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Abstract: Coaxial bioreactors are known for effectively dispersing gas inside non-Newtonian fluids.
However, due to their design complexity, many aspects of their design and function, including
the relationship between hydrodynamics and bioreactor efficiency, remain unexplored. Nowadays,
various numerical models, such as computational fluid dynamics (CFD) and artificial intelligence
models, provide exceptional opportunities to investigate the performance of coaxial bioreactors. For
the first time, this study applied various machine learning models, both classifiers and regressors, to
predict the torque generated by a coaxial bioreactor. In this regard, 500 CFD simulations at different
aeration rates, central impeller speeds, anchor impeller speeds, and rotating modes were conducted.
The results obtained from the CFD simulations were used to train and test the machine learning
models. Careful feature scaling and k-fold cross-validation were performed to enhance all models’
performance and prevent overfitting. A key finding of the study was the importance of selecting
the right features for the model. It turns out that just by knowing the speed of the central impeller
and the torque generated by the coaxial bioreactor, the rotating mode can be labelled with perfect
accuracy using k-nearest neighbors (kNN) or support vector machine models. Moreover, regression
models, including multi-layer perceptron, kNN, and random forest, were examined to predict the
torque of the coaxial impellers. The results showed that the random forest model outperformed all
other models. Finally, the feature importance analysis indicated that the rotating mode was the most
significant parameter in determining the torque value.

Keywords: coaxial bioreactor; gas dispersion; power consumption; machine learning; computational
fluid dynamics

1. Introduction

Mechnical agitators equipped to bioreactors are mainly used to enhance mass and
heat transfer within the bioreactor. These systems are crucial in sectors ranging from
pharmaceutical production to wastewater treatment. The effectiveness of these bioreactors
is greatly influenced by their power consumption, particularly in terms of mixing intensity
and homogeneity. Efficient power consumption is key to achieving optimal performance in
agitated bioreactors [1].

The power drawn value is the required energy at a specific time to create fluid bulk
motion [2]. Under ungassed conditions, stirrer speed, impeller shape and size, the geometry
of the tank, and fluid properties can affect the power requirement. However, the ungassed
power drawn shows a strong dependency on the impeller diameter and stirrer speed.
Under turbulent flow regime, the ungassed power drawn is dependent on the fluid density
and is independent of the fluid viscosity. Typically, the required power decreases with gas
dispersion. This can be attributed to a reduction in the fluid mixture density in the presence
of the gas bubble [3]. However, the main reason for the reduction in power drawn upon
aeration is the formation of gas-filled cavities in the impeller region, which reduces the
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stirrer rotation drag, and as a result, the transmitted power from the impeller to the fluid
decreases [4]. Radial-flow impellers, such as Rushton impellers, exhibit a higher amount
of power reduction upon aeration, and the power consumption of the Rushton impeller
reduces by about 50% under aeration [5].

For thedown-pumping axial-flow impellers, the power reduction due to aeration
is small at low gas flow rates because, under this condition, the flow pattern is defined
as an indirect loading flow regime. When the flow regime changes from an indirect
to a direct loading regime at higher gas flow rates, the power drop due to aeration is
substantial [6]. The power consumption of down-pumping axial-flow impellers is less than
that of radial-flow impellers [5]. However, since they have a very unstable cavity structure,
they encounter torque fluctuations [7,8]. In order to solve this problem, some researchers
prefer using up-pumping impellers [9,10].

The effect of fluid rheology on power reduction is also significant. By increasing the
fluid viscosity, the amount of power reduction increases. At the same aeration rate and
impeller speed, the transmitted power to a non-Newtonian fluid is less than that of a
Newtonian fluid [11,12]. In a non-Newtonian fluid, the viscosity changes with the shear
rate. Hence, studying the power consumption in a non-Newtonian fluid is more complex
than in a Newtonian fluid. Even with high turbulence mixing of the pseudoplastic fluids,
the bulk fluids circulate slowly and consume less power than the fluid near the impeller
region [13,14].

The coaxial bioreactor is a type of mixing system particularly designed for dispersing
gas in non-Newtonian fluids [15,16]. These systems consist of two independent agitators.
The one located at the center of the vessel is known as the central impeller, and the other is
termed the close-clearance impeller [17]. The power consumption for the coaxial mixer in
the counter-rotating mode is higher than that in the co-rotating mode [18].

