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Simple Summary: Osteoporosis is a major global health problem with substantial economic and
psychosocial repercussions. Underdiagnosis of osteoporosis is prevalent. The dual-energy absorp-
tiometry (DEXA) scan is the gold standard for bone mineral density (BMD) measurement but its
accessibility is limited. Radiographs are ubiquitous in healthcare and represent a promising avenue
for opportunistic osteoporosis screening. Historically, this has been associated with high labor and
time costs but several recent studies have demonstrated that BMD can be estimated from radio-
graphs in a cost-effective manner utilizing deep learning techniques. This review aims to summarize
the existing evidence supporting the utility of artificial intelligence (AI) methods for osteoporosis
classification using radiographs.

Abstract: Osteoporosis is a complex endocrine disease characterized by a decline in bone mass and
microstructural integrity. It constitutes a major global health problem. Recent progress in the field
of artificial intelligence (AI) has opened new avenues for the effective diagnosis of osteoporosis
via radiographs. This review investigates the application of AI classification of osteoporosis in
radiographs. A comprehensive exploration of electronic repositories (ClinicalTrials.gov, Web of
Science, PubMed, MEDLINE) was carried out in adherence to the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses 2020 statement (PRISMA). A collection of 31 articles was
extracted from these repositories and their significant outcomes were consolidated and outlined. This
encompassed insights into anatomical regions, the specific machine learning methods employed, the
effectiveness in predicting BMD, and categorizing osteoporosis. Through analyzing the respective
studies, we evaluated the effectiveness and limitations of AI osteoporosis classification in radiographs.
The pooled reported accuracy, sensitivity, and specificity of osteoporosis classification ranges from
66.1% to 97.9%, 67.4% to 100.0%, and 60.0% to 97.5% respectively. This review underscores the
potential of AI osteoporosis classification and offers valuable insights for future research endeavors,
which should focus on addressing the challenges in technical and clinical integration to facilitate
practical implementation of this technology.

Keywords: artificial intelligence; machine learning; deep learning; osteoporosis; imaging; radiographs

1. Introduction
1.1. Osteoporosis—A Global Health Challenge

Osteoporosis is a complex endocrine disorder affecting bone turnover, marked by a
decline in bone mass and microstructural integrity [1]. Although asymptomatic in the early
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stages, it significantly elevates the risk of fragility fractures, leading to increased morbidity,
mortality, and reduced quality of life [2].

The disease constitutes a major global health problem [3,4], affecting one-third of
women and one-fifth of men aged 50 and above [5–7]. Worldwide, an estimated 200 million
women suffer from osteoporosis [8], a figure that is projected to rise with the aging global
population and increasing life expectancy. The economic and psychosocial repercussions of
fragility fractures are enormous [9–12], with a 2005 United States study reporting direct
costs exceeding USD 17 billion [13] and a 2013 European Union study estimating a total
economic burden of EUR 37 billion and loss of 1,180,000 quality-adjusted life years in
2010 [14].

Although cost-effective treatments are readily available [15], underdiagnosis and
undertreatment remain prevalent. Importantly, out of female patients suffering their first
osteoporotic fracture, only an estimated 10.3% will have had undergone prior bone mineral
density (BMD) testing [14,16–18].

1.2. Current Diagnostic Methods and Challenges

Dual-energy absorptiometry scans (DEXA) of the lumbar spine and hip, advocated
by the World Health Organisation (WHO) since 1987, is a gold standard in BMD measure-
ment. DEXA is non-invasive and cost-effective and remains the most frequently utilized
radiologic technique for evaluating bone mass [8,19,20]. It is also validated for use with
other tools such as the WHO fracture risk assessment (FRAX) algorithm [20]. However,
DEXA has its downsides including limited accessibility, need for strict quality standards,
operator dependency [21], and suboptimal screening rates [12,18]. Alternative techniques
for measuring BMD such as quantitative computed tomography [22], ultrasound [23], and
peripheral DEXA [24] are yet to see widespread clinical use.

1.3. Potential of Machine Learning for Osteoporosis Classification

Radiographs are the most frequently utilized imaging modality in healthcare. The
potential for osteoporosis classification via radiographs has been explored since the 1960s.
For example, Barnett et al. measured lumbar vertebral concavity along with the femoral
and metacarpal cortical thicknesses by hand with a millimeter ruler as an osteoporosis
scoring procedure [25,26]. In addition, Garn et al. documented various techniques in
the use of densitometry to diagnose osteoporosis [27], including the simultaneous use of
metallic phantoms in radiography [28,29]. These initial manual methods were associated
with significant manual labor costs and exacting technical processing requirements, limiting
the feasibility of large-scale use.

