1 is

taken as an input, and the above steps are repeated as follows:

he
11 = he

1 − le
11 (2)

where he
11 is an intermediate variable, and le

11 is the mean curve of the upper and lower
envelopes obtained by cubic spline interpolation on he

1. It is worth noting that abnormal
data collected by the measurement system can impact the partitioning of the upper and
lower envelopes and the decomposition results. Therefore, an outlier handling method is
needed to deal with the abnormal data. It is assumed that, after k iterations, the first-order
IMF component L1 and the remaining component re

1 of the measurement information ze

are as follows:
L1 = h1k (3)

re
1 = ze − L1 (4)

If we make this assumption, we can continue the above operation on re
1 until the

remaining component is a monotonic function, which can be expressed as follows:
r1 − Le

2 = re
2

r2 − Le
2 = re

3
...

rn−1 − Le
n = re

n

(5)

where rn represents the nth-order residual component. As a result, the original measure-
ment data ze can be expressed as the sum of several IMF components and the final residual
component re

n.

ze =
n

∑
k=1

Le
k + re

n (6)

The above decomposition process exhibits good adaptability to input data. However,
in the presence of noise in the measurement data, rapid fluctuations in extremum values
may occur within an extremely short period. This can cause a single IMF to encompass
time-scale features with significant differences, leading to a mode-mixing problem where a
single IMF reflects multiple characteristics of the measurement data. To solve this problem,
the Gaussian white noise υ with a mean of 0 is added to the original measurement ze,
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resulting in processed measurement data zυ,e. This helps mask the original noise in the
measurement data.

zυ,e = ze + υ (7)

Empirical mode decomposition is then conducted on zυ,e, yielding the following:

zυ,e =
n

∑
k=1

Lυ,e
k + rυ,e

n (8)

Then, we add white noise with a mean of 0 to the original measurement information
ze, respectively, repeat the operations described by Equations (5) and (6), and obtain the
decomposition results of the measurement information under different levels of white noise.

zυi ,e
i =

n

∑
k=1

Lυi ,e
k + rυi ,e

n (9)

where υi represents the white noise added in the i-th iteration, and as a result, Lυi ,e
k is the

corresponding IMF component. Considering the mean value of the Gaussian noise is 0,
ensemble averaging is performed on the IMF components, and we obtain the following:

Lυ,e
k =

1
m

m

∑
i=1

Lυ,e
k,i (10)

where m represents the number of times Gaussian white noise is added.
The difference ∆Em between the measured information zυ,e and the sum of the final

IMF components can be expressed as follows:

∆Em =
ε√
m

(11)

where ε represents the amplitude of the white noise.
It can be seen from (11) that, with a constant amplitude of white noise, the more times

noise is added, the closer the sum of the IMF components is to the original data. The final
result of the measured information decomposition can be expressed as follows:

ẑe =
m

∑
k=1

Lυ,e
k + re

m (12)

Due to the strong temporal characteristics of the measurement information and the
random distribution of the unknown noise, the noise components with high temporal
complexity in the measurement information can be identified by calculating the sample
entropy coefficients of each IMF of the original measurement [26], thereby achieving noise
reduction in the measured information. First, the IMF components of the measurement
information in (10) are arranged in a vector sequence.

Ln(i) = [Lυ,e(i), Lυ,e(i + 1), . . . , Lυ,e(i + m − 1)] (13)

The distance between Lυ,e(i) and Lυ,e(i + 1) is defined as d, the absolute value of the
maximum difference of the corresponding elements of their respective IMF components.

d[Ln(i), Ln(j)] = max|Lυ,e(i + k)− Lυ,e(j + k)| (14)

where 1 ≤ k ≤ n − 1, 1 ≤ i, j ≤ m − n + 1, and i ̸= j. For a given Ln(i), the ratio of the
number of instances where the distance Ln(i) between Ln(j) and d[Ln(i), Ln(j)] is less than
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the specified similarity tolerance r(r > 0) to the total number of components is denoted as
Bi,n(r).

Bi,n(r) =
1

m − n − 1
num{d[Ln(i), Ln(j)] < r} (15)

The mean value of Bi,n(r) is as follows:

Bn(r) =
1

m − n

m−n

∑
i=1

Bi,n(r) (16)

We increase the dimension to n+ 1 and similarly calculate the ratio and the mean value.