Rahimzadeh et al. [17] conducted a comprehensive study on the power consumption
of coaxial mixers. They showed a relationship between power reduction during aeration
and the overall efficiency of mixing. In addition, they uncovered an intricate correlation
between the rotating mode and the torque generated by the anchor impeller. Designing
an accurate master power curve remains a significant challenge in this field, particularly
for aerated coaxial mixers. In response to this challenge, Barros et al. [19] proposed new
parameters for equivalent impeller diameter and rotational speed for a coaxial mixer
containing yield-pseudoplastic fluids. They were able to accurately calculate the power
number and Reynolds number of the system. Therefore, they successfully developed a
master power curve. In another attempt, Sharifi et al. [20] successfully predicted the power
curve for a coaxial mixer equipped with a dual central impeller and an anchor. Their
research also demonstrated the influence of the central impeller type on power reduction
during aeration.

Research on applying artificial intelligence to analyze mixing systems is still in its
nascent stages, with only a handful of studies published to date [21]. Among these, the use
of the random forest method has shown promising results. Kumar et al. [22] demonstrated
the potential of this method in developing a predictive model for the segregation index in
particulate mixing. Based on our comprehensive literature review, only two studies have
been published on the application of neural networks in coaxial mixers [23,24]. Barros
et al. [23] employed an artificial neural network (ANN) to predict the mass transfer coeffi-
cient in a coaxial bioreactor. They adopted two strategies: initially, they designed an ANN
with two hidden layers, and subsequently, they implemented an ensemble neural network.
Their findings indicated that the performance of the ensemble neural network was notably
superior. In a more recent study, Yang et al. [24] utilized an artificial neural network to
predict the optimal speed of the central impeller for achieving complete dispersion in a
coaxial mixer containing a Newtonian fluid. Their model was structured with a single
hidden layer comprising 11 neurons.

The use of artificial neural networks has also proven effective in predicting the master
power curve. Bibeau et al. [25] implemented the cross-validation method within their ANN
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model to mitigate overfitting issues and to predict the power curve of a single-phase mixing
tank. Additionally, artificial intelligence methods have been instrumental in enhancing
the performance and efficiency of mixing systems. Research indicates that utilizing ANN
models or evolutionary algorithms can address multi-objective optimization challenges.
In fact, these methods are capable of determining the most efficient operating conditions,
thereby optimizing performance while minimizing power consumption [26,27].

In many biochemical applications, determining the maximum allowable power con-
sumption and impeller speed is crucial. To address this, our study introduces, for the
first time, various machine learning methods developed to identify the optimal operating
conditions and predict the torque generated by a coaxial bioreactor. In this study, the
computational fluid dynamics method (CFD) was used to find the torque of a coaxial
bioreactor. The system’s performance was evaluated under different conditions, including
varying aeration rates, central and anchor impeller speeds, and rotational modes, in terms
of power consumption. Moreover, the effectiveness of different machine learning methods
in classifying the coaxial bioreactor into different rotating modes and predicting the torque
generated by the mixing system was assessed.

2. Methods
2.1. Experiments

As per Figure 1, a mixing vessel was fabricated. The cylindrical vessel was filled
with liquid to a height equivalent to the vesssel diameter. Therefore, the liquid volume
was about 50.0 L. Two impellers were mounted on each shaft. As illustrated in Figure 1,
the anchor impeller was fixed to the bottom shaft, and a pitched blade impeller in the
upward-pumping direction was fixed to the top shaft as a central impeller. Each shaft was
able to rotate independently in the same or opposite directions (co-rotating and counter-
rotating modes). Air with a flow rate of 6 L/min was fed through the sparger. The
procedure for power consumption calculation has been discussed in detail in our previous
publications [17].
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Figure 1. Experimental setup.

A 0.5 wt% Carboxymethyl cellulose (CMC) solution was prepared, and its rheological
properties were examined using the Bohlin C-VOR Rheometer 150 (Malvern Instruments,
UK). The power-law non-Newtonian model was fitted to the data obtained from the
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rheometer at a temperature of 22 ± 1 °C. Hence, the consistency index (k) and power law
index (n) were found to be 2.36 Pa sn and 0.65, respectively.

