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Abstract: Implementing best management practices (BMPs) has proven to be an efficient method for
reducing non-point source (NPS) pollutants. Agricultural NPS pollution is considered to be a major
contributor to water quality impairment. This study aims to assess the variation in hydrologic and
water quality outputs at field and watershed scales when BMPs are implemented using modeling ap-
proaches. The Yazoo River Watershed (YRW) is the largest watershed basin in the state of Mississippi
with approximately 50% agricultural land. Runoff generated from agricultural areas carries sediments
and nutrients. The Merigold watershed (MW) is a sub-basin of the YRW and a field-scale watershed
with most of the land use being agriculture. It is essential to quantify the streamflow, sediment,
total nitrogen (TN), and total phosphorus (TP) when BMPs are implemented. BMPs such as vegetative
filter strips (VFS) and cover crops (CC) were tested in this study. The Soil and Water Assessment Tool
(SWAT) model was applied to quantify the watershed’s hydrologic and water quality outputs. SWAT
model accuracy assessment was performed by calibration and validation process using the Nash
and Sutcliffe Efficiency Index (NSE). Model performance was satisfactory for monthly streamflow,
with NSE values in the range of 0.62 to 0.81, and for daily sediments, TN, and TP load estimation,
with NSE values of 0.21, 0.20, and 0.47, respectively. CC was planted after harvesting the main crop.
Therefore, it is essential to quantify the seasonal reduction in pollutants. Water quality was improved
after BMP implementation, and an overall decrease in streamflow, sediment, TN, and TP loads was
observed for both MW and YRW during dry and wet seasons. Previous studies regarding seasonal
assessments with CC implementation in the MW and YRW were limited. Therefore, the results from
this study could be a unique addition to the scientific literature.

Keywords: hydrology; water quality; BMP; watershed; SWAT

1. Introduction

According to a survey conducted by the United States Environment Protection Agency
(US-EPA), more than 46% of surface water resources are designated as impaired due to high
levels of nitrogen and phosphorus [1,2]. Agricultural runoff carrying sediments and mineral
salts is one of the predominant contributing factors to water quality deterioration [3]. Water
quality impairment could cause the loss of aquatic life due to hypoxia, harmful algal
blooms (HABs), salinity increment in benthic zones, and recreational deprivation [4,5].
Implementing conservation strategies, also known as best management practices (BMPs)
has proven effective in mitigating the non-point source (NPS) pollutants that are generated
from agricultural runoff [6–8]. The impact of BMPs can vary seasonally due to humid
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sub-tropical climatic conditions in the Yazoo River Watershed (YRW) and the increased
precipitation experienced from November to March after harvesting the main crops [9].
Following the harvest of crops including soybean, corn, and cotton, about 50% of the
watershed area lacks vegetative cover from November to March [10]. This could potentially
contribute to erosion caused by runoff generated during rainfall events [11]. BMPs such as
vegetative filter strips (VFSs) and cover crops (CCs) serve as effective measures to reduce
erosion by trapping the sediments, intercepting raindrops, absorbing residual nutrients,
and increasing soil porosity and organic content [12–14].

Hydrological and water quality assessments at watershed scales incorporate the
investigation of land use effects beyond agriculture [15–18]. Consequently, a field-scale
watershed, Merigold Watershed (MW), with agriculture as a major land use type was
delineated within the YRW. Numerous hydrological models including the Soil and Water
Assessment Tool (SWAT) have been applied to evaluate hydrology and water quality
at watershed scales [7,19–30]. Hydrological model simulations could be beneficial in
investigating seasonal variation in the efficiency of BMPs related to streamflow, sediment,
nitrogen, and phosphorus [12,31–35].

Hydrological conditions during the wet season (November to March) and the dry
season (April to October) could exhibit considerable variability within YRW [34]. The
average annual precipitation received in the region was about 1300 mm, with 40% of
the precipitation received throughout the growing season. The remaining 60% of the
precipitation occurred from November to March, which is lost either by surface or sub-
surface flow [36–39]. BMPs such as VFSs can trap sediments and nutrient loads that
would otherwise be carried by runoff [12]. The CCs help dissipate the potential and
kinetic energy of raindrops, thus avoiding splash erosion and improving soil fertility,
organic content, aeration, porosity, and soil moisture, as well as minimizing erosion by
bonding the soil particles at the root zone [40,41]. About 47% of total applied nitrogen as
fertilizer is utilized by crops throughout the crop cycle, while the remaining 53% of nitrogen
is subject to loss mechanism, including leaching into the soil and water [42]. Previous
studies indicated that the implementation of CCs decreased mineral salts of nitrogen
and phosphorus significantly [40,43–46]. The efficacy of BMPs in reducing water quality
parameters may vary due to seasonal hydrological variations [47]. Therefore, it becomes
necessary to quantify the seasonal effects of the conservative practices in streamflow,
sediment, and nutrient reductions. A comparative analysis of seasonal variation in the
efficacies of BMPs at field and watershed scales is limited for the MW and YRW and the
novelty associated with this research lies in the quantification of the hydrologic and water
quality outputs during pre-harvest (April to October) and post-harvest (November to
March) periods. Henceforth, the key objectives of this research were to (i) assess field and
watershed scale models’ performance by calibrating and validating hydrologic and water
quality parameters; and (ii) determine the variability in the efficacy of individual and a
combination of BMPs pre- and post-harvest cycles of the main crop (e.g., corn, soybean,
cotton, and rice).