Ai,n(r) =
1

m − n − 1
num{d[Ln+1(i), Ln+1(j)] < r} (17)

An(r) =
1

m − n

m−n

∑
i=1

Ai,n(r) (18)

Therefore, the sample entropy of this sequence is as follows:

SampEn(n, r) = lim
m→∞

{− ln[An(r)/Bn(r)]} (19)

When m takes a finite value, we have the following:

SampEn(n, r, m) = − ln[An(r)/Bn(r)] (20)

where n is the embedding dimension and r is the similarity tolerance.

2.2. Enhanced Kernel Ridge Regression

To further reduce estimation errors, KRRSE is used to learn the discrepancy between
the actual state and the estimated state information. The KRRSE state estimation model is
defined as follows:

xt = Êk(Dk) + δt (21)

where Êk represents the estimation results of the kernel ridge regression model, and the
corresponding dataset is Dk = {(z1, x1) , (z2, x2) . . . (zt−1, xt−1)}. δt ∼ N(0, Êk(Dk)) is
the estimation residual. It is evident that the key to improving the filtering effect lies in
reducing the estimation residual. Considering that the error data of the output of the
KRRSE model contain the distribution rules of unknown noise, kernel ridge regression
is used to learn the nonlinear relationship between the estimation results Êg and the real
estimation model h−1. The state estimation model is represented as follows:

xk
t = Êk(Dk) + δ̂t + ĝ(D̂k) (22)

where D̂k =
{

zt−1, st−1 − Êk(Dk)
}

and zt−1 represent the input measurements, and

st−1 − Êk(Dk) represents the error of the KRRSE model. The noise δ̂t ∼ N(0, ĝ(
⌢
D

k
)).

The enhanced kernel ridge regression algorithm effectively improves the estimation per-
formance by learning the noise distribution in the data and updating the weights of the
model parameters.

3. State Estimation of Distribution System Based on EEMD-EKRRSE
3.1. Density-Based Spatial Clustering of Applications with Noise

The primary step in handling abnormal data is to determine whether the current input
data contain any adverse information. Considering the large scale of historical measure-
ment data in distribution networks, traditional residual identification search methods are
inefficient. Therefore, in this section, density-based spatial clustering of applications with
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noise (DBSCAN) is adopted to classify errors and missing data in the measurement data.
To use the clustering algorithm, the following definitions are provided first:

(1) Domain η: For any input measurement data zdi ∈ Zd, Zd = {zd1, zd2, . . . , zdn}, the
interior region of a circular area with a center zdi and a radius η is referred to as the domain
η. The collection of all measurement information within this domain is as follows:

Nη(zdi) =
{

zdj ∈ D
∣∣∣distance(zdi, zdj) ≤ η

}
(23)

(2) Core Target: For any measurement datum zdi ∈ Zd, if the number of measurement
information sets Nη(zdi) corresponding to the η domain exceeds the value of Minpts, then
the measurement datum is considered a core target.∣∣Nη(zdi)

∣∣≥ MinPts (24)

(3) Direct Density Reachable: If two measurement data points zdi, zdi ∈ Zd and zdj
are core targets, and zdi is located within the η domain of zdj, then zdj is said to be density
reachable from zdi. When zdi is also a core target, it is also considered density reachable
from zdj.

(4) Density Reachable: For multiple measurement data points zd1, . . . zdi, zdi+1, . . . , zdn ∈ Zd,
if zdi is density reachable from zdi+1, then zd1 is considered density reachable from zdn.

(5) Density Connected: If three measurement data points zdi, zdj, zdk ∈ Zd, where zdi
and zdj are both density reachable from the core object zdk, then zdi and zdj are considered
density connected.

When the measurement data are input into DBSCAN, the clustering algorithm will
mark multiple core objects in the measurement data based on the set domain radius and
the minimum number of points required to form a core object within the domain radius
η. The η core object set is established, and data points near core objects that have fewer
than MinPts points within the domain radius are temporarily marked as outliers. After
traversing all measurement data, the detection process for outliers is completed.