Machine learning, a subset of AI, holds great promise for the automated segmentation
and classification of large volumes of medical imaging data. Recent studies employing
modern convolutional neural networks and deep learning architectures have demonstrated
that BMD can be accurately estimated from radiographs in a cost-effective manner. This
review aims to summarize the existing evidence supporting the utility of AI methods for
osteoporosis classification using radiographs.

1.4. Research Questions

This review aims to synthesize existing evidence supporting the utility of AI methods
for osteoporosis classification using radiographs. Key research questions include:

1. How effective are AI methods in accurately classifying osteoporosis using radio-
graphic data?

2. What are the current technical challenges and practical limitations in osteoporosis
diagnosis and classification?

3. What are potential future directions for the use of AI-based classification in osteoporo-
sis management?
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2. Materials and Methods
2.1. Literature Review

A query of prominent electronic databases (clinicaltrials.gov, Web of Science, MED-
LINE, PubMed) was performed in alignment with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses 2020 statement (PRISMA). The search utilized the
following specific search terms: (“neural network*” OR “convolutional neural network*”
OR “machine learning” OR “deep learning” OR “AI” OR “artificial intelligence”) AND
((“bone” AND “mineral” AND “density”) OR “BMD”) OR “osteoporosis” OR “absorptiom-
etry” OR “DEXA” OR “osteopaenia” OR “osteopenia” AND (“X-ray” OR (“Radiographs”)).
Two reviewers (R.L. and W.O.) screened the resultant articles and shortlisted a number for
further examination. The studies were then reviewed and discussed to reach a consensus
on their suitability before inclusion. Any disagreements were resolved by a third reviewer
(J.T.P.D.H.). The database query was limited to articles published prior to 14 August 2023.

2.2. Screening of Studies and Criteria for Selection

No constraints were specified for the literature and reference search. Articles pertain-
ing to deep learning, artificial intelligence (AI), or deep learning to categorize or predict
osteoporosis from radiographs were shortlisted, including those with comparative analysis
to conventional DEXA scans when available.

2.3. Extraction of Data and Reporting

Using Microsoft Excel (Microsoft Corporation, Washington, DC, USA), a list of selected
papers was compiled. The compiled information encompassed the following:

• Main clinical use: Classify osteoporosis through the application of machine learn-
ing tools (e.g., BMD estimation or bi-variate/tri-variate classification, i.e., normal,
osteopenic, and osteoporotic);

• Research article characteristics: Comprehensive authorship, publication date, and
journal or publication name, all written in the English language;

• Research protocol: Study design, anatomical region, imaging modality, patient demo-
graphics, and healthcare context;

• Machine Learning: Type of machine learning architecture or technique used, need for
human supervision or pre-processing.

3. Results
3.1. Search Results

The initial literature review (Figure 1) yielded 607 relevant research articles, which
were then screened using the aforementioned criteria. Following the screening, 55 articles
were selected, which were further analyzed to determine suitability by two readers. Any
discordance was resolved after discussion with a third reader. Upon review, a further
28 publications were excluded as they did not involve AI analysis of radiographs or relied
on phantom models rather than patient data. In addition, four articles were added after
reviewing the references of the chosen articles. Overall, this resulted in a total of 31 articles
(Table 1) for in-depth analysis. The main findings were consolidated and summarized in
this systematic review. Due to insufficient data in most studies, formal meta-analysis using
2 × 2 contingency tables was not feasible.

3.2. Model Accuracy in Classification of Osteoporosis

The pooled reported accuracy, sensitivity, and specificity of AI osteoporosis classifica-
tion ranges from 0.661 to 0.9787, from 0.674 to 1, and from 0.60 to 0.9751, respectively, with
AUC values of 0.70 to 0.9987. Most papers used DEXA as the benchmark for comparison.
One study assessing knee radiographs used quantitative ultrasound as a reference stan-
dard [30] and another examined machine versus human osteoporosis classification based
on second metacarpal cortical percentage [31].
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Figure 1. PRISMA flowchart for the literature search (adapted from the PRISMA group, 2020), which
describes the selection of relevant articles.

Out of the 31 studies, one study examined both hip and spine radiographs, while the
other 30 studies examined different anatomical regions as detailed in Table 2. Deep learning
models in all anatomical areas showed overall good AUC and accuracy; however, studies
on calcaneal and dental radiographs generally yielded higher AUC and accuracy relative to
other anatomical regions. For example, Singh et al. performed a study assessing calcaneal
radiographs for osteoporosis and noted that the relative paucity of soft tissue around the
calcaneum was advantageous, as soft tissue could increase measurement variability. Their
study yielded an excellent AUC of 0.9824 and an accuracy of 0.9787 using a support vector
machine classifier [32]. In contrast, Cui et al. [33] described the negative impact of soft
tissue, bowel gas, and clothing artefacts in their analysis of lumbar spine radiographs and
made use of various image processing algorithms to mitigate the problem.

