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Abstract: Every year, a significant amount of pepper stalks are wasted due to low utilization. The
ash produced from pepper stalks contains a significant amount of alkaline salts, which are food
additives that can enhance the quality of noodles. Therefore, utilizing natural pepper straw ash
to improve the quality of noodles shows promising development prospects. In this study, pepper
straw ash leachate (PSAL) was extracted and added to noodles. The quality of the noodles gradually
improved with the addition of PSAL, with the best effect observed at a concentration of 18% (PSAL
mass/flour mass). This addition resulted in a 57.8% increase in noodle hardness, a 55.43% increase in
chewiness, a 19.41% rise in water absorption rate, and a 13.28% increase in disulfide bond content.
These alterations rendered the noodles more resilient during cooking, reducing their tendency to
soften and thus enhancing chewiness and palatability. Incorporating PSAL also reduced cooking loss
by 57.79%. Free sulfhydryl groups decreased by 5.1%, and scanning electron microscopy revealed a
denser gluten network structure in the noodles, with more complete starch wrapping. This study
significantly enhanced noodle quality and provided a new pathway for the application of pepper
straw resources in the food industry.

Keywords: pepper straw ash leachate; noodle quality; microstructure; disulfide bonds

1. Introduction

Noodles serve as a fundamental grain-based sustenance in Asian nations, occupying a
vital role in everyday eating habits [1]. When assessing noodle quality, cooking attributes,
texture, and sensory perception stand out as key indicators. To enrich noodle palatability,
alkaline salts, phosphates, and polysaccharides are commonly incorporated to bolster noo-
dle hardness, toughness, and taste enhancement [2]. Incorporating alkaline salts, such as
potassium carbonate and sodium carbonate, into noodle preparation elicits shifts in gluten
protein structure and noodle texture. It has been observed that these salts modify gluten
structure density, consequently elevating noodle hardness [3]. Adding an appropriate
amount of alkaline salt will enhance the tightness of the gluten protein network structure
in noodles, thus improving their quality. Within certain limits, potassium carbonate can
amplify noodle chewiness and tensile strength, thereby notably refining sensory charac-
teristics [4,5]. Introducing a specific blend of potassium carbonate and sodium carbonate
can mitigate noodle cooking losses [3]. Additionally, consumers often consider color when
selecting noodles. It is widely recognized that under alkaline conditions, flavonoid pig-
ments in natural flour yield a yellow hue [6]. Thus, compared to alternative additives,
alkaline salts not only enhance noodle quality but also impart a distinctively vibrant yellow
color, which is particularly appealing to consumers. While chemically synthesized alkaline
salts dominate the market, there are limited options for purely natural alkaline additives
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that enhance noodle quality. The traditional method of making alkaline noodles involves
adding chemically synthesized alkaline salts; adding too much can make the noodles have
a pungent odor.

Pepper straw, comprising leaves, stems, veins, and branches, emerges as a byproduct
of pepper cultivation [7]. In China, pepper cultivation holds the top spot among domestic
vegetable crops, with an expansive planting area exceeding 8.27 × 105 hm2 and an annual
straw output of about 7.25 × 106 tons [8]. Recently, pepper straw has found extensive use in
industrialized animal feed and biomass applications [9–11]. However, its limited economic
returns, coupled with a surplus of output compared to demand, have led to low utilization
rates. To address this issue, alternative utilization methods are under exploration. In food
applications, straw undergoes combustion to produce ash, which is then added to rice flour
to bolster its hardness and chewiness [12].

Pepper straw ash is rich in potassium carbonate and sodium carbonate [13,14], with
the ash extract exhibiting alkalinity [15]. Alkaline substances play a role in fortifying the
stability of the gluten protein network structure, thereby enhancing noodle quality [16]. It
is hypothesized that pepper straw ash leachate (PSAL) could similarly impact the gluten
network structure of noodles to elevate their quality. Nonetheless, the effects of PSAL on
noodle quality attributes remain unexplored.