2. Materials and Methods
2.1. Study Area

This study was conducted both at field (MW) and watershed (YRW) scales. The YRW
with a drainage area of about 5 million ha covers about 41% of the Mississippi, making it the
largest watershed of the state with heterogenous land use conditions. The YRW lies within
the Mississippi Alluvial Valley. Major land use types in the watershed are agriculture (47%)
within the Mississippi Delta, forest (49%), and the rest (4%) including residential areas,
reservoirs, and lakes primarily residing in the Bluff hill region. Major soil categories include
Alligator, Dundee, Smithdale, Forestdale, Sharkey, and Dowling. These soil types belong to
hydrologic soil groups C and D, which contribute to high runoff and low permeability.

A field-scale watershed (MW) assessed in this study is located within the Delta region.
The MW watershed has a drainage area of about 160,000 ha with gentle slopes ranging from
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1% to 3% gradient, making it suitable for agriculture. About 77% of the MW area consisted
of farmlands, followed by wetlands (16%), residential areas (5%), and water bodies (2%).
Predominant soil types found in the MW were Alligator, Dundee, Forestdale, Tunica,
Sharkey, and Dowling with silty loamy texture and belonging to hydrologic soil groups
C and D with poor infiltration and high erodibility. Figure 1 depicts the geographical
location of the YRW and the MW including the locations of United States Geological Survey
(USGS) monitoring stations and National Oceanographic, and Atmospheric Administration
(NOAA) weather stations. Similar to other areas in the state of Mississippi, both MW and
YRW watersheds have common pollutants of concern with sediments and nutrients (TN
and TP).
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2.2. Model Description and Data Inputs

The SWAT model is a hydrologic model that bases the analysis on GIS-based ap-
plications [20] and is developed and maintained by the United States Department of
Agriculture, Agriculture Research Service (USDA-ARS) and Texas A&M University. The
SWAT model was developed to perform the functions encompassed by a multitude of other
models including the Routing Outputs to Outlet (ROTO) [48], Erosion Productivity Impact
Calculator (EPIC) [49], Chemical Runoff and Erosion from Agricultural Management Sys-
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tems (CREAMS) [50], Groundwater Loading Effect on Agricultural Management Systems
(GLEAMS) [51], and Simulator for Water in Rural Basins (SWRRB) [52]. Outputs from the
SWAT model could be interpreted at daily, monthly, and annual temporal resolutions. The
SWAT model utilized the LiDAR-generated digital elevation model (DEM) data at a spatial
resolution of 30 m [53] in this study to delineate watersheds. The YRW and MW were
divided into 109 and 37 sub-watersheds, respectively, after successful delineation. In order
to assess the seasonal variability of BMP impacts and the availability of data, the model
was simulated from 2005 to 2015.

2.3. Data Inputs

Primary data inputs in the SWAT model included DEM data obtained from the USGS
database [53] with 30 m × 30 m spatial resolution that was computationally favorable in
watersheds with large drainage areas [54,55]. The land use data in the form of the Crop Land
Data layer (CDL) was obtained from the United States Department of Agriculture (USDA)
and the National Agricultural Statistical Service (NASS) [56]. The soil data were obtained
from the Soil Survey Geographic Database (SSURGO) available at the Natural Resource
Conservation Service—Web Soil Survey (NRCS-WSS) website [57]. Meteorological data
including daily minimum and maximum temperature (◦C), and daily precipitation (mm)
from 2000 to 2019 for more than 20 spatially distributed weather stations were obtained
from the NOAA website [58]. Agricultural management operations including planting,
fertilizer application, pesticide application, irrigation inputs, and harvest for crops such as
corn, cotton, soybean, and rice were scheduled based on crop variety trial reports obtained
from the Mississippi Agricultural and Forestry Extension Service (MAFES) website [59].