In their respective studies analyzing chest radiographs, Jang et al. [34] noted that it was
unclear how incidental findings such as calcified nodules or old fractures may confound
osteoporosis classification, while Sato et al. [35] suggested that it may be worthwhile for
models to be supplied with clinical information on relevant comorbidities such as fracture
history, chronic obstructive pulmonary disease, and rheumatoid arthritis to improve accu-
racy. The region of assessment can therefore have a significant impact on performance; a
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model must incorporate various techniques to remain robust in the analysis of different
anatomical regions in the clinical setting.

3.3. Study Protocol and Performance Metrics

There is variation in the study protocols and performance metrics used to report
model efficacy. For example, some studies performed a binary classification distinguishing
osteoporosis and non-osteoporosis and hence relied on metrics such as accuracy. Other
authors predicted BMD values for each patient and compared these against the gold
standard of DEXA using the correlation co-efficient R. A few of the different performance
metrics used are briefly explained below:

1. Accuracy: Accuracy represents the proportion of correctly classified instances among
all instances examined. It provides a general measure of model performance but may
not be suitable for imbalanced datasets;

2. Sensitivity and Specificity: Sensitivity (true positive rate) measures the proportion
of actual positives that are correctly identified by the model, while specificity (true
negative rate) measures the proportion of actual negatives that are correctly identified
by the model;

3. Area Under the Curve (AUC): AUC refers to the area under the receiver operating
characteristic (ROC) curve, which illustrates the trade-off between sensitivity and
specificity across various threshold settings. A higher AUC value indicates better
discrimination ability of the model;

4. F1 Score: The F1 score is the harmonic mean of precision and recall (sensitivity). It
provides a balance between precision (the proportion of true positive predictions
among all positive predictions) and recall, making it suitable for imbalanced datasets;

5. Correlation Coefficient (R): The correlation coefficient measures the strength and
direction of the linear relationship between two variables. In the context of osteoporo-
sis classification, it reflects the agreement between predicted bone mineral density
values (a scalar numerical value) and gold standard measurements obtained from
DEXA scans.

3.4. Machine Learning in Medical Imaging

Artificial intelligence is defined in the Merriam-Webster dictionary as “the capability
of computer systems or algorithms to imitate intelligent human behaviour”. Machine
learning, a subset of artificial intelligence, employs algorithms and statistical techniques
to allow computer systems to learn and make informed predictions from data. Several
systems have demonstrated diagnostic capabilities comparable to medical professionals in
various clinical conditions [36], with many software applications being approved for clini-
cal use [37,38]. Various diagnostic imaging models are available for chest radiographs [39],
mammograms [40], and MRI spine analysis [41], with the last showing improved pro-
ductivity for the reporting radiologist [42]. Radiomics, which refers to the quantitative
extraction of various characteristics from a medical image in order to facilitate statistical
analysis [43,44], has also been augmented by the use of artificial intelligence.

Figure 2 outlines a general procedure for the development, testing, and deployment of
a machine-learning model [45–47]. A dataset of medical images would first be collected
and pre-processed manually or via automated methods. An appropriate model is then
selected and trained using a portion of the dataset (the training set), adjusting internal
parameters to improve prediction accuracy. After training, the model is tested on a separate
unseen dataset (test set) and fine-tuned to optimize its performance and minimize error.

1. Data Collection: Usually, approval from an ethics committee is necessary before
utilizing medical data for the development of a commercial or research AI algorithm.
In the case of a prospective study, explicit informed consent is necessary. Medical
imaging data are usually collated from a picture archiving and communication system
(PACS) environment, requiring collaboration between AI developers and healthcare
professionals [48]. Accessing relevant data involves querying, appropriately de-
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identifying, and securely storing the information. Protected health information must
be removed from both the Digital Imaging and Communications in Medicine (DICOM)
metadata and the images themselves [49];

2. Image Processing and Segmentation: Segmentation is the process of delineating
structures within a medical image, thereby creating structured visual representations
from unstructured raw data [47,50]. For example, in tumor segmentation, this could
be the process of defining the margins of a tumor [45]. For osteoporosis classification,
this could refer to the separation of bone and non-bone structures [51,52];

3. Training and Validation: An appropriate model is selected and trained using a por-
tion of the dataset. Supervised machine learning models are provided with data inputs
labeled by human experts, whereas unsupervised models extract salient features from
unlabeled data to uncover meaningful relationships within datasets. Models deter-
mine how to perform meaningful feature extraction and computation, which involves
the evaluation of the image factors that allow a prediction to be made. Image features
should be independent of technical factors such as noise, signal, and rotation, as these
are common issues in medical images. Machine learning models typically iterate to
improve performance with each exposure to the validation set;

4. Testing: The model is then tested on a set of examples to evaluate its diagnostic
accuracy and performance [45]. Testing can be performed with internal and external
test sets; the former refers to data that come from the same pool as the training set
whereas the latter refers to data that have been collected from a different source. Good
model performance on external testing sets bolsters confidence in model accuracy,
whereas poor performance on external datasets may suggest overfitting [44,53].