Hence, PSAL was chosen as a natural noodle additive in this investigation. The study
scrutinized noodle texture properties, cooking properties, microstructure, and alterations in
disulfide bonds and free sulfhydryl groups induced by PSAL. The study aimed to elucidate
the influence of PSAL on noodle quality. The optimal PSAL dosage was determined, leading
to the enhanced stability of the gluten protein network structure and improvements in noodle
texture and taste. At the same time, this study increased the utilization rate of pepper straw
and provided a theoretical basis for its application in the noodle food industry.

2. Materials and Methods
2.1. Materials

Wheat flour was supplied by Meixiang Meitian Food Co., Ltd. (Zaozhuang, China).
The wheat flour contained 10.8% protein, 1.3% fat, and 74.7% carbohydrates. Pepper straw
was sourced from Huaxi Demonstration Base, Guiyang City, Guizhou Province (Guiyang,
China). All chemicals and reagents used were of analytical grade. All experiments were
conducted using deionized water.

2.2. Determination of the Composition of Pepper Straw Ash

Following the method outlined by Fahad et al. [17], the composition and content
of pepper straw ash were analyzed using Inductively Coupled Plasma Optical Emission
Spectrometry (icap6300, Thermo Scientific, Shanghai, China).

2.3. Pepper Straw Ash Leachate Preparation

Pepper straw was collected and washed with tap water to remove surface residue.
After sun exposure and drying, the straw was subjected to high-temperature burning until
it turned grayish-white. Ash samples were collected and passed through a 150-mesh sieve.
The ash was then boiled in water, with the water volume being 20 times that of the ash,
for 15 min. After boiling, the mixture was allowed to stand for 2 h. The supernatant was
filtered using a 300-mesh filter cloth to obtain pepper straw ash leachate (PSAL).

2.4. Production of Pepper Straw Ash Leachate Noodles

Following a slight modification of the method by Wang et al. [18], the noodle recipe
comprised 100 g of wheat flour and 40 g of aqueous solution (leachate solution + distilled
water). Various amounts of leachate were added, corresponding to 12%, 15%, 18%, 21%,
and 24% of the flour weight. Control noodles were prepared by mixing 100 g of wheat
flour with 40 g of distilled water. After a 15 min rest, the dough was rolled using an
electric dough sheeter (DM-DDYM02, Deming, Jinhua, China) with roll gaps of 3, 2, 1, and
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0.5 mm, undergoing nine rounds of rolling (3 mm/3 times, 2 mm/2 times, 1 mm/2 times,
and 0.5 mm/2 times). Subsequently, the dough sheet was cut into noodles measuring
4 mm in width and 0.5 mm in thickness, then dried, and samples were collected.

2.5. Determination of Cooking Properties

Cooking properties of the noodles were assessed following the AACC method with
minor adjustments [19]. Cooking Loss Rate: 10 g of noodles were placed in 500 mL of
boiling distilled water for the optimal cooking duration. Once cooked, the noodle soup
was transferred to a 500 mL volumetric flask to maintain a constant volume. A beaker
containing 100 mL of liquid was then placed in a 105 ◦C oven (DHG-9240A, Jinghong,
Shanghai, China) and baked until a constant weight was achieved. The rate of noodle
cooking loss was calculated using Equation (1).

Wp1 =
5m100

m ×
(
1 − WH2O

) (1)

Wp1: Cooking loss rate, in terms of mass fraction, %; m100: Dry matter mass in
100 mL noodle soup in grams (g); WH2O: Moisture content of dried noodles, %; m: Mass of
the sample in grams (g).

2.6. Water Absorption

This represents the mass ratio of noodles after steaming compared to before steaming.
Initially, 10 g of noodles were placed in 400 mL of boiling water (ensuring the water
remained slightly boiling throughout). At the optimal cooking time, the noodles were
removed to allow excess surface water to be absorbed, and then weighed. The water
absorption of the noodles was calculated using Equation (2).

Wp2 =
M1 − M2

M2
(2)

Wp2: Water absorption, in mass fraction, %; M1: The mass of the noodles before
cooking, in grams (g); M2: the mass of the noodles after cooking, in grams (g).

