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Abstract: The theoretical basis for the Eddy Damped Markovian Anisotropic Closure (EDMAC) is
formulated for two-dimensional anisotropic turbulence interacting with Rossby waves in the presence
of advection by a large-scale mean flow. The EDMAC is as computationally efficient as the Eddy
Damped Quasi Normal Markovian (EDQNM) closure, but, in contrast, is realizable in the presence of
transient waves. The EDMAC is arrived at through systematic simplification of a generalization of the
non-Markovian Direct Interaction Approximation (DIA) closure that has its origin in renormalized
perturbation theory. Markovian Anisotropic Closures (MACs) are obtained from the DIA by using
three variants of the Fluctuation Dissipation Theorem (FDT) with the information in the time history
integrals instead carried by Markovian differential equations for two relaxation functions. One of the
MACs is simplified to the EDMAC with analytical relaxation functions and high numerical efficiency,
like te EDQNM. Sufficient conditions for the EDMAC to be realizable in the presence of Rossby waves
are determined. Examples of the numerical integration of the EDMAC compared with the EDQNM
are presented for two-dimensional isotropic and anisotropic turbulence, at moderate Reynolds
numbers, possibly interacting with Rossby waves and large-scale mean flow. The generalization of
the EDMAC for the statistical dynamics of other physical systems to higher dimension and higher
order nonlinearity is considered.

Keywords: Markovian closures; non-Markovian closures; anisotropic turbulence; Rossby waves;
realizability

1. Introduction

Orszag [1] proposed the Eddy Damped Quasi Normal Markovian (EDQNM) model
as an efficient and realizable closure for three-dimensional (3D) isotropic turbulence. The
first numerical study of the EDQNM was made by Leith [2], who formulated and solved it
for two-dimensional (2D) isotropic turbulence. Herring [3] derived a statistical dynamical
closure for 2D anisotropic turbulence that generalized the EDQNM to situations without
transient waves. The EDQNM is computationally efficient because it is Markovian and
consists of just the equations for the single-time two-point cumulant in spectral space
with an analytical expression for the triad relaxation function. However, as we discuss
and analyze in detail in this article, the EDQNM is not guaranteed to be realizable for
anisotropic turbulence interacting with transient waves. In contrast, the Eddy Damped
Markovian Anisotropic Closure (EDMAC), for which we formulate the theoretical basis,
is realizable.

One can arrive at the EDQNM in various ways, as discussed, for example, by Lesieur [4],
with our preference being from a reduction of the more fundamentally based Eulerian
Direct Interaction Approximation (DIA) of Kraichnan [5]. The DIA is a more complex
non-Markovian closure that is founded on renormalized perturbation theory (reviews of
closures are presented in Refs. [4,6–13]). These reviews present analyses of the relative per-
formance of the various closure models. The form of the eddy damping in the EDQNM is
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chosen to be consistent with the forward k−
5
3 energy cascading inertial range of 3D isotropic

turbulence and the forward k−3 enstrophy cascading inertial range of 2D turbulence.
Starting from the DIA, the EDQNM may be obtained by using a Markovian form for

the response function and using the current-time FDT (Fluctuation Dissipation Theorem)

Ck(t, t′) = Rk(t, t′)Ck(t, t) (1)

for t ≥ t′ and Ck(t, t′) = C−k(t′, t) for t′ > t. In Equation (1), Rk(t, t′) is the response
function, Ck(t, t′) is the two-time spectral cumulant, and Ck(t, t) the current-time single-
time cumulant at wavenumber (or strictly wavevector) k. In the EDQNM, the response
function is also specified by an analytical form consistent with either the 2D or 3D inertial
ranges. With these modifications, the time-history integrals of the DIA can be performed
analytically to determine a triad relaxation function that enters the cumulant equation
(see Section 7). In the EDQNM, the strength of eddy damping is specified by an empirical
constant, as distinct from the DIA, which has no empirical parameters.