2.2. Computational Fluid Dynamics

As previously discussed [17], we utilized ANSYS FLUENT 2022R2 software to develop
a numerical model for examining the fluid dynamics within the aerated coaxial bioreactor.
For a coaxial mixer with a volume of 50.0 L, the numerical model validation test based on
the power consumption was carried out and presented in Figure 2. As shown in this figure,
the numerical model was able to replicate the experimental data with satisfactory accuracy.
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In this research, we numerically developed a scaled-down model of a coaxial bioreactor
by maintaining complete geometrical similarity and a scale factor of 0.5. As illustrated
in Figure 2, the numerical model, sized at 50.0 L, was validated against experimental
results. Consequently, the developed numerical model was size-independent and could
be applied to a smaller scale. In fact, to minimize computation time, all CFD simulations
were conducted using the small-scale coaxial mixer. A fluid volume of approximately 6.3 L
was encapsulated within this small-scale bioreactor. A total of 500 CFD simulations were
conducted under various operating conditions. All of the CFD simulations were performed
on the Niagara supercomputer at the SciNet HPC Consortium. The operating conditions
employed in this study are listed in Table 1.

Table 1. The operating conditions used for the CFD simulations of a coaxial bioreactor with a volume
of 6.3 L.

Features Range

Central impeller speed (Nc) 60–150 rpm

Anchor impeller speed (Na) 3.5–9.5 rpm

Aeration rate (Q) 2–6 L/min

Rotating mode Co-rotating and counter-rotating
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2.3. Machine Learning Model

All the data derived from the CFD simulations were utilized to train and test the
machine learning models. As indicated by the data in Table 2, the features vary significantly
in magnitude. Consequently, scaling the dataset was necessary. In this study, the MinMax
normalization method was employed for dataset scaling [28]. Therefore, all features were
scaled to fit within the range of zero to one, as follows:

xscaled =
x − xmean

xmax − xmin
(1)

Table 2. Tuning of the k parameter in the kNN classifier across different cross-validation folds.

Number of
Cross Validation Fold k Accuracy

cv = 3 7 0.6552

cv = 4 7 0.7795

cv = 5 8 0.9510

cv = 6 7 0.8732

cv = 7 7 0.9183

cv = 8 7 0.9392

cv = 9 7 0.9532

cv = 10 8 0.9632

cv = 11 7 0.9652

cv = 12 7 0.9629

cv = 13 7 0.9775

cv = 14 7 0.9836

cv = 15 7 0.9837

cv = 16 7 0.9837

cv = 17 7 0.9857

cv = 18 7 0.9920

cv = 19 7 0.9939

cv = 20 7 0.9940

In this equation, xscaled and x are the scaled and original data, respectively. Further-
more, the k-fold cross-validation method was employed to enhance the performance of the
various machine learning algorithms and reduce the risk of overfitting problems.

To assess the performance of different machine learning models, various criteria were
systematically investigated. Specifically, the mean square error (MSE) was employed to
examine the accuracy of the proposed regression models:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (2)

In this equation, Yi and Ŷi are the actual and predictive responses, respectively.
Another parameter used to evaluate the performance of the regression model was

R2 [29]:

R2 = 1 − SSres

SStot
(3)
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In this equation, SSres is the sum of the squared differences between the actual and
predicted responses, and SStot represents the total sum of squares variance in the actual
and predicted responses. The value of the R2 score ranges between zero and one. However,
a negative value for the predictive R2 is possible. This occurs when the variance in the test
data exceeds that of the training data, indicating that the test data falls outside the training
data’s range, and thus the model exhibits poor generalization [30].

For the evaluation of the classification models, the confusion matrix was calculated.
This matrix encompassed four primary elements: true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). TP and TN represent cases where the model
accurately predicted positive and negative classes, respectively. Conversely, FP and FN
denote instances where the model erroneously predicted the classes. Based on the data
obtained from the confusion matrix, the accuracy of each classification model was calcu-
lated [31]:

accuracy =
TP + TN

TP + TN + FP + FN
(4)

2.3.1. Classification Models

In this study, two supervised models were deployed to classify the coaxial mixer into
two categories: co-rotating and counter-rotating modes. The k-nearest neighbors (kNN)
model was employed as an instance-based method. This approach entails that the model’s
predictions for the classes were based on instances from the training data. Consequently,
for new instances, the model compared them with previously stored data [32].