2.7. Color Analysis

The color parameters of the dough sheets were assessed using a colorimeter (Ultra
scanner Pro, Hunter Lab., Reston, VA, USA) [20], calibrated with a standard whiteboard and
blackboard. A 3 cm long and wide piece of dough sheet was inserted into the instrument’s
detection hole. Results are expressed in terms of L* (brightness) and b* (yellow-blue), with
the mean color calculated from triplicate measurements.

2.8. pH Measurement

The pH of the cooked noodle soup was determined using a pH meter (phs-3C,
Fangzhou Technology, Chengdu, China), calibrated with pH 4.0, pH 6.8, and pH 10.0
buffers. The noodle soup was stirred well, and 20 mL was transferred to a graduated
cylinder for pH analysis [21].

2.9. Light Transmittance of Noodle Soup

Following the method by Jeon et al., with slight modifications [22], ten samples of
dried noodles were cooked in 400 mL of boiling water for the recommended duration.
After allowing the noodle soup to stand for 15 min, light transmittance was measured at
720 nm using an ultraviolet spectrophotometer (UV-2100, UNICO, Franksville, WI, USA).

2.10. Texture Properties Analysis

As described by Liang et al. [23], texture profile analysis was performed using the
TX-XTC20 food texture analyzer (TA.TOUCH, Bosin Tech, Shanghai, China) equipped



Foods 2024, 13, 1562 4 of 14

with a cutter probe (TA/LKB). Noodles were boiled for the optimal cooking time, and
then transferred to cold water for 30 s. Subsequently, five noodles were selected, evenly
arranged on the texture meter stage, and measured within 5 min. Experimental parameters
included a pre-test speed of 2.0 mm/s, a test speed of 0.8 mm/s, a measured speed of
5.0 mm/s, an interval of 2.00 s, a deformation of 80%, and a pressure value of 5 g, yielding
values for hardness, chewiness, springiness, and adhesiveness. Each test was conducted
five times, with the maximum and minimum values discarded and the average calculated.

2.11. Scanning Electron Microscopy

The hanging surface of the noodles was truncated by approximately 4 mm in length.
The treated sample’s surface and cross-section were immersed in glutaraldehyde (2.5%)
for 2.5 h and then rinsed with cold phosphate buffer (0.1 M, pH = 7.4). Subsequently, the
samples underwent elution in a series of ethanol fractions (50%, 70%, 90%, and 100%) for
4 min each, followed by the removal of ethanol using isoamyl acetate. The samples were
dried at the critical point, where the dehydrated sample adheres to the conductive stage,
and then uniformly coated three times with gold particles (each for 10 min). Surface and
cross-sectional images of the sample were captured at magnifications of 550× and 1300×
using a scanning electron microscope (S-3600N, Hitachi, Tokyo, Japan) at an accelerating
voltage of 20.0 kV [24].

2.12. Determination of Free Sulfhydryl Groups and Disulfide Bond Content

Following the procedure outlined by Diao [25], the levels of free sulfhydryl groups
and disulfide bonds were determined using the Ellman colorimetric method with slight
modifications. Lyophilized noodles were ground into powder (50 mg) and added to 5.0 mL
of Tris-Gly buffer (pH 8.0, containing 8 M urea and 3 mm 5,5′-dithiobis-2-nitrobenzoic acid)
at 25 ◦C with shaking for 1 h.

For the determination of free sulfhydryl groups, 1 mL of the sample solution was
mixed with 0.05 mL of Ellman reagent and 4 mL of urea-guanidine hydrochloride solution
(containing 8 M urea and 5 M guanidine hydrochloride). The mixture was then incubated
in the dark at 25 ◦C for 20 min. After centrifugation at 10,000 r/min for 10 min at 25 ◦C,
the supernatant was collected and absorbance was measured using a spectrophotometer
(UV-2100, UNICO, Franksville, WI, USA) at 412 nm.

For the determination of total sulfhydryl content, 1 mL of the sample solution was
mixed with 0.05 mL of Ellman reagent and 4 mL of urea-guanidine hydrochloride. The mix-
ture was then incubated in the dark at 25 ◦C for 1 h. Following this, 10 mL of trichloroacetic
acid (TCA, 12% w/v) was added, and the solution was continuously mixed for another
hour. Finally, the solution was centrifuged at 10,000 r/min for 30 min at 25 ◦C.