Various machine-learning models can be used in medical imaging. In particular,
convolutional neural networks (CNN) are a subset of machine learning models, which
are frequently applied in medical imaging. CNNs utilize convolution kernels, which
move across an input image to create a set of output values that are more suitable for
analysis by a neural network [54,55]. Various CNN architectures, for example, LeNet,
GoogleNet, AlexNet, VGGNet, and ResNet have shown efficacy in machine learning
competitions, research, and clinical use. Open-source machine learning libraries such as
TensorFlow, pyTorch, and Keras are available for public use, fostering widespread adoption
of this technology.

Bioengineering 2024, 11, x FOR PEER REVIEW 7 of 20 
 

 
Figure 2. Diagram showing model development and application in the classification of medical im-
ages. The top row depicts the training process (A) and the bottom row the prediction process (B).

Figure 2. Diagram showing model development and application in the classification of medical
images. The top row depicts the training process (A) and the bottom row the prediction process (B).



Bioengineering 2024, 11, 484 7 of 19

Table 1. Selected articles; main characteristics.

Authors Artificial Intelligence Method Publication Year Main Objectives Title of Journal Type of Radiographs Performance

Ho, C.S. et al. [56] CNN 2021 Classify osteoporosis Arch. Osteoporos. Pelvis and femur r = 0.850;
Accuracy 88.0%

Fathima, S.M.N.
et al. [57] CNN (U-Net) 2020 Classify osteoporosis J Xray Sci Technol. Various

Accuracy 88.0%;
Sensitivity 95.2–95.8%;
Specificity 96.7–97.5%

Hsieh, C.I. et al.
[58] CNN (VGG-16 and ResNet-34) 2021 Classify osteoporosis Nat. Commun. Lumbar spine, pelvis

AUC 0.890;
Accuracy 86.2–91.7%;

Sensitivity 80.2%–83.5%;
Specificity 88.3%–94.9%

Sukegawa, S. et al.
[59]

CNN (EfficientNet-b0, -b3, and
-b7 and ResNet-18, -50, and -152) 2022 Classify osteoporosis Sci. Rep. Dental panoramic

AUC 0.911–0.921;
Accuracy 84.0–84.5%;
Specificity 88.8–90.6%;
F1 score 0.720–0.740

Yamamoto, N. et al.
[60]

CNN (ResNet18, ResNet34,
GoogleNet, EfficientNet b3,

EfficientNetb4)
2020 Classify osteoporosis Biomolecules Hip

Accuracy 88.5%;
Specificity 92.2%;

Recall 0.887;
F1 score 0.894;

AUC 0.922–0.937

Wani, I. et al. [30] CNN (AlexNet, VggNet-16,
ResNet, VggNet-19) 2022 Classify osteoporosis Multimed. Tools Appl. Knee

Accuracy 90.9%;
Error rate 9.0%;

Validation loss 54%

Lee, K.S. et al. [61] CNN (CNN3, VGG-16,
VGG-16_TF, VGG-16_TF_FT) 2020 Predict osteoporosis J Clin Med. Dental panoramic

AUC 0.858;
Sensitivity 90.0%;
Specificity 81.5%;
Accuracy 84.0%

Zhang, B. et al. [62] CNN 2020 Classify osteoporosis Bone Lumbar spine AUC 0.767–0.810;
Sensitivity 68.4–85.3%

Singh, A. et al. [32] SVM, GNB, k-NN, ANN 2017 Predict osteoporosis Comput Biol Med. Calcaneum

AUC 0.982;
Accuracy 97.9%;

Sensitivity 100.0%;
Specificity 95.7%
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Table 1. Cont.