3.2. Convolutional Neural Network Based on Attention Mechanism Combined with Gated
Recurrent Unit

The measurement data are influenced by meteorological factors and time, thus ex-
hibiting a temporal pattern of change. Time-series forecasting algorithms can be used
to explore the temporal characteristics of historical measurements and construct reliable
pseudo-measurement data.

(1) Attention Mechanism: The research objective of the attention mechanism is to
intelligently allocate weights to the data. By calculating the influence weights of individual
input data, abstracting the weight information of historical time-series data, and averaging
all information weight factors through weighted averaging, adaptive weight distribution
can be achieved.

Taking the measurement information as an example, let us denote the historical
measurement data from time 1 to n − 1 as Z = (zl , z2, · · zn−l). First, we use a scoring
function, denoted as s, as follows:

s(zi, zn) = HT
i tanh(Bizi + Bnzn) (25)

where Hi, Bi, and Bn are weights that are automatically updated through learning, and
tanh represents the hyperbolic tangent function, used to compute the correlation between
each historical measurement datum and the measurement datum at time n. The computed
results are then normalized using the SoftMax normalization exponential function to obtain
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the attention distribution zn among all historical measurement inputs ai, with the following
calculation formula:

ai = SoftMax(s(zi, zn)) =
exp(s(zi, zn))

n
∑

i=1
exp(s(zi, zn))

(26)

where exp represents the exponential function. According to Equation (26), the attention
distribution obtained is used to perform a weighted sum of historical measurement data,
resulting in the relevant input information to be considered.

Att =
n−1

∑
i=1

αizi (27)

(2) Convolutional Neural Network: Given the large volume of historical measurement
data, the model parameters also increase with the data volume, which can lead to overfit-
ting or training difficulties in neural networks, causing the problem of parameter explosion
when predicting measurement information. Convolutional neural networks (CNN), how-
ever, can address this issue by using pooling and convolution to process data, enabling
local connections and weight sharing to mitigate problems such as parameter explosion.

Compared to the fully connected architecture of traditional neural networks, con-
volutional neural networks employ a partial connectivity approach when connecting
upper-layer neurons to the convolutional layers, extracting partial features of the input
information. Additionally, within the same layer, CNNs classify neurons based on the
strength of their connections, assigning corresponding weight values to neurons of the
same type with the same convolutional kernel. This is expressed in Equation (28):

zj
l = σc

∑
i∈kj

(zi,l−1ψi,l + ζl)

 (28)

where zj
l represents the output matrix of the convolution operation, σc denotes the activation

function of the convolutional layer, zi,l−1 signifies the input information of the i-th window
in layer l − 1, ψi,l and ξl , respectively, represent the weight parameter matrix and bias
parameter matrix of the input information, and k j indicates the position of the tensor
containing the extracted partial data features.

To further reduce the data size and network parameters, a pooling layer is added after
the convolutional layer in the convolutional neural network. Its expression is as follows:

zp
l = pm(zi,l−1Wp) (29)

where zp
l represents the output matrix of the pooling layer, pm is the max pooling function,

zi,l−1 denotes the input information corresponding to the i-th convolutional kernel of layer
l − 1, and Wp represents the sampling kernel.

After the original data undergo feature refinement in the convolutional layer and
feature selection in the pooling layer, they are then fused through the fully connected layer
to integrate the deep-level data features of each locality. The principle is demonstrated in
Equation (30):

zo = σo
l (zl−1ψo

l + ζo
l ) (30)

where zo represents the output of the fully connected layer, σf is the activation function of
the fully connected layer, zl−1 is the input to the entire layer l − 1, and ψo

l and ζo
l are the

weight parameters and bias parameters of the fully connected layer, respectively.
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3.3. Ensemble Empirical Mode Decomposition-Enhanced Kernel Ridge Regression State Estimation

To address the issue of significant errors in KRRSE filtering under intense non-
Gaussian noise, an enhanced kernel ridge regression state estimation method, referred
to as ensemble empirical mode decomposition (EEMD-EKRRSE), is proposed in this pa-
per. EEMD is utilized to remove noise from the measurements and diminish the impact
of measurement noise on the data. Furthermore, the kernel ridge regression method is
employed to model the nonlinear mapping relationship between the measured information
and estimation residuals. The estimation process of EEMD-EKRRSE is depicted in Figure 1,
encompassing the following primary steps.
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Step 1: Model training. The Convolutional Neural Network Based on Attention
Mechanism Combined with Gated Recurrent Unit (CAGN) is utilized to learn the temporal
patterns in historical measurement data. Kernel ridge regression state estimation (KRRSE)
is employed to learn the mapping relationships between measurement data and state
information, as well as between measurement data and estimation residuals, thereby
establishing the EEMD-EKRRSE model.