2.4. Model Accuracy Assessment

The accuracy in model simulations was achieved through the calibration and valida-
tion of simulated results with the observed data. The model performance/accuracy was
evaluated using statistical indicators including the Nash and Sutcliffe Efficiency Index
(NSE) [60] and the Coefficient of Determination (R2) [61]. The parameters sensitive to
streamflow, sediment, total nitrogen (TN), and total phosphorus (TP) loads were adjusted
to obtain an acceptable level of model performance. The sensitivity analysis for stream-
flow was conducted using the SWAT—Calibration Uncertainty Program (SWAT-CUP);
this uses the Sequential Uncertainty fitting (SUFI-2) algorithm [62]. The SWAT-CUP is
an auto-calibration tool that can alter one or more sensitive parameters associated with a
specific hydrologic or water quality output within the given range of values. Observed
monthly mean of streamflow was collected for 7 USGS monitoring spread across the YRW,
including the USGS station at the MW outlet [63].

Sensitive parameters related to sediment and nutrient loads were adjusted using a
manual calibration helper tool in the SWAT. Water quality data were collected by the grab-
sampling method at the USGS monitoring station located at Merigold MS at bi-weekly inter-
vals for 2 years, 2014 and 2015. Water samples were analyzed for the concentrations (mg/L)
of Total Suspended Solids (TSS), TN, and TP following the standard laboratory protocol sug-
gested by the US-EPA [64]. The water samples were transported in a temperature-controlled
sampling container to the laboratories at the Department of Civil and Environmental Engi-
neering and the Department of Forestry at Mississippi State University, Mississippi State,
MS, for analysis. TSS, TN, and TP concentrations were then converted into loads (kg/ha)
for calibration and validation for 2014 and 2015, respectively. Sensitive parameters adjusted
for streamflow, sediment, TN, and TP were detailed in Venishetty and Parajuli, 2022 [65].

2.5. Seasonal Variation and Management Scenarios

Previous meteorological analysis performed for the humid-subtropical climate of
Mississippi indicated that over 60% of rainfall occurs from November to April, making it
a wet season [9,36–39]. This period falls during the post-harvest of the main/cash crop,
thereby leading to rill erosion caused by agricultural runoff. Providing a vegetative solution
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in terms of BMPs such as VFSs and CCs has resulted in a substantial decrease in streamflow
and water quality parameters [66–69]. The BMPs were simulated as an individual practice
as well as a combination of VFSs and CCs.

2.5.1. Vegetative Filter Strips (VFSs)

The VFSs comprise vegetated zones that are naturally grown or monitored small
bushes and grasses, typically located adjacent to surface water sources [70]. The VFSs
were implemented as edge-of-field practice, commonly perpendicular to the slope of the
field. The VFSs control erosion and pollution by trapping sediments and nutrients from
the runoff. The settling of larger soil and organic particles aided by VFSs additionally
serves to decelerate surface runoff. Due to the drainage characteristics of the Mississippi
Alluvial Valley, VFSs would need to be implemented within the field to adequately in-
tercept runoff prior to field drainage via culverts to ditch networks. In SWAT, the VFS
width of 0 m was regarded as the default setting. The filter strip trapping efficiency was
calculated using Equation (1) [71]. The model features a filter width (FILTERW) function
that has been modified to simulate VFSs in the YRW [72]. According to earlier studies
carried out globally, a VFS trapping efficacy of roughly 90% was taken into account during
implementation at the hydrologic response unit (HRU) levels [73]. Default values were
used for management operations associated with VFS simulation in the model such as
VFS_RATIO (the ratio of field area to filter strip area), VFS_CON (where 10% of the VFS
area receives the highest concentration of HRU drainage), and VFS_CH (which represents
channelized flow concentrated to 10% of the VFS area) [72].

Trapping Efficiency = 0.367 × (Filter strip widthˆ0.2967) (1)

2.5.2. Cover Crops (CCs)

The CCs are planted after harvesting the main crop as a vegetative cover for the
bare ground. CCs are beneficial in multiple ways such as reducing erosion caused due
to wind and water, regulating soil organic content, decreasing weed and pest population,
reducing soil compaction, and absorbing residual nutrients [74]. The vegetation in the field
dissipates the kinetic and potential raindrop energies through interception, reducing splash
erosion [75]. Cereal Rye (Secale cereale), winter wheat (Triticum aestivum L.), and winter
barley (Hordeum vulgare L.) were used as CCs in this study [76].