Authors Artificial Intelligence Method Publication Year Main Objectives Title of Journal Type of Radiographs Performance

Tecle, N. et al. [31] CNN (FSN-8) 2020 Predict osteoporosis J Hand Surg Am. Hand Sensitivity 82.4%;
Specificity 94.3%

Areeckal, A. S. et al.
[63] k-NN 2017 Predict osteoporosis Osteoporos Int. Hand and wrist

Accuracy 93.2%;
Sensitivity 91.2%;
Specificity 95.0%

Kavitha, M.S. et al.
[64] naive Bayes, k-NN, SVM 2015 Predict osteoporosis Oral Surg Oral Med Oral

Pathol Oral Radiol. Dental panoramic Accuracy 89.5–96.8%

Kavitha, M.S. et al.
[65] hybrid GSF 2016 Classify osteoporosis Dentomaxillofac Radiol. Dental panoramic

AUC 0.986;
Sensitivity 99.1%;
Specificity 98.4%;

Accuracy 98.9% (femoral neck);
AUC 0.962; Sensitivity 95.3%;

Specificity 94.7%;
Accuracy 96.0% (lumbar spine)

Chu, P. et al. [66] CNN (OSN; AlexNet) 2018 Predict osteoporosis Annu Int Conf IEEE Eng
Med Biol Soc Dental panoramic Accuracy 89.8%

Hwang, J.J. et al.
[67] decision tree, SVM 2017 Predict osteoporosis Dentomaxillofac Radiol Dental panoramic

Accuracy 96.2–96.3%;
Sensitivity 97.1–97.2%;

Specificity 96.3–97.1

Lee, J.S. et al. [68] SC-DCNN, SC DNN Augment,
MC-DCNN 2019 Predict osteoporosis Dentomaxillofac Radiol Dental panoramic AUC 0.973–0.999;

Accuracy 93.0–98.5%

Oulhaj. H. et al.
[69] SVM 2017 Predict osteoporosis IEEE Trans Med Imaging Calcaneum

AUC 0.930;
Accuracy 91.3%;
Sensitivity 92.0%;
Specificity 91.0%

Zheng, K. et al. [70] CNN (Alexnet, Googlenet,
Resnet18, Inceptionv3) 2020 Predict osteoporosis Artif Intell Med Calcaneum AUC 0.944;

Accuracy 90.8%

Nasser, Y. et al. [71] SVM 2017 Predict osteoporosis New York: IEEE Calcaneum Accuracy 95.5%
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Table 1. Cont.

Authors Artificial Intelligence Method Publication Year Main Objectives Title of Journal Type of Radiographs Performance

Jang, M. et al. [34] Deep learning model
(OsPor-screen) 2022 Classify osteoporosis J. Bone Miner. Res. Chest

AUC 0.880–0.910;
Accuracy 77.7–84.2%;
Sensitivity 84.3–86.2%;
Specificity 74.2–81.5%

Bhattacharya, S.
et al. [72] SVM, NN 2019 Classify osteoporosis IEEE Xplore Calcaneum Accuracy 95.6%

Jang, R. et al. [73] CNN (VGG16) 2021 Classify osteoporosis Sci. Rep. Hip

AUC 0.700;
Accuracy 81.2%;
Sensitivity 91.1%;
Specificity 68.9%,

Nguyen, T. et al.
[74] CNN 2021 Classify osteoporosis Comput. Biol. Med. Hip r = 0.808

Singh, Y. et al. [75] CNN 2021 Classify osteoporosis 43rd Conf Proc IEEE Eng
Med Biol Soc Dental panoramic Accuracy: 87.9%

Sato, Y. et al. [35] CNN 2022 Classify osteoporosis Biomedicines. Chest

AUC 0.700–0.890;
Accuracy 66.1–78.5%;
Sensitivity 71.3–90.1%;
Specificity 62.4–73.7%

Hong, N. et al. [76] CNN 2023 Classify osteoporosis J Bone Miner Res. Lateral spine AUC 0.830–0.850;
Sensitivity 75.0–76.0%

Nakamoto, T. et al.
[77] CNN 2022 Classify osteoporosis Dentomaxillofac Radiol Dental panoramic

Sensitivity 78.3–82.6%;
Specificity 71.4–79.2%;

Accuracy 74.0–79.0% (Lumbar
spine DEXA);

Sensitivity 80.0–86.7%;
Specificity 67.1–74.1%;

Accuracy 70.0–75.0% (Femoral
Neck)

Widyaningrum, R.
et al. [51] DT, GNB, MLP 2023 Classify osteoporosis Int. J. Dent. Dental panaromic

Accuracy 90.5%;
Specificity 90.9%;
Sensitivity 90.0%



Bioengineering 2024, 11, 484 10 of 19

Table 1. Cont.

Authors Artificial Intelligence Method Publication Year Main Objectives Title of Journal Type of Radiographs Performance

Lee, S.W. et al. [78] CNN 2020 Classify osteoporosis Skeletal Radiol. Spine

AUC 0.740;
Accuracy 71.0%;
Sensitivity 81.0%;
Specificity 60.0%;

F1-score 0.73

Mohammadi, F. G.
et al. [79] CNN 2023 Classify osteoporosis Stud Health Technol

Inform Hand

AUC 0.740;
Accuracy 82.0%;
Sensitivity 87.0%;
Specificity 61.0%

Mao, L. et al. [80] CNN 2022 Classify osteoporosis Front. Endocrinol. Lumbar spine
AUC 0.937;

Sensitivity 84.8%;
Specificity 86.6%

Area under receiver operator curve (AUC), correlation coefficient (r).
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Table 2. Results summary.