Step 2: Detection of anomalies and missing data. The missing or anomalous data in
the measurement dataset are determined using the DBSCAN method. If anomalies are
detected, proceed to Step 3; if the data are normal, proceed to Step 4.

Step 3: Handling of anomalous data. The CAGN model established in Step 1 is utilized
to reconstruct the measurement data, and the dataset containing the reconstructed data is
fed into the EKRRSE filtering model.

Step 4: Processing of Normal Data. The normal measurement data are denoised using
EEMD and then fed into the EKRRSE filtering model, and the final state estimation results
are obtained.

4. Case Studies

The effectiveness of the proposed EEMD-EKRRSE method is verified on the IEEE-33
node system and a 78-node distribution system in China. The test is performed on a PC
purchased in Qingdao, Shandong, China, produced by HP, with Intel Core i5-9300, 16 GB
of RAM. The relevant algorithms are compiled using the Python platform 3.6. The CNN
model and the kernel ridge regression model are trained using the TensorFlow 2.10.0 and
Keras 2.10.0 toolboxes, respectively. The MATPOWER 7.0 toolbox is employed to obtain
the system state dataset and measurement dataset through power flow calculations.

4.1. IEEE-33 Node System

(1) Measurement Denoising Effect
To analyze the impact of strong non-Gaussian noise, Laplace noise with a mean of 0

and a standard deviation of 0.01, and Gaussian noise with a weight of 0.5, and a weight of
0.5, both with covariances of 10−5I and 10−3I, are added to the measurement data of node
4, respectively. The EEMD decomposition is used to decompose the original measurement
into multiple IMF components. Under the interference of these two types of noise, EEMD
decomposition is performed on 1000 sets of active power and reactive power measurement
data. The results are shown in Table 1 and Figure 2.

Table 1. IMF component sample entropy results.

Components
Laplace Noise Bimodal Gaussian Noise

Active Power
(p.u.)

Reactive Power
(p.u.)

Active Power
(p.u.)

Reactive Power
(p.u.)

IMF1 2.48 2.32 2.36 2.19
IMF2 1.91 2.09 1.88 2.07
IMF3 1.14 1.08 1.03 1.14
IMF4 0.633 0.638 0.670 0.694
IMF5 0.542 0.511 0.515 0.600
IMF6 0.442 0.470 0.469 0.454
IMF7 0.129 0.119 0.129 0.132
IMF8 0.0479 0.0457 0.0469 0.0457
IMF9 0.00457 0.00408 0.00447 0.00449

IMF10 0.00470 0.00463 0.00451 0.00494
IMF11 0.00196 0.00176 0.00194 0.00392
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Figure 2. Results of EEMD under non-Gaussian noise. (a) EEMD decomposition of active power 
under Laplace noise. (b) EEMD decomposition of reactive power under Laplace noise. (c) EEMD 
decomposition of active power under bimodal Gaussian noise. (d) EEMD decomposition of reactive 
power under bimodal Gaussian noise. 
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Figure 2. Results of EEMD under non-Gaussian noise. (a) EEMD decomposition of active power
under Laplace noise. (b) EEMD decomposition of reactive power under Laplace noise. (c) EEMD
decomposition of active power under bimodal Gaussian noise. (d) EEMD decomposition of reactive
power under bimodal Gaussian noise.

From Table 1, it can be observed that the IMF1 component has the highest sample
entropy for both active and reactive power, indicating the highest time-series complexity of
this component.

From Figure 2, it can be seen that the distribution characteristics of each IMF com-
ponent are significantly different. After removing the IMF1 component, the denoised
measurement data can be obtained. Table 2 and Figure 3 show the Absolute Error (AE)
and Root Mean Square Error (RMSE) of 1000 sets of active power and reactive power
measurements at this node before and after denoising.