The pellet is washed twice with 6 mL of the aforementioned TCA solution, dissolved in
10 mL of urea, and shaken. Subsequently, 0.05 mL of Ellman reagent was added and mixed,
and the absorbance was measured at 412 nm. The free sulfhydryl and total sulfhydryl
contents were calculated according to Equations (3) and (4), respectively.

f ree SH (µmol/g) = 73.53 × A412nm × D
C

(3)

total SH (µmol/g) = 73.53 × A412nm × D
C

(4)

The disulfide bond content was calculated according to Equation (5):

SS (µmol/g) =
(total SH − f ree SH)

2
(5)

where A is the absorbance at 412 nm; C is the sample concentration, mg/mL; and D is the
dilution factor.
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2.13. Sensory Properties

The sensory evaluation was conducted immediately after cooking, at serving tem-
perature. Samples were randomly presented on plates and tasted by groups of 20 trained
and experienced individuals. The samples were assessed for color, appearance, texture,
springiness, flavor, and overall quality using a 7-point hedonic scale (7 = excellent, 6 = very
good, 5 = good, 4 = fair, 3 = poor, 2 = very poor, and 1 = terrible). The sensory scores were
calculated by averaging the scores provided by the 20 members of the evaluation team.
Informed consent was obtained from all panelists involved in the study. The participants
have given permission for their data/answers to be used. It is affirmed that the research
was executed in strict adherence to protocols designed to safeguard the rights and privacy
of all participants. Ethical review and approval were waived for this study because the
experimental samples used are commonly consumed in daily life. The group members
tasting the samples do not face any related risks, and the experiment complies with the
national standards of the People’s Republic of China.

2.14. Statistical Analysis

Texture properties were determined in 5 replicates, while other indicators were as-
sessed in 3 repetitions. One-way analysis of variance (ANOVA) and Tukey–Kramer post
hoc multiple comparison tests were conducted using SPSS 27 to identify significant differ-
ences at p < 0.05 (p represents significant difference). Data processing and graphing were
performed using Origin 2022 software.

3. Results and Discussion
3.1. Analysis of Potassium and Sodium Components in Pepper Straw Ash

Inductively Coupled Plasma Optical Emission Spectrometry was employed to analyze
the elemental composition of pepper straw ash. The results revealed that the ash predom-
inantly comprised constant elements with trace amounts of other elements. The highest
detected content was 95,735.8 mg/kg of potassium, followed by 22,802.2 mg/kg of sodium,
with the phosphorus content recorded as zero.

The addition of alkaline salts and phosphates to noodles has been reported to enhance
gluten strength, reduce starch extractables, and improve noodle texture [26]. Therefore,
according to the test results, it can be seen that there are no phosphates in the ash that can
enhance the gluten network, but there are alkaline salts that can improve the quality of
noodles [27]. Following the creation of pepper straw ash leachate (PSAL) by mixing pepper
straw ash with water at a mass ratio of 1:20 (ash weight to water weight), the potassium
and sodium content in PSAL were approximately 4558.85 mg/kg and 1085.82 mg/kg,
respectively. According to research by Fan et al. [3], potassium carbonate and sodium
carbonate, rich in potassium and sodium, respectively, have been shown to improve noodle
quality. Given the significant presence of potassium and sodium elements in PSAL, it was
speculated that PSAL could positively influence noodle quality.

3.2. Effect of Pepper Straw Ash Leachate (PSAL) on the Cooking Properties of Noodles

The cooking properties of noodles depicted in Figure 1 reveal notable changes fol-
lowing the addition of PSAL. Specifically, there was a significant increase in the optimum
cooking time of noodles after PSAL incorporation (p < 0.05). Additionally, the water ab-
sorption rate initially increased and then decreased, reaching a peak of 203% when the
PSAL content was 18%. Moreover, at 18% PSAL content, the cooking loss rate decreased to
its lowest value of 2.33%.