The EDQNM closure has the advantage of being very computationally efficient since
it scales like O(T), where T is the length of the time integration. This contrasts with the
DIA non-Markovian closure that scales as O(T3), because the two-point cumulants and
response functions satisfy integro-differential equations. Although, we should note that the
efficiency of the DIA can be improved to scaling like O(T2). This can be performed by using
the three-point cumulant in periodic restarts of the DIA closure numerical model [14–17].

The DIA is closely related to the Self Consistent Field Theory closure (SCFT) of Her-
ring [18,19] and the Local Energy-Transfer Theory closure (LET) of McComb [6,20,21]. The
SCFT and LET closures are also non-Markovian and, despite being originally derived by
different methods, can in fact also be obtained by modifications of the DIA equations. These
three Eulerian non-Markovian closures all have the same single-time two-point closure
equation. However, the SCFT and LET use the prior-time FDT [12] (Equation (1)) defined by

Ck(t, t′) = Rk(t, t′)Ck(t′, t′) (2)

for t ≥ t′ where Ck(t′, t′) is the prior-time single-time cumulant. In the SCFT, the response
function, identical to that for the DIA, is taken as fundamental and the two-time cumulant
is obtained from the prior-time FDT. For the LET the two-time cumulant, identical to that
for the DIA, is fundamental, and the response function is derived from the FDT in Equation
(2). In this study, we focus on the derivation of Markovian closures from the DIA closure,
but we could equally consider the SCFT or LET as the starting points.

The EDQNM closure has been widely used in many studies and applications, as
reviewed in Refs. [4,9–12,22]. As emphasized in the detailed study of Bowman et al. [23],
the EDQNM may not be realizable in the presence of transient waves such as drift waves
in plasmas or, equivalently, Rossby waves in geophysical flows. In some studies, the waves
have been assumed to be slowly varying, and the quasi-steady state form of the triad
relaxation function is used to avoid possible singular behavior [22–29]. In other studies,
modified forms of quasi-normal Markovian closures have instead been used [30,31].

The reason that the EDQNM may not necessarily be realizable with transient waves
is because the oscillations of the propagating waves mean that the real part of the triad
relaxation functions in the EDQNM may, on occasions, become negative. Bowman et al. [23]
found that the same problem also occurs if the prior time FDT in Equation (2) is used.
However, they showed that a realizable Markovian closure could be obtained by using a
FDT that is essentially a half-way house between the current-time and prior-time FDTs.
This FDT, which we call the correlation FDT, is given by

Ck(t, t′) = [Ck(t, t)]
1
2 Rk(t, t′)[Ck(t′, t′)]

1
2 (3)

for t ≥ t′. Bowman et al. [23] called their closure the Realizable Markovian Closure
(RMC). Unlike the EDQNM closure, for which the triad relaxation functions have analytical
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expressions, the RMC relaxation functions need to be evaluated by solving a system
auxiliary differential equations. Hence the RMC is less computationally efficient than the
EDQNM. Hu et al. [32] used the RMC in studies of the Hasegawa–Wakatani two-field
equation of plasma physics. Bowman and Krommes [33] further developed and applied
realizable Markovian closures for homogeneous turbulence in the presence of waves.
They considered the interaction of drift waves (essentially Rossby waves) and anisotropic
turbulence with the single-level Charney–Hasegawa–Mima model. They also formulated
a realizable test-field model (RTFM), a generalization of Kraichnan’s [34] test-field model
(TFM), for turbulence in the presence of transient waves.

Traditionally, closure theory, including Markovian closures, like the EDQNM [1,2],
have focused on the forward energy cascade of 3D turbulence and the forward enstrophy
cascade of 2D turbulence in decaying and steady state systems. The EDQNM damping is
normally specified to be consistent with these forward inertial ranges. Two-dimensional
turbulence also has an inverse energy cascade, with a steady state inertial range of k−

5
3 [35].