Table 2. Denoise effects of measurements under different non-Gaussian noise.

Index
Laplace Noise Bimodal Gaussian Noise

AE RMSE AE RMSE

Active power before
denoising 7.21 × 10−3 1.02 × 10−2 7.92 × 10−3 9.92 × 10−3

After EEMD denoising 6.74 × 10−3 9.40 × 10−3 4.95 × 10−3 6.31 × 10−3

Reactive power before
denoising 9.44 × 10−3 9.53 × 10−3 8.1 × 10−3 1.02 × 10−2

After EEMD denoising 6.58 × 10−3 6.58 × 10−3 5.34 × 10−3 6.60 × 10−3
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Figure 3. Denoise effects of measurements under non-Gaussian noise. (a) Comparison of measure-
ment denoising under Laplace noise. (b) Comparison of measurement denoising under bimodal
Gaussian Noise.

From Table 2, it can be seen that in the Laplace noise environment, the absolute errors
of active power and reactive power after denoising using EEMD are 6.74 × 10−3 and
6.58 × 10−3, respectively, which are reduced by 6.5% and 35% compared to the errors
before denoising. In the bimodal Gaussian noise environment, the absolute errors of active
power and reactive power are reduced by 38% and 35%, respectively. Moreover, the RMSE
of active power and reactive power in the Laplace noise environment is reduced by 8% and
30%, respectively, compared to the RMSE before denoising. In the bimodal Gaussian noise
environment, they are reduced by 36% and 35%, respectively. It can be seen that EEMD has
a significant noise reduction effect.

From Figure 3, it can be observed that the fluctuation amplitude of the error curve of
the denoised measurement information using EEMD is significantly reduced, indicating
that EEMD can effectively reduce the noise level in the measurement information. To further
demonstrate the denoising effect of EEMD under strong non-Gaussian noise, Laplace noise
with a mean of 0 and standard deviation ranging from 0.02 to 0.05 with a step of 0.01 is
added to the active power data of node 4, and EEMD is then used to denoise the data.

Table 3 shows that the AE and RMSE after denoising using EEMD decreased by
27% and 33% on average, respectively, indicating that the denoised measurement data
are closer to the true values. This validates the denoising effect of EEMD under strong
non-Gaussian noise.
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Table 3. Denoise effects of measurements under non-Gaussian noise.

Standard
Deviation

Before Denoising After Denoising by EEMD

AE RMSE AE RMSE

0.02 2.91 × 10−2 4.14 × 10−2 2.56 × 10−2 3.34 × 10−2

0.03 3.48 × 10−2 4.89 × 10−2 2.51 × 10−2 3.31 × 10−2

0.04 3.62 × 10−2 5.13 × 10−2 2.90 × 10−2 3.78 × 10−2

0.05 3.80 × 10−2 5.33 × 10−2 2.05 × 10−2 2.67 × 10−2

(2) Filtering Effect of EKRRSE
Laplace noise with a mean of 0 and standard deviation ranging from 0.01 to 0.05 in

increments of 0.01 is added to the measurement data at node 4, and KRRSE is then used
to filter. Table 4 presents the results of the Mean Absolute Percentage Error (MAPE) and
RMSE of KRRSE. Additionally, Figure 4 illustrates the comparison of filtering performance
before and after denoising with EEMD when the noise deviation is 0.05.

Table 4. KRRSE performances under different non-Gaussian noise.