Cooking properties play a crucial role in assessing noodle quality [28], with water
absorption, optimum cooking time, and cooking loss rate identified as key parameters.
High-quality noodles typically exhibit elevated water absorption and reduced cooking
loss rates [29]. The ash component, containing potassium (K) and sodium (Na), impacts
the stability of the gluten network [30]. Consequently, PSAL reinforces the stability of the
gluten network structure to varying degrees, facilitating the tighter encapsulation of starch
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within the gluten network and thereby reducing the loss rate. This leads to an increase in
intact starch granules, subsequently elevating the water demand for starch gelatinization
during cooking, hence augmenting water absorption. However, the excessive addition
of leaching solution can result in a high pH, which may compromise the stability of the
network structure, leading to gradual loosening [5]. This phenomenon might stem from
alkaline conditions heightening the number of negatively charged amino acids in proteins
and increasing protein solubility [31]. Consequently, starch loss increases, resulting in
elevated cooking loss rates and reduced water absorption rates. This observation aligns
with previous findings by Cheng et al. [32], suggesting that low concentrations of potassium
and sodium ions can mitigate the hydrophobicity of gluten protein, enhancing water
absorption in noodles. Notably, the water absorption rate starts to decline significantly at
high concentrations.
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Figure 1. Changes in cooking properties of noodles with different levels of pepper straw ash leachate
(PSAL). Panel (a) shows changes in cooking loss rate, while panel (b) depicts variations in water
absorption and optimum cooking time. Different letters denote significant differences between
different samples (p < 0.05).

3.3. Effect of PSAL on the pH and Color of Noodles

Figure 2a illustrates the chromaticity variations of the noodles. With increasing PSAL
content, the L* value of the noodles initially rises, reaching its peak at 18%, before gradually
diminishing. Concurrently, the b* value exhibits a consistent upward trend, indicating a
darkening of the yellow color with higher PSAL content. In Figure 2b, the pH changes of
the noodles are depicted. It is evident that PSAL noodles exhibit alkalinity, with the pH
increasing as the amount of PSAL added rises, indicating stronger alkalinity.

Noodle color significantly influences consumer perception, with bright colors being
particularly favored by Asian consumers due to their enhanced sales appeal [33]. Typically,
the color of yellow alkali noodles is evaluated based on changes in L* (brightness) and b*
(yellow) values. The notable increase in pH of the noodles may be attributed to the high
concentration of alkaline metals present in pepper straw ash [34], facilitating the creation
of an alkaline environment. The rise in L* value could be attributed to PSAL promoting the
formation of a reticulated structure within the noodles, resulting in a smoother and tighter
internal structure, thereby increasing light reflection. Conversely, the gradual decline in L*
value may be a consequence of excessively high pH levels induced by an excess of PSAL.
This elevated pH can impact the electrostatic interaction between the carbonyl and amino
groups on the polypeptide chain, as well as the stability of hydrogen bonds [5], potentially
leading to the loosening of the noodle network structure, increased voids, reduced light
reflection, and diminished brightness. The increase in the b* value of the dough sheet is
likely due to the presence of flavones [35] in the flour, which are colorless in acidic and
neutral environments. However, in an alkaline environment with a high pH [6], they
separate from the starch and acquire a yellow hue. Hence, as more PSAL is added, the
noodles exhibit a deeper yellow color. The color hue of the noodles has always been
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yellow. With the increase in PSAL, there is a significant change in the chroma of noodles,
with higher PSAL levels leading to more saturated colors of the noodles. There is no
significant change in the value of a*. Because PSAL is an alkaline, light yellow liquid, it
only significantly impacts the hue and chroma of yellow in the noodle color, with no effect
in the a* value.
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Figure 2. Changes in the color and pH of noodles when different amounts of PSAL are added. Panel
(a) illustrates alterations in the yellowness and brightness of noodles with different PSAL contents,
where L* represents brightness and b* represents yellowness. Panel (b) demonstrates changes in the
pH of noodles with different PSAL contents. Different letters indicate significant differences between
different samples (p < 0.05).