With differential rotation on a β–plane, supporting Rossby waves, the turbulence becomes
anisotropic, with preferential zonal motion. This was noted by Rhines [36] based on the-
ory and direct numerical simulations (DNS) and by Holloway and Hendershott [37] in
studies with a modified TFM. Their TFM did not cater for transient Rossby waves, but re-
quired an approximate steady state triad relaxation function to guarantee realizability [33].
Rhines [36] proposed that, under suitable conditions, the fluid velocities follow an inverse
k−5 power law in steady state where k is the wavenumber, the magnitude of the total
wavevector. Chekhlov et al. [38] performed a set of DNS experiments of 2D turbulence
on a β–plane forced by small scale forcing. They found support for the scaling of Rhines,
for the zonal components with kx = 0 which followed a k−5

y power law. However, the

rest of the spectrum followed the k−
5
3 inverse energy cascade, emphasizing the anisotropy

induced by the Rossby waves [22,24–29,37]. This is further discussed in the review by
Galperin et al. [39]. Krommes and Parker [40] also discuss the application of homogeneous
closures to circulations with zonal flow generation through inverse cascades, such as on the
giant planets and their moons, and to plasma physics (see also the reviews in Refs. [41,42]).
They note, however, that real flows are generally inhomogeneous and “statistically inhomo-
geneous solutions with nontrivial mean fields can emerge from a statistically homogeneous
state by spontaneous symmetry breaking”. Indeed, Frederiksen [43] shows that just an in-
finitesimal topographic perturbation can cause such symmetry breaking with the mountain
torque driving a mean westward zonal flow on the β–plane and solid body rotation on the
sphere. This symmetry breaking may considerably modify the structures of the larger scale
flows in the inverse cascades.

For the earth’s atmosphere, with a Rossby radius of deformation around 1000 km,
the larger scales of turbulent 2D and quasigeostrophic flows are determined by heating,
topography, and baroclinic instability that override the inverse cascades [4]. It is 2D
homogeneous flows, in typical atmospheric parameter ranges, with forward enstrophy
cascades, and the analogous 3D homogeneous flows with forward energy cascades, that are
of primary interest in our current study. For flows in these parameter ranges, the large-scale
flows can be specified to have realistic initial spectra or driven towards such states with the
smaller scales evolving towards their statistically steady states. In this way, studies with
homogeneous closures can throw considerable light onto the essential issues of the more
complicated inhomogeneous turbulence interactions.

In the last few years, Markovian closures have also been developed for inhomogeneous
turbulence interacting with mean flows, Rossby waves, and topography by Frederiksen
and O’Kane [12,44,45]. Three types of Markovian Inhomogeneous Closures (MICs) were
developed [44], as well as three types of abridged MICs [45]. For the abridged MICs, the
mean field trajectory in the time history integrals is replaced by the current-time mean
field and results in slightly more efficient closures. To date, all the MIC variants have been
developed as modifications of the inhomogeneous non-Markovian QDIA closure [46–48].
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The QDIA was developed for 2D inhomogeneous turbulent flows interacting with
mean fields and topography by Frederiksen [46]. It was extended to include Rossby waves
(Frederiksen and O’Kane [47]) and to multi-level and multi-field models for classical and
quantum field theories (Frederiksen [48,49]). It was numerically implemented by O’Kane
and Frederiksen [17] and subsequently used in further studies of turbulence dynamics,
interactions with topography and Rossby waves, predictability of transitions between
strong zonal flows and blocking, in data assimilation and for determining subgrid-scale
parameterizations. The literature is reviewed in Refs. [45,49].

The MICs are obtained from the QDIA closure by assuming one of the three FDTs.
They can be combined as:

Ck(t, t′) = [Ck(t, t)]1−XRk(t, t′)[Ck(t′, t′)]X (4)

for t ≥ t′ and Ck(t, t′) = C−k(t′, t) for t′ > t. The current-time FDT is recovered when
X = 0, the prior-time FDT has X = 1 and the correlation FDT has X = 1

2 .
In the numerical studies of Frederiksen and O’Kane [44,45], it was found that both the

MICs [44] and abridged MICs [45] closely reproduced the statistics of large ensembles of
DNS in simulations of inhomogeneous turbulence interacting with mean flows, Rossby
waves and topography at low Reynolds numbers. While the MIC and abridged MIC
models are more computationally efficient than the non-Markovian QDIA closure, the
relaxation functions still need to be calculated by solving auxiliary differential equations,
as for the RMC of Bowman et al. [23]. A still more efficient inhomogeneous Markovian
closure with analytical relaxation functions, the Eddy Damped Markovian Inhomogeneous
Closure (EDMIC), was also developed by Frederiksen and O’Kane [45].