In this study, the Euclidean distance metric was utilized to measure the distance
between two data points in the k-nearest neighbors (kNN) algorithm. The classification
of a test instance was determined based on the proximity of its nearest neighbors. For
example, when the k value was set to 5, the algorithm identified the five nearest instances
to the test data point within the feature space. Subsequently, the class of the test instance
was predicted based on the majority class among these five neighbors. It is important to
note that the selection of k was critically influential on the kNN model’s performance. A k
value that was too small could have made the model susceptible to noise in the dataset,
potentially leading to overfitting. On the contrary, a k value that was excessively large
may have included points that were comparatively distant from the test instance, causing
underfitting and poor generalization to new data points [33].

The support vector machine (SVM) model is a robust approach for binary classification
tasks. In this research, the SVM model was employed to distinguish between the co-rotating
and counter-rotating operational modes of the coaxial bioreactor. The SVM model is known
for its capacity to identify the optimal linear hyperplane that maximizes the margin between
two classes [34]. Therefore, the linear hyperplane serves as an efficient decision boundary
for separating the co-rotating and counter-rotating modes. Mathematically, the decision
boundary for an SVM with a linear kernel can be expressed as:

wTx + b = 0 (5)

where w is the weight vector and x represents the feature vector.
Margins were determined based on the support vectors. Support vectors are the data

points that are closest to the decision boundary, and are crucial for defining the hyperplane.
One of the advantages of the SVM method is its reliance solely on these support vectors for
model construction. Therefore, only these instances need to be remembered by the SVM
model [34].

The distance between the margins, often referred to as the margin width, is given by
the following equation [35]:

margin width =
2

||w|| (6)
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However, achieving this maximization is a sophisticated task. Thus, instead of Equa-
tion (3), the following equation can be minimized [35]:

1
2
||w||2 + C

n

∑
i=1

ξi (7)

where C represents the regularization. When C is set to zero, the model is referred to
as having a hard margin. It means that no misclassification is tolerated. However, as C
increases, the SVM becomes more tolerant of misclassifications (soft margin). To solve
this optimization problem, the sequential minimal optimization (SMO) algorithm was
frequently employed. SMO breaks the problem down into smaller sub-problems and
makes the computation significantly efficient [36].

It is worth noting that most of the time, the relationship between classes is not linearly
separable. To address this problem, the input data can be mapped to a higher-dimensional
space where the classes are linearly separable. However, this transformation is computa-
tionally intensive. To overcome this problem, SVMs employ a powerful technique known
as the kernel trick. For this purpose, there are many kernels available, such as polynomial,
Gaussian, and sigmoid [37].

2.3.2. Regression Models

In this study, the torque produced by the coaxial mixer was predicted based on various
operational parameters such as aeration rate, central impeller speed, anchor impeller speed,
and rotating modes. By considering the rotating mode as a feature set, the complexity of the
predictive modeling task increased significantly. To address this challenge, it was crucial
to normalize all the input variables. In this study, various machine learning approaches
were employed, including multi-layer perceptron (MLP), k-nearest neighbour (kNN), and
random forest.

The MLP, also known as an artificial neural network (ANN), typically comprises
multiple layers: an input layer, several hidden layers, and an output layer. Each layer
consists of a number of neurons. In this study, a fully interconnected network was created.
The input layer received all the feature variables, while the output layer was designed to
predict the torque. In this model, each neuron computed a weighted sum of its inputs,
added a bias, and then applied an activation function to the result [25,38]

During training, the backpropagation algorithm was employed to compute the gradi-
ent of the loss function with respect to each weight by the chain rule, propagating the error
backward through the network [39]. The mean squared error (MSE) was used as a loss
function to guide the optimization. The adaptive moment estimation (ADAM) optimizer
was utilized for updating the weights and biases. ADAM is particularly effective due
to its adaptive learning rate, which adjusts as learning progresses. To capture complex
relationships in the data, different activation functions such as sigmoid, hyperbolic tangent
(tanh), and rectified linear unit (ReLU) can be used [40].