3.4. Effect of PSAL on the Textural Properties of Noodles

Figure 3a depicts the changes in noodle hardness and chewiness with varying PSAL
additions. Compared to the control group, the noodles’ hardness and chewiness exhib-
ited significant increases (p < 0.05). Specifically, hardness increased from 198.07 N to
312.55 N, and chewiness rose from 118.79 N to 184.64 N. The highest values for these
properties were observed at a PSAL content of 18%, after which hardness and chewiness
gradually decreased when PSAL content ranged between 18% and 24%. In Figure 3b, the
adhesiveness of noodles continued to increase with increasing PSAL content. However,
when the PSAL content reached 12–15%, the adhesiveness of noodles was lower than that
of the control group, suggesting that adding PSAL at 12–15% effectively reduced noodle
adhesiveness, resulting in a smoother taste. The impact of PSAL on noodle springiness was
not evident.

The textural properties of noodle products are crucial factors in evaluating their overall
quality, with high-quality noodles characterized by good hardness, chewiness, and a smooth
surface [36]. It is speculated that PSAL can enhance noodle hardness and chewiness within a
certain range. Specifically, at a PSAL addition of 18%, the cross-linking and polymerization
between protein molecules are enhanced, forming a robust gluten network structure that
improves hardness and chewiness [4]. However, excessive PSAL addition (21–27%) may
reduce the interaction between protein molecules, leading to network junction destruction
and corresponding decreases in hardness and chewiness. These results suggest that adding
PSAL within a specific range can enhance noodle quality and improve palatability. This
observation aligns with the findings of Obadi et al. [37], who demonstrated that alterations
in noodle hardness, chewiness, and adhesiveness contribute to enhancing noodle quality.
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Figure 3. Changes in the texture of noodles with different levels of PSAL added. Panel (a) displays
alterations in the hardness and chewiness of noodles at different PSAL contents, while panel (b) illustrates
variations in the viscosity and elasticity of noodles with varying PSAL contents. Different letters indicate
significant differences (p < 0.05) between different noodle samples.

3.5. Effect of PSAL on the Turbidity of Noodles

Figure 4b illustrates the change in light transmittance of the noodle soup under
different PSAL contents. As the ash leaching content increases, light transmittance initially
rises before declining. At 18% PSAL content, the maximum transmittance value of 86.17%
is reached, resulting in the clearest noodle soup, which is 11% higher compared to the
control group. Visually, as depicted in Figure 4a, it is observed that the soup with leaching
liquid noodles (18%) is significantly brighter than that of the control group.
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The turbidity of noodle soup is a crucial evaluation indicator for noodles [38]. Lower
soup turbidity and higher light transmittance correspond to better noodle quality. Notably,
when the PSAL addition was 18%, the turbidity of the noodle soup was the lowest. It is
speculated that within a certain range, PSAL enhances the compactness of the mesh network
structure of noodles. Consequently, cooking loss decreases and the light transmittance of
the noodle soup increases, aligning with the cooking loss rate results. However, with an
increase in leaching solution concentration, the protein network is damaged, leading to the
rupture of starch granules from the gluten network [2]. This results in increased soluble
substances and a reduced light transmittance of the noodle soup.

3.6. Effect of PSAL on the Microstructure of Noodles

Figure 5 illustrates the microstructure of both the cross-section and surface of control
noodles and PSAL noodles at magnifications of 1300× and 500×, respectively, using scan-
ning electron microscopy. Compared to the control group, noodles containing a certain
amount of PSAL (12–18%) exhibited a relatively continuous and compact reticulated struc-
ture, leading to the better encapsulation and completeness of starch granules. Specifically,
at an additional amount of 18% PSAL, the encapsulation of starch granules by the gluten
network was the most compact, without voids, and with the smoothest surface. However,
with PSAL added at 21–24%, the noodle network structure began to deteriorate, resulting
in the appearance of fractures and an increased proportion of gaps, exposing more starch
outside the network structure.
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Figure 5. Scanning electron microscope images of control group noodles and noodles with different
PSAL contents. The images showcase the surface and cross-sectional microstructure of control group
noodles, as well as noodles with varying PSAL contents (12%, 15%, 18%, 21%, and 24%). The
magnification ratios are 500× (surface) and 1300× (cross-section). In the images, the red intra-frame
filaments represent the network structure formed by gluten proteins, the yellow intra-box ellipticals
denote starch granules, and the green intra-frame indicates gaps formed between the gluten network
and the starch.