Standard
Deviation

Before Denoising After Denoising

MAPE RMSE MAPE RMSE

0.01 0.00813 1.02 × 10−4 0.00742 9.59 × 10−5

0.02 0.0217 2.78 × 10−4 0.0161 2.09 × 10−4

0.03 0.0216 2.91 × 10−4 0.0154 1.93 × 10−4

0.04 0.0294 3.88 × 10−4 0.0199 2.53 × 10−4

0.05 0.0371 4.87 × 10−4 0.0253 3.28 × 10−4
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From Table 4, it can be seen that before denoising, as the standard deviation of noise
increases, the MAPE of KRRSE filtering gradually increases. When the noise standard
deviation increases from 0.01 to 0.05, the MAPE and RMSE increase by 3.56 times and
3.77 times, respectively, showing a significant decrease in filtering performance. However,
after noise reduction by EEMD, the MAPE is reduced by nearly 29% on average, and the
filtering accuracy is significantly improved. When the noise standard deviation is 0.05,
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the RMSE is 3.28 × 10−4, which is 33% lower than before denoising, enhancing filtering
stability. From Figure 4, it is evident that the filtering values before denoising deviate from
the true value at multiple points, which is more obvious at the peak and valley points of
the curve. After denoising with EEMD, the data errors are reduced, and the measured
information is closer to the true values. Consequently, KRRSE shows improved filtering
performance, validating that EEMD-based measurement denoising effectively improves
the accuracy and stability of KRRSE filtering.

To further reduce the estimation errors, the nonlinear relationship between the mea-
surement information and the estimation residuals is learned through kernel ridge regres-
sion, and the estimated residuals are then integrated into the results of the first-stage filtering.

To validate the effectiveness of the EKRRSE method, we take node 4 as an example.
Laplace noise with a mean of 0 and standard deviation ranging from 0.01 to 0.05 in steps of
0.01 is superimposed onto the measurement data of node 4. The EKRRSE method is then
used to filter the denoised measurement data.

Table 5 presents a comparison of the filtering effects between KRRSE and EKRRSE. It
can be seen that under the influence of noise with different standard deviations, compared
to the filtering results of KRRSE, EKRRSE shows a decrease in both MAPE and RMSE.
Specifically, the MAPE decreases by 8.4% on average, and the RMSE decreases by 9.3% on
average. This indicates that EKRRSE can improve the estimation accuracy and stability,
making the filtering results closer to the true values.

Table 5. EKRRSE and KRRSE performances under different non-Gaussian noise.

Standard
Deviation

KRRSE EKRRSE

MAPE RMSE MAPE RMSE

0.01 0.00742 9.59 × 10−5 0.00655 8.54 × 10−5

0.02 0.0161 2.09 × 10−4 0.0123 1.56 × 10−4

0.03 0.0154 1.93 × 10−4 0.0145 1.78 × 10−4

0.04 0.0199 2.53 × 10−4 0.0189 2.42 × 10−4

0.05 0.0253 3.28 × 10−4 0.0249 3.28 × 10−4

(3) Robustness Analysis
DBSCAN is used to filter the abnormal data in measurements, and CAGN is utilized

to reconstruct the corresponding measurement data. It is worth noting that the recon-
structed measurement information obtained by CAGN has high accuracy, and EEMD is
not suitable for denoising the reconstructed information. EKRRSE is applied to handle the
reconstructed measurement information to improve the filtering effect. To evaluate the
filtering performance of EKRRSE on abnormal data, two scenarios are studied, and the
filtering results of KRRSE and EKRRSE are compared as shown in Table 6.

Table 6. Filter results via KRRSE and EKRRSE after measurement reconstruction.

Scenario Index Node
KRRSE EKRRSE

MAPE RMSE MAPE RMSE

Scenario 1
Node 12 0.0347 4.13 × 10−4 0.0248 4.00 × 10−4

Node 32 0.0558 7.26 × 10−4 0.0524 6.37 × 10−4

Scenario 2
Node 15 0.0443 4.44 × 10−4 0.0367 3.70 × 10−4

Node 23 0.0227 2.97 × 10−4 0.0193 2.46 × 10−4

Scenario 1: The active power measurement information for nodes 12 and 32 is missing
from sample point 3 to sample point 70.

Scenario 2: The reactive power measurement information for nodes 15 and 23 is
abnormal from sample point 3 to sample point 70.
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From Table 6, it can be observed that the MAPE and RMSE of EKRRSE in Scenarios
1 and 2 are both lower than those of KRRSE. The accuracy and estimation stability of
EKRRSE are better than KRRSE overall. This is because EKRRSE can learn the mapping
relationship between the reconstructed measurement information and the residuals, further
reducing the estimation residuals and improving the filtering accuracy of the algorithm in
abnormal scenarios.