Areas Sampled No. of Studies AUC Accuracy (%) Sensitivity (%) Specificity (%)

Dental 10 0.858–0.999 74.0–96.9 78.3–97.2 67.1–97.1
Hip 5 0.700–0.937 81.2–88.5 80.2–91.1 68.9–94.9

Spine 5 0.726–0.937 71.0–86.2 68.4–84.8 60.0–88.3
Calcaneum 5 0.930–0.982 90.8–97.9 92.0–100.0 91.0–95.7

Hand or Wrist 3 0.740 82.0–93.2 82.4–91.2 61.0–95.7
Chest 2 0.700–0.910 66.1–84.2 71.3–90.1 62.4–81.5

Various * 1 - 88.0 95.2–95.8 96.7–97.5
Knee 1 - 90.9 - -

Overall 32 0.700–0.999 66.1–97.9 67.4–100.0 60.0–97.5

* Internal datasets were used consisting of spine, femur, knee, clavicle, and upper extremity radiographs.

4. Discussion
4.1. Advantages and Efficacy

Based on our comprehensive review, many machine-learning tools demonstrate im-
pressive diagnostic capabilities for osteoporosis when benchmarked against established
reference standards. Furthermore, these tools consistently show excellent discriminatory
performance across various anatomical regions, with promising outcomes in osteoporosis
prediction using radiographs of the hip, spine, chest, extremities, and mandible.

One major advantage is manpower and time savings for image segmentation and
analysis. Segmentation is the process of identifying regions of interest (ROI) in images, such
as separating bone and non-bone structures on radiographs. Historically, this was a manual
and time-consuming task requiring trained personnel. In contrast, AI can handle vast
imaging datasets without manual intervention, reducing human error and interobserver
variability. As a case in point, Jang et al. noted that their automated “OsPor-screen”
model required less than 4 s to process and classify a chest radiograph [34]. Similarly,
Doctorant et al. described an AI model for ROI labeling in lumbar spine DEXA, which
required only seconds for analysis and matched the performance of expert operators [52].

In addition, radiographs are an ideal modality for large-scale population screening
due to their cost-effectiveness and typically lower radiation exposure when compared to
DEXA and quantitative CT scans. Existing radiographs performed for other purposes
may also be retrospectively analyzed for osteoporosis without incurring further costs or
radiation burden to the patient, increasing the appeal of screening and improving screening
program uptake in the population. Serial radiographs may also be performed for a patient
over time depending on the clinical scenario, such as follow-up of chest infections and
assessing fracture healing. This would permit the close trending of BMD without the need
for frequent DEXA scans, although the clinical utility of this process is currently uncertain
and requires further evaluation.

Finally, radiographs represent a promising alternative avenue for osteoporosis di-
agnosis in rural settings or developing countries where DEXA machines are not widely
available, a role that is analogous to that of quantitative ultrasounds [81,82]. Given the high
diagnostic accuracy of some deep learning models (AUCs up to 0.9987 in dental [68] and
0.9824 in calcaneal radiographs [32]), further research and validation is merited to establish
if deep learning diagnosis of osteoporosis from radiographs in tandem with other clinical
tools may suffice for treatment initiation in these underserved populations.

4.2. Challenges: Dataset Collection

The efficacy of a machine learning model is contingent on the size and quality of
the dataset on which it is trained [48,49]. There are several challenges in medical image
collection (Figure 3); first, data collection is subject to ethical considerations such as patient
privacy and radiation exposure. Second, medical images can be very large in size with high
resolutions. Finally, imaging platforms may not be readily amenable to data transfer and
collection in view of security concerns [83]. Therefore, medical imaging datasets tend to be
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relatively small, comprising hundreds to thousands of images [48] compared to natural
image datasets, which can contain millions of images.
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Deep learning models trained on small datasets tend to have reduced generalizability
and overfitting. To mitigate this problem, data augmentation techniques (such as blurring,
shearing, sharpening, and rotation) are often performed to artificially increase the size of
datasets without the need for further collection [84]. Transfer learning is also a relevant
technique, whereby a CNN trained on a large dataset may be retrained on a smaller dataset
for a new problem [30,85]. For example, Wani et al. [30] and Lee et al. [61] independently
utilized transfer learning in the analysis of knee and dental radiographs, respectively,
noting that the use of a pre-trained model helps to mitigate the problem of smaller datasets.