The internal structure of noodles plays a crucial role in determining their quality [39].
It consists of a well-developed gluten network with embedded starch granules [40]. When
12–18% PSAL is added, the microstructure of noodles becomes denser and smoother. This is
attributed to the sodium and potassium ions in PSAL neutralizing the charged amino acids
on the surface of gluten, thereby reducing electrostatic repulsion between gluten molecules
and facilitating the formation of the gluten network [18]. This finding corroborates the
results of Chong Lin et al., who also reported that alkaline conditions promote the formation
of a more compact noodle network [41]. Furthermore, under the influence of alkaline water,
a film-like substance may develop in the microstructure of noodles [3]. It is hypothesized
that PSAL may interact with the noodles to create this substance, resulting in smoother
noodles. However, with increased PSAL addition (21–24%), more voids and surface
roughness become evident in the cross-section of the noodles. This could be attributed to
the corresponding rise in pH value with increased PSAL content. The elevated pH value
makes it difficult for the gluten network to establish a stable starch-encapsulating structure.
Consequently, the continuity of the noodle matrix decreases, leading to an increase in voids
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and resulting in softer noodles [42]. This observation aligns with the cooking property
trend observed earlier.

3.7. Effect of PSAL on Free Sulfhydryl Group (SH) and Disulfide Bond (S-S) Content

As depicted in Figure 6, the content of free sulfhydryl groups (SH) in PSAL noodles
exhibited a significant decrease (p < 0.05). The minimum value recorded was 2.20 µmolg−1

when the PSAL content was 18%. At a higher PSAL content (21–24%), the SH content
showed a slight increase compared to lower PSAL content levels, albeit not significantly
different from the control group. Notably, it is observed that as the SH content decreased,
there was a significant increase in the content of disulfide bonds (S-S) (p < 0.05). Specifically,
when the PSAL addition was 18%, the S-S content peaked at 7.42 µmolg−1.

Foods 2024, 13, x FOR PEER REVIEW  11  of  15 
 

 

 

Figure 6. The impact of PSAL on the content of free sulfhydryl groups (SH) and disulfide bonds (S‐

S) in noodles. Yellow indicates the content of SH in gluten proteins. Green indicates the content of 

S‐S in gluten proteins. a–e: different letters denote significant differences between different samples 

(p < 0.05). 

The degree of  formation and stability of  the gluten structure  in noodles primarily 

depends on intermolecular forces, including hydrogen bonds, and disulfide bonds in pro‐

teins [43]. The levels of SH and S‐S serve as reliable indicators of protein chain aggrega‐

tion, offering valuable  insights  into  the  formation of  the gluten network  [44]. With  the 

incorporation of PSAL, a decrease in SH content and an increase in S‐S content were ob‐

served. This suggests  that PSAL  induced the oxidation of some SH groups to  form S‐S 

bonds, thereby enhancing S‐S binding [45]. This observation aligns with the trends ob‐

served in the cooking loss rate and noodle microstructure discussed previously. The ro‐

bust protein network formed by S‐S bonds between gluten chains within a certain range 

of PSAL addition can impede the separation of starch granules from the gluten network. 

It is postulated that PSAL addition triggers oxidation between SH groups, thereby pro‐

moting the cross‐linking and intertwining of intermolecular S‐S bonds in the protein net‐

work structure [46]. Similar findings were reported by Shiau and Ye [47], where an in‐

creased formation of gluten network S‐S bonds was observed in noodles prepared with 

alkaline water. However, with a higher PSAL content, an  increase  in SH content and a 

decrease in S‐S content were observed. This could be attributed to S‐S bond fracture. It is 

speculated that the highly alkaline conditions make it challenging to form covalent bonds 

between SH groups, thereby impeding S‐S bond formation [34]. 

3.8. Sensory Evaluation of PSAL Noodles 

Sensory evaluation directly  reflects consumer preference  for  food and  is a crucial 

method for assessing food quality. The sensory features of cooked noodle products are 

depicted in Figure 7, and the inclusion of varying levels of PSAL influences the sensory 

qualities of the noodles. 