Another set of machine learning models, known as ensemble models, are comprised
of several other models in order to enhance overall performance and reduce the risk of
overfitting problems [41]. Some well-known methods to create an ensemble model are
bagging, boot strabbing, and stacking.

In this study, a robust ensemble machine learning model, a random forest regressor,
was employed. This model was based on the bagging approach to control overfitting by
integrating the predictions of several base estimators. Each base estimator was a shallow
decision tree, constructed on a subset of the data. In fact, for each tree, a random subset of
features was selected. Additionally, a portion of the data, not used in training a particular
tree, known as the out-of-bag data, was employed to estimate the performance of each tree.
This out-of-bag data provided an unbiased estimate of the model’s performance [22].

The final prediction of the random forest regressor was obtained by averaging the
predictions of all the individual trees, which are referred to as weak learners [42]. One of the
significant advantages of the random forest model is its ability to evaluate the importance
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of each feature in the prediction. By observing how much the mean squared error decreases
when a feature is excluded, the model provides insights into which features are most
influential in predicting the target variable.

The selection of these machine learning algorithms was based on the specific challenges
of classification and regression within complex systems like coaxial bioreactors. Each
algorithm offers unique advantages that make it suitable. The kNN algorithm was selected
for its simplicity and effectiveness in classification tasks, requiring minimal model training
time. SVM was chosen for its effectiveness in binary classification tasks, especially for its
ability to find the optimal hyperplane that maximizes the margin between classes. MLP
was selected for its capacity to model complex non-linear relationships through multiple
layers and neurons. The random forest algorithm was chosen for regression tasks due to
its robustness to overfitting and its ability to handle large datasets with high-dimensional
features. Moreover, in machine learning tasks, the simplest model is always better, and
since we reached almost perfect results with the aforementioned models, other potential
models were not investigated in this study.

3. Results and Discussion

As outlined in Section 2.2, a total of 500 simulations were conducted at various central
impeller speeds, anchor impeller speeds, and rotating modes. In the ANSYS FLUENT
software, the torque applied to the wall surface of the mixing vessel about the central
impeller axis was determined for each simulation.

3.1. Classification

In this phase of the study, Nc, Na, Q, and torque were designated as feature variables,
while the rotating mode of the coaxial bioreactor was set as the target variable. To construct
and validate the model, the dataset was split into two parts: 70% of the data was allocated
for training, and the remaining 30% was reserved for testing. Stratified sampling was
employed during the data split and was based on the rotating mode to ensure that each
subset of the data maintained a representative ratio of each rotating mode.

The kNN algorithm was selected to predict the rotating mode. Prior to modeling,
all features were normalized using the MinMax scaling method. To ascertain the optimal
configuration for the model, cross-validation was performed with varying numbers of
folds. The GridSearchCV tool from the scikit-learn library was used to facilitate the hy-
perparameter tuning. The effectiveness of the model under different k parameters was
evaluated, and the results are listed in Table 2.

It was uncovered that as the number of folds increased, a more precise estimate of the
model’s performance was obtained. At 20 folds of cross validation, the ideal number of
neighbors (k) was determined to be seven. Based on the data obtained from the confusion
matrix, the model achieved an impressive accuracy of 0.9940. Therefore, the model was
able to successfully classify the rotating mode of the coaxial bioreactor.

In the initial model, five features were utilized to predict the rotating mode of the
coaxial mixer. However, it was crucial to identify the most influential features through
feature selection techniques to reduce the dimensionality of the model. In this regard,
the Spearman rank correlation method was used [43]. A statistical analysis revealed a
significant correlation between torque and central impeller speed (Nc). It was found that
the correlation coefficient was 0.688, and the p-value had an extremely low value of 4.76 ×
10−70. This low p-value suggested a strong correlation between these features. Therefore, it
was possible to simplify the model without a substantial loss of information.