(4) Computation Efficiency
The performance of EKRRSE, KRRSE, Cubature Particle Filter (CPF) [25], and Robust

Cubature Particle Filter (RCPF) [25] in terms of computation efficiency and error are
compared, and the results are shown in Table 7.

Table 7. Performance comparison of KRRSE and EKRRSE.

Algorithm Runtime (s) Error (10−4)

CPF 0.51 0.049
RCPF 0.55 0.046

KRRSE 0.039 0.051
EKRRSE 0.082 0.044

From Table 7, it can be observed that EKRRSE exhibits the highest accuracy. This is
attributed to the algorithm’s ability to utilize the estimation residuals effectively, thereby
improving the filtering accuracy. As the EKRRSE filtering model requires additional
training of residual information, the runtime has slightly increased but still remains within
the millisecond level. Therefore, the proposed EKRRSE method in this paper meets the
requirements for both computation efficiency and accuracy in state estimation.

4.2. A 78-Node System

To further validate the effectiveness of the proposed EEMD-EKRRSE method, a case
study is conducted on a 78-node distribution system in China.

(1) Measurement Denoising Effect
Laplace noise with a mean of 0 and a standard deviation of 0.01, and bimodal Gaussian

noise with covariance matrices of 10−5I and 10−3I and weights of 0.5 for each mode, are
added to the active and reactive power data of node 17 of this system. The original
measurements are decomposed into multiple IMF components using EEMD, and the
reconstruction results are shown in Table 8 and Figure 5.

After EEMD denoising, the AE of the active power decreased from 6.68 × 10−3 to
5.87 × 10−3, and the AE of the reactive power decreased from 7.31 × 10−3 to 6.09 × 10−3 in
the Laplace noise environment, reducing by approximately 12% and 17%, respectively. In
the bimodal Gaussian noise environment, the AE of the active power is reduced by nearly
20% and the AE of the reactive power is reduced by about 19%, demonstrating a significant
denoising effect.

Table 8. Denoise effects of measurements under different non-Gaussian noise.

Index
Laplace Noise Bimodal Gaussian Noise

AE RMSE AE RMSE

Active power before denoising 6.68 × 10−3 9.45 × 10−3 8.66 × 10−3 1.19 × 10−2

After EEMD denoising 5.87 × 10−3 7.49 × 10−3 6.97 × 10−3 9.07 × 10−3

Reactive power before denoising 7.31 × 10−3 1.03 × 10−2 8.96 × 10−3 1.21 × 10−2

After EEMD denoising 6.09 × 10−3 7.84 × 10−3 7.22 × 10−3 9.33 × 10−3
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Figure 5. Denoise effects of measurements under non-Gaussian noise. (a) Comparison of measure-
ment denoising under Laplace noise. (b) Comparison of measurement denoising under bimodal
Gaussian noise.

As shown in Figure 5, the RMSE of each denoised measurement is obviously reduced.
To demonstrate the denoising effect of EEMD under strong non-Gaussian noise, Laplace
noise with a mean of 0 and standard deviation ranging from 0.02 to 0.05 in steps of 0.01 is
superimposed onto the active power data of node 17, and EEMD is used to denoise the
data. Table 9 shows the comparison of measurement errors before and after denoising.

From Table 9, it can be seen that under the influence of gradually increasing noise,
the error after denoising with EEMD is always lower than the original error. Specifically,
AE is reduced by nearly 29%, indicating that the denoised data are closer to the true
measurement. RMSE is decreased by nearly 38%, improving the stability of measurement
data and ensuring the reliability and accuracy of the data required for subsequent filtering.
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Table 9. Denoising effect of measurements under non-Gaussian noise.

Standard Deviation
Before Denoising After Denoising

AE RMSE AE RMSE

0.02 1.44 × 10−2 2.08 × 10−2 1.03 × 10−2 1.40 × 10−2

0.03 2.11 × 10−2 2.97 × 10−2 1.49 × 10−2 1.97 × 10−2

0.04 2.86 × 10−2 4.03 × 10−2 2.02 × 10−2 2.03 × 10−2

0.05 3.59 × 10−2 5.13 × 10−2 2.56 × 10−2 3.35 × 10−2

(2) Effect of EKRRSE Filtering after Denoising
To verify the denoising effect of EEMD decomposition, Laplace noise with a mean of 0

and standard deviations ranging from 0.01 to 0.05 in steps of 0.01 is superimposed onto the
measurement data of node 17. Subsequently, EEMD-denoised measurements are filtered
using EKRRSE, and the results are presented in Table 10.