Dataset bias occurs when a dataset used to train a model has a different distribution
from the population to which it is to be applied [86,87]. Some studies only examine
a small subgroup of the population and thus may appear accurate if the test sets are
derived from the same population but fail when tested in a broader context. A recent
review of studies analyzing dental radiographs by Martins et al. [88] noted that most
papers only incorporated data from a single institute, while Alberquerque et al. [89] noted
the problem of dataset imbalance, whereby a dataset retrospectively including patients
who had previously undergone DEXA scans would be skewed toward higher rates of
osteoporosis than the general population. It can be difficult to determine if a dataset is
subject to bias, particularly if the collection criteria are not disclosed. Critical evaluation of
datasets by researchers and meticulous documentation of a dataset’s characteristics and
patient demographics would help to alleviate this problem [83].

4.3. Challenges: Radiograph Quality and Confounding Pathologies

Another significant challenge lies in the technical quality of radiographs, as suboptimal
positioning, variable imaging techniques, variations in image exposure, and the presence
of artifacts can lead to inaccuracies in the model. One study by Socha et al. [90] examining
COVID-19 detection AI models described how poor image quality, artifacts, and data
heterogeneity in the initial datasets collected during the pandemic contributed to poor
performance in real-world clinical settings. In the context of osteoporosis, Hsieh et al. [58]
noted that bony pathologies such as fractures, implants, bony tumors, infections, and
severe osteoarthritis can introduce complexity in analysis. It was postulated that fractures
can alter normal bone anatomy and induce callus formation, whereas implants might
produce metallic artifacts, rendering the evaluation of adjacent tissue more challenging.
The presence of these factors necessitates algorithms and image processing methods to
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differentiate true BMD alterations from other non-BMD changes. Fortunately, the ubiquity
of radiographs may partially circumvent this problem; for example, in a large AI pipeline,
a patient with a hip implant may have radiographs of other anatomical regions such as
the chest and other limbs performed at the same sitting and thereby undergo osteoporosis
screening even though the hip radiograph may not be amenable to analysis [58].

The advent of AI tools for the detection of other bone pathologies may also help to
mitigate the problem. For example, Hsieh et al. [58] incorporated multiple deep learning
models in their automated osteoporosis detection pipeline, such as for the detection of
fractures and other algorithms for the exclusion of poor-quality images and concomitant
pathologies [58]. The tool was able to automatically exclude confounding radiographs and
successfully report a predicted BMD in 79.0% of pelvis radiographs and 82.3% of spine
radiographs in a large population of tertiary care patients at a general hospital without
manual intervention.

4.4. Challenges: Study Protocol Heterogeneity

The variability in study protocols presents significant challenges in the field of AI-
driven osteoporosis classification. Differences in the choice of inclusion/exclusion criteria,
pre-processing methodology, and model construction make it difficult to compare findings
across studies.

Moreover, inconsistencies in defining model endpoints and the choice of performance
metrics further complicate the interpretation of results. For example, some papers opt to
classify osteoporosis versus non-osteoporosis in patients while others endeavor to measure
BMD directly. This diversity underscores the complexity of the issue and highlights the
importance of standardizing methodologies to ensure consistency and reliability in research
outcomes. Improved consistency in study protocols and standardizing methodologies will
facilitate the accumulation of robust evidence, ultimately advancing our understanding of
AI-driven solutions.

4.5. Challenges: Clinical Integration

The clinical integration of artificial intelligence solutions is fraught with challenges [91].
Recht et al. [92] outlined various ethical, technical and clinical challenges involved in
the clinical integration of AI: AI algorithms must align with the complex and diverse
spectrum of clinical protocols and practices across different regions and healthcare contexts.
Data privacy and security concerns, along with the ethical implications of AI-driven
decision support, also add layers of complexity to the integration process. Daye et al. [93]
proposed a roadmap for successful oversight of clinical AI implementation, noting that four
components are required for successful implementation: data access and security, cross-
platform and cross-domain integration, clinical translation and delivery, and leadership
supporting innovation.

Furthermore, the regulatory landscape is continuously evolving, necessitating frequent
updates and adaptations to ensure AI systems comply with rigorous healthcare safety and
quality standards [94]. Close cooperation with regulatory bodies such as the Food and
Drug Administration in the United States is required [95].