In a recent tribute to Jack Herring [12], and review of his major achievements in
statistical dynamical fluid dynamics, it was noted that it is possible to generalize the
EDQNM to a closure that is realizable in the presence of transient Rossby waves interacting
with anisotropic turbulence. The resulting Eddy Damped Markovian Anisotropic Closure
(EDMAC) involves a frequency renormalization of the eddy damping and by construction
is as efficient as the EDQNM.

The major aims of this article are as follows:

1. To provide a theoretical motivation for the realizable EDMAC based on renormalized
perturbation theory.

2. To generalize the EDMAC model for the interaction of anisotropic turbulence with
transient Rossby waves in the presence of transient large-scale flows.

3. To establish conditions under which the real part of the triad relaxation functions is
positive semi-definite when the large-scale flow and Doppler shifted Rossby wave
frequency have general time dependencies.

4. To examine the extent to which the frequency-dependent contribution to the eddy
damping in the EDMAC model changes the evolved energy and palinstrophy spec-
tra and Reynolds number and skewness, compared with the EDQNM, for rapidly
evolving moderate Reynolds number turbulence interacting with Rossby waves.

The methodology we apply for developing the realizable EDMAC model has parallels
with the approach used by Frederiksen [46] to formulate the inhomogeneous quasi-diagonal
direct interaction approximation (QDIA) closure. Frederiksen [46] developed the QDIA
using a renormalized perturbation theory approach in which the isotropic problem was
treated as the zero-order problem. The anisotropic and inhomogeneous terms were consid-
ered as small and multiplied by a perturbation parameter λ, prior to renormalization. Here
we apply this approach to formulate the EDMAC.

The plan of this article is as follows. In Section 2, we present the equations for two-
dimensional barotropic flows on a generalized β–plane and with large-scale advection
by a mean flow. The dynamical flow equations are then converted to the equivalent
form in Fourier space in Section 3. This is necessary for the subsequent formulation, in
Section 4, of non-Markovian closures for the interaction of anisotropic turbulence with



Fluids 2024, 9, 116 5 of 28

Rossby waves. These generalized DIA, SCFT, and LET closures have the same single-time
cumulant equation and are equally suitable for reducing to the Markovian anisotropic
closures (MACs) formulated in Section 5. There, three variants of the MACs are formulated
using the three versions of the FDT that are summarized in Equation (4). As well, in
Section 5, the prognostic equations for the relaxation functions that close the Markovian
statistical dynamical equations are derived. In Section 6, we focus on the Markovian variant
for which the current-time FDT in Equation (1) is imposed, and note the simplifications in
the structure of the closure that then entail. The EDMAC model is formulated in Section 7
and in Section 8 the sufficient conditions for the realizability of EDMAC in the presence
of transient Rossby waves are established. Generalization of the realizable EDMAC to
other physical systems with transient waves and to higher dimension and higher order
nonlinearity is considered in Section 9. In Section 10, numerical integrations of the EDMAC
and EDQNM models are reported on for isotropic and anisotropic 2D turbulence of various
complexity. The implications of the results and our conclusions are presented in Section 11.
The derivation, based on renormalized perturbation theory, of the generalized DIA closure
from which our analysis starts is located in Appendix A. The Langevin equation for the
EDMAC model that guarantees realizability is presented in Appendix B.

2. Two-Dimensional Barotropic Flows on a β–Plane with Large-Scale Advection

We formulate our statistical dynamical equations for the case of two-dimensional
or barotropic flows, although the generalization to three-dimensional flows can also be
accomplished, as described in Section 9. Turbulent flows in planar geometry are considered
on a generalized β–plane, and include a large-scale advection by a wind U. The total
flow is described by the streamfunction Ψ = ψ − Uy where ψ represents the small scales.
Throughout this paper, we present theoretical and numerical results for flows on the doubly
periodic plane 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π with x = (x, y).