3. Results
3.1. Model Accuracy Assessment

Correlating observed and simulated values allowed for the evaluation of the SWAT
model’s performance. The sensitive factors that affect sediment, streamflow, TN, and TP
loads must be changed as part of the calibration and validation process. The calibrated
YRW model [65] was used to develop field-scale MW. The field-scale model was calibrated
monthly using the data from the USGS streamflow monitoring station at Merigold, MS,
in the Big Sunflower River, between 2007 and 2010 and validated between 2011 and 2014.
Figure 2 illustrates that the model performance results for monthly streamflow simulations
were good, with R2 values ranging from 0.73 to 0.75 and NSE values ranging from 0.70
to 0.75.

Likewise, daily simulated results in 2014 and 2015, respectively, were used to calibrate
and validate the model in order to attain the desired level of accuracy for water quality
outputs such as sediment, TN, and TP loads. A manual calibration approach was used to
get the values for statistical metrics, and individual iterations were used to quantify the
sensitivity to a particular parameter. More than 200 iterations were performed to achieve
the final R2 and NSE values. With NSE values for sediments and nutrients ranging from
0.14 to 0.42 [77], the model’s performance for daily simulations was found to be within
an acceptable range. Table 1 provides more information on these results. Despite the
extreme weather events in the area during the desired simulation period and the relatively
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high values of sediments, TN, and TP in the samples, the model calibration and valida-
tion performances demonstrated satisfactory results and were within the range of earlier
studies conducted in watersheds of Wisconsin, Mississippi, Indiana, Texas, and European
countries [24,78–82].
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Figure 2. Model accuracy assessment through calibration and validation of seamless monthly
streamflow from 2007 to 2014 at the USGS monitoring station (Station No: 7288280) in the Big
Sunflower River at Merigold, MS.

Table 1. Model performance during daily calibration and validation at the USGS monitoring station
in the Big Sunflower River at Merigold, MS.

Process
Sediment TN TP

R2 NSE R2 NSE R2 NSE

Calibration (2014) 0.20 0.17 0.15 0.18 0.30 0.35

Validation (2015) 0.23 0.21 0.14 0.20 0.47 0.42

3.2. Seasonal Variation in the Efficacy of BMPs

Between the dry and wet seasons of the year, a catchment’s hydrologic features change.
Similarly, significant alterations in the movement of sediment and nutrients may occur. The
results from BMP scenarios were evaluated between the primary farming season, which
runs from April to October, and the post-harvest season, which runs from November to
March. The wettest time of the year fell during the post-harvest season [9]. The implemen-
tation of VFSs, CCs, and a combination of VFSs and CCs were simulated as management
scenarios for both the wet and dry seasons of the watershed. For MW and YRW in the
case of VFSs, which has a width of 20 m, a substantial decrease in sediment and nutrient
loads was seen during the wet season. Research from earlier studies suggests that a BMP’s
effectiveness was higher in the field scale compared to the watershed scale implementa-
tion [34,46,83–85]. Sediment, TN, and TP loads for a 20 m VFS width decreased overall
from November to March in the MW by approximately 12%, 77%, and 78%, respectively.
Similarly, percentage decreases in the YRW were approximately 10%, 49%, and 41%, re-
spectively. As for CCs, throughout the post-harvest period, there was a significant decline
in TN and TP loads; Table 2 provides more information. In the case of the wet and dry
seasons, respectively, Figures 3 and 4 depict the comparative evaluation of BMP efficacies
at the field and watershed scales.
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Table 2. Overall percentage reduction in hydrologic and water quality outputs during the post-harvest
period (wet season) in the Merigold Watershed and the Yazoo River Watershed.

November to March
(Wet Season)

Best Management
Practices (BMPs)

Percent Reduction

Streamflow Sediment TN TP

Merigold Watershed

VFS 20 m 0.05 12.00 76.70 77.70

CC_Cereal Rye 17.53 24.10 25.84 40.45

CC_WBarley 17.00 23.34 28.43 42.21

CC_WWheat 15.00 20.56 31.66 42.77

VFS + Cereal Rye 17.54 28.72 68.46 75.50

VFS + WBarley 14.19 27.05 71.67 76.74

VFS + WWheat 15.00 27.25 71.41 75.63

Yazoo River Watershed

VFS 20 m 0.00 10.13 48.75 40.79

CC_Cereal Rye 4.79 2.04 19.94 14.29

CC_WBarley 4.57 1.86 18.47 16.34

CC_WWheat 3.51 7.35 35.53 17.05

VFS + Cereal Rye 4.91 13.40 54.66 42.00

VFS + WBarley 4.79 13.36 55.20 42.15

VFS + WWheat 3.17 12.54 56.65 42.32
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Despite being removed before the main crop is planted, Table 3 shows that the presence
of CCs in the previous season had a major impact on the streamflow, sediment, and nutrient
loads from April to October. The main crop offered vegetative cover to the soil throughout
the crop growing season which was considerably drier than post-harvest season.