Variability in data formats, quality, and acquisition techniques across various health-
care systems can also hinder the performance of AI tools. The heterogeneous distribution of
disease in various populations and different populations also further complicates matters
and may necessitate the use of separate training sets in different populations [90]. Most
of the reviewed studies demonstrate good diagnostic accuracy on internal or external
datasets without the inclusion of an integrated clinical pathway. On the other hand, Hsieh
et al. [58]. outlined a process at the Chang Gung Memorial Hospital (Linkou, Taiwan) in
which the hospital PACS relayed all newly acquired pelvic and lumbar spine radiographs
to an inference platform daily [58]. The system also integrated several other deep learning
tools for the detection of image quality and other bony pathologies such as hip or lumbar
spine fractures and automatically excluded these studies. There is a clear need for further
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research and infrastructure development to support the establishment of similar integrated
clinical platforms.

As a counterpoint, various studies do make use of clinical data to improve diagnostic
accuracy. For example, Yamato et al. [60], Sukegawa et al. [59], and Mao et al. [80] describe
the use of ensemble models incorporating clinical covariate data such as age, gender, and
BMI. Such ensemble models generally improved model performance on various metrics,
especially accuracy and AUC [59,60].

Proving the effectiveness of a deep learning model is also often challenging since it
often functions like a black box. However, recent visualization methods, such as Grad-
CAM [59,96] and back-propagation visualization [97], highlight salient areas of interest in
images and may help to increase the trust and acceptance of both patients and clinicians in
the AI model. For example, Jang et al. [34] described the use of Grad-CAM in their paper
on chest radiographs and were able to present graphical illustrations of how the model
made positive predictions based on various locations such as the humeral head, scapula,
ribs, spine, and clavicle; it was noted that further work on visualization methods may help
to improve the interpretability of AI models and improve clinician acceptance.

4.6. Future Directions in the Use of AI in Osteoporosis

There are numerous exciting opportunities for harnessing AI to predict osteoporosis
from medical imaging. Osteoporosis may serve as an ideal stepping stone for the introduc-
tion of automated imaging systems to healthcare because the disease is highly prevalent
with well-established benchmarks and reference standards in the form of DEXA but also
not time-critical and amenable to further verification and follow-up. These automated
platforms can then be integrated with other deep learning tools such as the detection of
image quality, fractures, implants, and bony tumors that can help to reduce confounding
factors for osteoporosis detection as well as serve as clinically relevant diagnostic tools in
their own right.

Multimodality platforms may also serve as a useful direction for exploration. The use
of CT assessment of osteoporosis is well established in the literature, with various tools
showing excellent diagnostic performance [98,99]. MRI tools may also be useful: Zhao et al.
proposed a fully automated radiomic screening pipeline for osteoporosis using a short
lumbar mDIXON sequence for opportunistic screening, which could be performed in as
short as 16 s [100]. A combined platform harnessing multiple modalities could yield higher
accuracy with lower patient costs.

There is also great interest in the use of deep learning techniques to uncover further
risk factors and predict fracture risk independent of BMD and FRAX [101]. For example,
Yosibash et al. [102] described an autonomous algorithm combining autonomous finite
element analysis and machine learning techniques for accurate prediction of future hip frac-
ture risk assessment from CT scans of the abdomen and pelvis [102]. Further investigation
and exploration of clinical integration of these methods is warranted.

Radiologists and clinicians must actively engage in the training and adoption of AI
technologies and healthcare institutions must invest in infrastructure and education to
support this transformative shift in medical imaging. Ultimately, a collaborative effort
between clinicians, technology developers, and regulatory bodies is crucial to overcoming
these challenges and realizing the full potential of AI in radiology.

5. Conclusions

This systematic review highlights the growing body of evidence that underscores the
promise of harnessing artificial intelligence in radiographs for osteoporosis classification.
Modern deep-learning technology allows for the automated analysis of substantial volumes
of radiographic data, eliminating the need for labor-intensive manual segmentation and
image analysis. In addition, the cost-effectiveness and accessibility of radiographs make
them an ideal modality for large-scale population screening, particularly in settings where
DEXA machines may be scarce. By leveraging the high diagnostic accuracy of deep learning
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models, there is a promising opportunity to enhance osteoporosis diagnosis and treatment
initiation in these populations, thereby improving healthcare equity.

Several challenges must be addressed to fully realize the potential of AI-driven os-
teoporosis classification. Dataset collection is a major hurdle due to ethical concerns, data
privacy issues, and biases. Standardizing methodologies and rigorously evaluating datasets
are crucial for reliable and generalizable AI models across diverse populations. Moreover,
ensuring robust algorithms capable of accurately distinguishing true bone mineral density
alterations from other changes is essential given the technical quality of radiographs and
the presence of confounding pathologies.

Looking ahead, collaboration between radiologists, clinicians, technology developers,
and regulatory bodies is crucial to overcome the challenges associated with AI implementa-
tion and ensure patient-centric care. Future research endeavors should focus on addressing
the challenges in technical application and clinical integration to facilitate future practical
implementation of this technology.
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