2.1. Large-Scale Flow Equation

The large-scale flow U is kept the same in each realization of the smaller scales, and
effectively just modifies the beta effect. We include possible relaxation to a mean large-scale
flow U0 with strength αU so that U may evolve with time according to

∂U
∂t

= αU(U0 − U). (5)

In the absence of the relaxation forcing and dissipative drag, U is separately conserved.

2.2. Barotropic Vorticity Equation for the Small Scales

The evolution of the small scales is described by the barotropic vorticity equation on a
β–plane with the advective wind U modifying the Rossby wave propagation:

∂ζ

∂ t
= −J(ψ − Uy, ζ + βy + k2

0Uy) + ν0∇2ζ + f0. (6)

The Jacobian is defined by:

J(ψ, ζ) =
∂ψ

∂x
∂ζ

∂y
− ∂ψ

∂y
∂ζ

∂x
(7)

and the relationship between the vorticity ζ and the stream function ψ is

ζ = ∇2ψ ≡
(

∂2

∂x2 +
∂2

∂y2

)
ψ (8)

where ∇2 is the Laplacian.
The results that we present can also easily be extended to turbulent flow on a sphere,

where U is the analogue of the solid body rotation. Indeed, the structure of Equation (6) is
the same as for flow on a sphere. The wavenumber k0 is the analogue of that on the sphere
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with k2
0Uy corresponding to the vorticity of the solid body rotation. In Equation (6), ν0 is

the viscosity, β is the beta effect and f0 specifies possible external forcing.

3. Dynamical Equations in Fourier Space

The statistical dynamics of turbulent flows is most conveniently analyzed in spectral
space. For the doubly periodic domain, the equations are transformed into Fourier space
by spectral representations of the fields in the form:

ζ(x, t) = ∑
k

ζk(t) exp(i k.x), (9)

where the spectral coefficients

ζk(t) =
1

(2π)2

∫ 2π

0
d2xζ(x, t) exp(−i k.x). (10)

The wavenumbers in the x and y directions are kx and ky with the wavenumber vector

k = (kx, ky) and the magnitude k =
(

k2
x + k2

y

)1/2
. The spectral coefficients satisfy the

complex conjugate symmetry ζ−k = ζ∗k which guarantees that the fields in physical space
are real. The domain in Equation (9) can be general, but we suppose that it contains the
integer wavenumbers in a circular area (to be specified) that excludes the origin 0. The
vorticity equation in spectral space then takes the form:(

∂
∂t + ν0(k)k2 + iωU

k (t)
)

ζk(t)
= ∑

p
∑
q

δ(k, p, q)K(k, p, q)ζ−p(t)ζ−q(t) + f0(k, t). (11)

Here, we have generalized the form of the viscosity ν0 → ν0(k) which corresponds to more
general dissipation operators than the Laplacian in Equation (6). In Equation (11), the delta
function δ(k, p, q) = 1 if k + p + q = 0 and 0 if k + p + q ̸= 0. The interaction coefficient
K(k, p, q) is defined by:

K(k, p, q) =
1
2
[pxqy − pyqx](p2 − q2)/p2q2. (12)

The Doppler shifted Rossby wave frequency is given by the dispersion relationship:

ωU
k (t) = ΩU

k (t) + ω
β
k =

U(t)kx(k2 − k2
0)

k2 − βkx

k2 (13)

where the Rossby wave frequency is

ωk ≡ ω
β
k = − βkx

k2 , (14)

and

ΩU
k (t) =

U(t)kx(k2 − k2
0)

k2 . (15)

We note that the case of inviscid flows Rossby waves of the form expi(k.x − ωU
k t) are exact

solutions to Equation (6).