Table 3. Overall percentage reduction in hydrologic and water quality outputs during the main crop
growing season (dry season) in the Merigold Watershed and the Yazoo River Watershed.

April to October
(Dry Season)

Best Management
Practices (BMPs)

Percent Reduction

Streamflow Sediment TN TP

Merigold Watershed

VFS 20 m 0.12 15.50 56.10 56.30

CC_Cereal Rye 24.64 33.00 20.09 27.00

CC_WBarley 22.84 30.61 20.24 25.75

CC_WWheat 19.19 26.00 19.82 20.01

VFS + Cereal Rye 24.64 38.88 40.42 53.83

VFS + WBarley 22.84 37.64 40.20 53.40

VFS + WWheat 19.19 33.89 40.30 52.35

Yazoo River Watershed

VFS 20 m 0.00 9.02 21.16 25.72

CC_Cereal Rye 7.84 7.11 15.00 11.00

CC_WBarley 6.84 5.97 12.26 10.39

CC_WWheat 5.42 5.84 17.77 7.73

VFS + Cereal Rye 8.02 17.10 28.47 27.64

VFS + WBarley 7.29 16.34 28.31 27.54

VFS + WWheat 4.88 14.04 28.22 26.93

4. Discussion

Model performance for sediment, TN, and TP loads was deemed appropriate and
acceptable, while assessments of the model’s accuracy revealed good performance for
streamflow. Previous literature was used to validate the values of R2 and NSE [24,78–82]. In
total, seven different management scenarios were simulated during the post-harvest season
(wet season) from November to March and during the growing season (dry season) from
April to October. Sediment and nutrient loads for both MW and YRW were significantly
reduced from November to March when VFSs were simulated with a 20 m width as edge-of-
field practice [86]. Sediment, TN, and TP load decreased on average by 12%, 77%, and 78%
for MW and 10%, 49%, and 41% for YRW, respectively. The estimates of nutrient and
sediment reductions with the implementation of VFSs were optimistic, given that observed
nutrient reductions associated with VFS implementation are limited in the region and
variability in reduction efficiencies is observed with a wide range of design specifications.
Future research on VFS efficacy in the Mississippi Alluvial Valley is warranted due to the
observed variety in the literature and the general absence of studies on the subject. Similarly,
during the wet season, there was a greater decrease in TN and TP loads when CCs and
VFSs were combined. Reductions in TP and TN, when CCs and the combination scenarios
were applied, ranged from 14% to 56% for the YRW and from 25% to 75% for MW. These
results are in contrast with those of Badon et al. (2022), who reported that during the first
two years of CC deployment, CCs had no effect on discharge or the movement of nutrients
and sediments. Despite the fact that CCs were terminated before the main crop was planted,
the presence of CC residue had an impact on streamflow, sediment, and nutrient loads
from April to October, as described in Table 3. The termination of CCs was mainly using
herbicide spray and tillage before the main crop was planted. CC residue could also help
in improving soil moisture, infiltration, and soil hydraulic conductivity [87–92]. The results
from this study were consistent with the previous literature [12,14,40,41,45,66–69,75,93–95].
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5. Conclusions

The results of this investigation demonstrate that seasonal variability significantly
affects BMP efficacies. It was found that during the post-harvest season, when the water-
shed receives the most precipitation, the VFS was the most effective BMP. Likewise, CCs
were more effective in lowering TN and TP loading during the post-harvest (wet season)
period. During the crop-growing season (dry season), the effect of CCs was substantial in
minimizing the sediments, nutrients, and runoff, as they may have improved infiltration,
hydraulic conductivity, and other factors of the soil. As a result, using CCs as a BMP
would help with post-harvest residual nutrient uptake. Additionally, CCs led to reducing
sediment loads and streamflow. Quantifying the efficacies of BMPs based on modeling
seasonal variability has never been performed at field and watershed scales in the region.
Henceforth, this could be a novel addition to understanding the relationship between the
reduction capabilities of BMPs, seasonal variation, and the effect on hydrologic and water
quality outputs. This study could be a valuable addition to scientific literature, farmers,
and other stakeholders. The BMP efficacies studied in this paper can be useful in adapting
watershed stakeholders based on seasonal effectiveness.
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