Table 10. EKRRSE and KRRSE performance via denoised measurements under different non-Gaussian
noise.

Standard Deviation
KRRSE EKRRSE

MAPE RMSE MAPE RMSE

0.01 0.0801 9.28 × 10−4 0.0489 5.91 × 10−4

0.02 0.107 1.29 × 10−3 0.0850 1.04 × 10−3

0.03 0.134 1.68 ×10−3 0.111 1.38 × 10−3

0.04 0.179 2.22 × 10−3 0.181 2.25 × 10−3

0.05 0.228 2.87 × 10−3 0.197 2.41 × 10−4

Table 10 shows that EKRRSE can also improve the filtering effect in the practical
distribution system. The average MAPE is decreased by 15%, and the average RMSE is
decreased by 14%, further improving the filtering accuracy and stability. This is because
EKRRSE can obtain the relative weights of each regression independent variable on the state
information, and establish a mapping relationship between measurement and residuals,
thereby obtaining more reliable estimated residuals.

(3) Robustness Analysis
Table 11 shows a comparison of the filtering results between EKRRSE and KRRSE

to evaluate the filtering performance on abnormal data. Two scenarios are considered to
compare the filtering results.

Table 11. Filtering results via KRRSE and EKRRSE after measurement reconstruction.

Scenario Index Node
KRRSE EKRRSE

MAPE RMSE MAPE RMSE

Scenario 1
Node 11 0.0557 6.87 × 10−4 0.0509 6.56 × 10−4

Node 61 0.0464 5.02 × 10−4 0.0261 3.12 × 10−4

Scenario 2
Node 8 0.0666 8.86 × 10−4 0.0505 6.43 × 10−4

Node 10 0.101 1.23 × 10−3 0.0801 1.03 × 10−3

Scenario 1: The active power measurement information of nodes 11 and 61 randomly
deviates from the normal value by 50%.

Scenario 2: 20% of the reactive power measurement information of nodes 8 and 10 is
missing randomly.

Table 11 shows that the MAPE and RMSE of EKRRSE are lower than those of KRRSE.
This is because EKRRSE learns the relationship between measurement information and
residual errors, making the filtering results closer to the true state and improving filtering
accuracy and stability.
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(4) Computation Efficiency
To further validate the performance advantages of the proposed EKRRSE method, a

comparison between EKRRSE and KRRSE is conducted in terms of the runtime and relative
error. The results are presented in Table 12.

Table 12. Performance comparison of different algorithms.

Algorithm Runtime (s) Error (10−4)

KRRSE 3.1 × 10−2 2.8
EKRRSE 7.2 × 10−2 2.3

From Table 12, it can be observed that EKRRSE has a slightly increased runtime due to
the integration of residual information from KRRSE. However, it still remains within the
millisecond range. In addition, the relative error of EKRRSE is lower than that of KRRSE,
improving the filtering performance. This demonstrates that the EKRRSE method also
exhibits high efficiency and accuracy in practical distribution systems.

5. Conclusions

This paper introduces the EEMD method to separate noise data from measurement
information and refine measurement data. As for the filtering model, an optimization
method based on an approximate model is employed to reduce the gap between the
filtering model and the real model. The EEMD-EKRRSE filtering model is established,
further enhancing the effectiveness and accuracy of the filter. Extensive case studies are
conducted on the IEEE-33 and a 78-node distribution network in a certain city, leading to
the following main conclusions:

(1) EEMD-based denoising can effectively reduce the error of measurement, make the
measurement data closer to true values, and provide more reliable measurement data
for subsequent filtering.

(2) The proposed EKRRSE state estimation model could efficiently learn the mapping
relationship between measurement information and residuals during the training
process, improving filtering accuracy and stability.

(3) The uncertainty of the distributed generation output inevitably leads to variations
in the state estimation results. Therefore, in the future, a quantitative analysis of the
DG output can be conducted to more accurately assess its impact on state estimation,
thereby comprehensively improving the reliability of state estimation.
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