Consequently, a refined classification model was developed by considering only torque
and Nc as features. Remarkably, the kNN algorithm, with k set to three, predicted the
rotating mode of the coaxial mixer with 100% accuracy using these two features alone.
Despite concerns about potential overfitting due to perfect accuracy, the visual analysis in
Figure 3 supports the model’s validity. This figure illustrates that the two rotating modes
are distinctly separable by the kNN method and shows the importance of feature selection



ChemEngineering 2024, 8, 42 9 of 16

in enhancing model performance. In particular, Figure 3 suggests that a simple linear
decision boundary can effectively solve the classification problem, in contrast to the initial
model that incorporated all five features but did not achieve perfect prediction.
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The decision boundary obtained by the kNN model is illustrated in Figure 3a. The
yellow and purple regions correspond to the counter-rotating and co-rotating modes,
respectively, showcasing clear class separation. The efficacy of feature selection and dimen-
sionality reduction was further investigated by employing the SVM model, as depicted in
Figure 3b. The SVM’s decision boundary and margin lines are distinctly illustrated. For
this SVM model, a linear kernel was employed. The regularization parameter C was set to
a very high value (C = 100.0) to ensure a hard margin.
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Figure 3b confirms that the SVM model, like the kNN model, accurately predicted the
rotating modes. However, a notable distinction lies in their computational efficiency. While
the kNN model required storing the entire dataset to classify new instances, the SVM model
only relied on the support vectors. This characteristic significantly reduced the SVM model’s
memory requirements and computational load compared to those of the kNN model.

This finding holds considerable significance, showing that by considering merely the
central impeller speed and the torque value, the rotation mode can be determined. This
is particularly relevant in many biochemical applications, where limitations are imposed
on the maximum impeller speed and the highest permissible power consumption. Conse-
quently, in these applications, by taking the maximum values for central impeller speed and
torque into account, the rotating mode of the coaxial mixer can be strategically determined.

3.2. Regression

In this section of the study, machine learning techniques were employed to predict the
torque generated by the coaxial mixer. In fact, the torque values were designated as the
response variable, and other operational parameters were considered features. Initially, the
MLP method was applied as a regression model. However, the performance of the MLP
regressor was found to be unsatisfactory. This necessitated a comprehensive optimization
of the MLP’s hyper-parameters to enhance the model’s predictive accuracy.

The optimization process was conducted using the GridSearchCV tool from the Scikit-
Learn library. The specific parameters and their optimized values used to train the MLP model
are detailed in Table 3. Despite these efforts, as depicted in Figure 4, the MLP model struggled
to accurately fit the data. This is quantitatively evidenced by a MSE of 1.72 × 10−5 and an
R2 score of −5.52. In fact, a negative R2 is indicative of a model that performed worse than a
simplistic model that merely predicts the mean of the target variable for all observations.

Table 3. Hyper-parameters used to train the MLP regressor.

Number of
Hidden Layers

Number of
Neurons

Activation
Function Solver Regularization

Term Learning Rate Initial
Learning Rate

2 100,100 Relu ADAM L2 0.001 0.001
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This was due to the fact that the inclusion of the rotating mode as a feature introduced
a significant level of complexity to the model. This complexity likely exacerbated the
challenges in capturing the underlying patterns of the data and led to the model’s poor
performance. The performance of the MLP regressor in terms of the actual vs. predicted
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torque value based on the test data set is presented in Figure 4. This figure confirms the
poor performance of the MLP model.

After the MLP regressor failure to accurately predict the torque generated by the coax-
ial mixer, the capability of the kNN regressor was investigated as an alternative approach.
The kNN regressor functions similarly to its classification counterpart. However, for regres-
sion tasks, the predicted value for a new data point is determined based on the average of
the values of its k nearest neighbors, rather than voting on the most frequent label.

For this analysis, 70% of the data was allocated for training the kNN regressor. To
ensure the robustness of the model, cross-validation was conducted exclusively on the
training data. Through a trial-and-error approach, 10-fold cross-validation was identified
as sufficient for achieving almost the highest performance.

The tuning of the k parameter was performed during the training phase based on the R2

score. As depicted in Figure 5a, the model’s performance peaked at k = 4, achieving an R2 score
of 0.976. Consequently, the performance of the kNN regressor was assessed using the unseen
test dataset with k set to four. It is noteworthy that the test data were kept entirely separate from
the training process, ensuring a rigorous evaluation of the model’s predictive ability.
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The results obtained from the kNN regressor were promising. The model demon-
strated a MSE of 1.006 × 10−7 and an R2 score of 0.968 on the test data. The concordance
between the predicted and actual torque values for the test dataset is depicted in Figure 5b.
As can be seen in this figure, the kNN regressor was able to predict the torque with quite
reasonable accuracy.