Figure 6. The impact of PSAL on the content of free sulfhydryl groups (SH) and disulfide bonds (S-S)
in noodles. Yellow indicates the content of SH in gluten proteins. Green indicates the content of S-S in
gluten proteins. a–e: different letters denote significant differences between different samples (p < 0.05).

The degree of formation and stability of the gluten structure in noodles primarily
depends on intermolecular forces, including hydrogen bonds, and disulfide bonds in
proteins [43]. The levels of SH and S-S serve as reliable indicators of protein chain ag-
gregation, offering valuable insights into the formation of the gluten network [44]. With
the incorporation of PSAL, a decrease in SH content and an increase in S-S content were
observed. This suggests that PSAL induced the oxidation of some SH groups to form
S-S bonds, thereby enhancing S-S binding [45]. This observation aligns with the trends
observed in the cooking loss rate and noodle microstructure discussed previously. The
robust protein network formed by S-S bonds between gluten chains within a certain range
of PSAL addition can impede the separation of starch granules from the gluten network. It
is postulated that PSAL addition triggers oxidation between SH groups, thereby promoting
the cross-linking and intertwining of intermolecular S-S bonds in the protein network
structure [46]. Similar findings were reported by Shiau and Ye [47], where an increased
formation of gluten network S-S bonds was observed in noodles prepared with alkaline
water. However, with a higher PSAL content, an increase in SH content and a decrease in
S-S content were observed. This could be attributed to S-S bond fracture. It is speculated
that the highly alkaline conditions make it challenging to form covalent bonds between SH
groups, thereby impeding S-S bond formation [34].
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3.8. Sensory Evaluation of PSAL Noodles

Sensory evaluation directly reflects consumer preference for food and is a crucial
method for assessing food quality. The sensory features of cooked noodle products are
depicted in Figure 7, and the inclusion of varying levels of PSAL influences the sensory
qualities of the noodles.
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In comparison to the control group (appearance = 1 point; texture = 1 point; springi-
ness = 1 point), when the PSAL concentration reached 18%, the three sensory attributes
of PSAL on noodles notably improved, reaching the peak score of 7 points. Regarding
color attributes, noodles with 18% and 21% PSAL attained the highest score of 7. However,
with excessive PSAL addition (21–24%), the noodle texture gradually softened, the surface
became slightly rough and uneven, springiness decreased, and the overall score declined.
Noodles with an added PSAL content of 18% received the highest rating in terms of
overall acceptability.

4. Conclusions

To conclude, PSAL positively influenced various aspects of noodle quality including
cooking properties, texture, microstructure, and free sulfhydryl group and disulfide bond
content. The quality of noodles improved gradually with an increase in PSAL content
(12–18%), but decreased when PSAL (18–24%) was excessively added. The quality of
noodles was optimal when the PSAL content was at 18%, significantly enhancing the
hardness and chewiness of the noodles. Moreover, the noodles exhibited improved bright-
ness and saturation, and experienced a decreased loss rate during steaming and cooking.
This led to the increased transmittance of the noodle soup, thereby reducing its turbidity
and enhancing its appeal to consumers. The addition of PSAL to noodles facilitated the
conversion between free sulfhydryl groups and disulfide bonds, indicating its role in oxi-
dizing some free sulfhydryl groups to form disulfide bonds. Consequently, this enhanced
the cross-linking of disulfide bonds among gluten protein molecules. The microscopic
analysis of PSAL noodles revealed a more continuous and dense network structure, with
significantly reduced gaps between the starch and gluten protein network in the noodles.
In conclusion, the impact of PSAL on noodle quality was elucidated through an analysis
of cooking properties, texture characteristics, microstructure, and free sulfhydryl group
and disulfide bond content. The optimal amount of PSAL in noodles was determined.
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This study provides theoretical support for the improvement of noodles with PSAL and its
utilization and development in the noodle processing industry. Additionally, it opens new
pathways for the application of pepper straw biomass resources in the food industry.
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