To further enhance the predictive accuracy of the regression model, the random forest
regressor was employed. This model was trained using 70% of the data, with the ensemble
comprising 100 decision trees referred to as weak learners. The random forest regressor
demonstrated exceptional fitting to the training data, with a low MSE of 1.32 × 10−9 and
an R2 score of 0.999 (Figure 6a). This finding indicated that the most effective method for
predicting the performance of the coaxial mixer was through the use of ensemble machine
learning techniques. This was consistent with the findings of Barros et al. [23], which
demonstrated the superiority of stacked neural networks in predicting the mass transfer
coefficient over other ANN models.
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Figure 6. The performance of the random forest regressor. (a) Predicted vs. actual torque value
for the training dataset, (b) predicted vs. actual torque value for the test dataset, and (c) feature
importance analysis.

The model’s efficacy extended to the test data as well, with performance metrics
confirming its robustness (Figure 6b). It was revealed that the MSE and R2 for the test data
were 1.07 × 10−8 and 0.996, respectively. These results underline the model’s capability
to generalize well to unseen data. As illustrated in Figure 6b, the congruence between
the actual and predicted torque values for the coaxial mixer reinforces the near-perfect
prediction accuracy of the random forest regressor.

A noteworthy advantage of the random forest model is its inherent ability to assess the
importance of each feature used in the regression. This analysis was conducted based on
the Gini gain from the decision trees within the ensemble. As depicted in Figure 6c, it was
discerned that the rotating mode was one of the most influential features in determining
the torque of the coaxial mixer. This observation is consistent with the patterns illustrated
in Figure 3, where the rotating mode was shown to substantially affect the torque value.
Therefore, incorporating the rotating mode into the model was pivotal for accurately
predicting the torque.

Furthermore, the analysis of feature importance revealed that the central impeller
speed was the most significant factor, aligning with previous findings that suggest the cen-
tral impeller’s primary role in power dissipation within the coaxial bioreactor. Interestingly,
the contribution of the aeration rate to the torque of the coaxial mixer was found to be
almost negligible.

4. Conclusions

In this study, a coaxial bioreactor equipped with an upward-pumping pitched blade
impeller and an anchor impeller containing a non-Newtonian fluid was investigated. A
computational fluid dynamics model was developed and validated in terms of power
consumption. Then, this numerical model was scaled down by a factor of 0.5. A set of 500
CFD simulations were performed under various operational conditions, including aeration
rate (2–6 L/min), central impeller speed (60–150 rpm), anchor impeller speed (3.5–9.5 rpm),
and rotating mode (co-rotating and counter-rotating). The torque obtained from the CFD
simulations was included in the dataset.

The dataset acquired from the CFD simulations was scaled using the MinMax method.
The k-fold cross-validation method was performed on the training dataset to avoid any
overfitting problems. In addition, hyperparameter tuning was conducted to enhance the
performance of each machine learning model.



ChemEngineering 2024, 8, 42 14 of 16

The kNN and SVM models were utilized to solve the classification problem. In this
problem, the rotating mode of the coaxial bioreactor was successfully labeled based on
all feature sets. However, after careful feature selection, the performance of the machine
learning classifiers was almost seamless. It was found that the rotating mode of the coaxial
bioreactor could be predicted by using only the central impeller speed and the torque of
the aerated coaxial mixer. This finding is important, especially where the bioreactor is
susceptible to the maximum amount of power dissipation and impeller speed.

In addition, machine learning-based regression models were used to predict the torque
produced by the coaxial bioreactor. For the regression problem, the rotating mode was
considered a feature, and torque values were set as the target parameter. This regression
task was challenging because the torque values were separated based on the rotating mode
of the coaxial bioreactor. Different machine learning-based regressors were used, including
MLP, kNN, and random forest. The random forest model exhibited promising performance
and was able to predict the torque with high accuracy. Notably, the results of the feature
importance analysis revealed that the effects of the rotating mode and central impeller
speed on the torque of the aerated coaxial mixer were significant.
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