4. Non-Markovian Closures for Turbulence and Rossby Waves

The aim with closure theory is to develop statistical dynamical equations that describe
the evolution of the low order moments or cumulants for infinite ensembles of flow fields.
To start the process, we first represent a given member ζk(t) by its mean, the one-point
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cumulant, < ζk(t) >≡ ζk(t), and the deviation from the mean, ζ̃k(t). We consider
homogeneous turbulence in this study for which the small scales have zero mean:

< ζk(t) >≡ ζk(t) = 0 ; ζk(t) = ζ̃k(t). (16)

Since the mean is zero, the deviation ζ̃k also satisfies Equation (11) (with ζk(t) → ζ̃k(t) ).
The mean forcing also needs to be zero:

< f0(k, t) >≡ f 0(k, t) = 0 ; f0(k, t) = f̃0(k, t) . (17)

4.1. Generalized DIA Closure for Anisotropic Turbulence and Rossby Waves

To formulate the realizable EDMAC model equations, we start with the DIA clo-
sure that is slightly generalized as derived in Appendix A. For homogeneous anisotropic
turbulence, the DIA closure describes the evolution of the two-time two-point cumulant

Ck(t, t′) =< ζ̃k(t)ζ̃−k(t′) > (18)

and response function
Rk(t, t′) =

〈
R̃k(t, t′)

〉
(19)

which is the ensemble average of individual responses. The response function for an
individual disturbance is

R̃k(t, t′) =
δζ̃k(t)

δ f̃0(k, t′)
. (20)

The response function R̃k(t, t′) measures the change in the field δζ̃k(t) due to an infinites-
imal δ f̃0(k, t′) perturbation in the forcing at an earlier time. Here, δ denotes the func-
tional derivative.

The two-time two-point cumulant equation for the generalized DIA, as formulated in
Appendix A, is given by(

∂
∂t + ν0(k)k2 + iωU

k (t)
)

Ck(t, t′)

+
t∫

t0

ds (ηk(t, s) + πω
k (t, s))C−k(t′, s)

=
t′∫

t0

ds (Sk(t, s) + Pω
k (t, s) + F0(k, t, s))R−k(t′, s).

(21)

This is the case for t > t′, while for t′ > t we have Ck(t, t′) = C−k(t′, t). Here, the last term
in Equation (21) arises from

< f̃0(k, t)ζ̃−k(t′) >=

t′∫
t0

ds F0(k, t, s)R−k(t′, s) (22)

where t0 is the initial time and the bare noise

F0(k, t, s) = < f̃0(k, t) f̃ ∗0 (k, s) > . (23)

Also, the nonlinear damping and nonlinear noise are derived in Appendix A and given by:

ηk(t, s) = −4∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)R−p(t, s)C−q(t, s), (24)

and

Sk(t, s) = 2∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)C−p(t, s)C−q(t, s). (25)
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The expressions for πω
k (t, s) and Pω

k (t, s) are also derived in Appendix A, and are given by:

πω
k (t, s) = Rk(t, s)ωU

k (t)ωU
k (s) (26)

and
Pω

k (t, s) = Ck(t, s)ωU
k (t)ωU

k (s). (27)

In a similar way, the response function equation can be derived as(
∂
∂t + ν0(k)k2 + iωU

k (t)
)

Rk(t, t′)

+
t∫

t′
ds(ηk(t, s) + πω

k (t, s))Rk(s, t′) = δ(t − t′)
(28)

for t ≥ t′, and the Dirac delta function means that Rk(t, t) = 1.
The final equation needed for the DIA closure is that for the single-time two-point cumulant:(

∂
∂t + 2Re(ν0(k)k2 + iωU

k (t))
)

Ck(t, t)

+2Re
t∫

t0

ds (ηk(t, s) + πω
k (t, s))C−k(t, s)

= 2Re
t∫

t0

ds (Sk(t, s) + Pω
k (t, s) + F0(k, t, s))R−k(t, s).

(29)

The system of DIA equations is started from the initial conditions Ck(t0, t0) and Rk(t, t) = 1.
Equation (29) can also be simplified to the form:

(
∂
∂t + 2ν0(k)k2

)
Ck(t, t) + 2Re

t∫
t0

ds ηk(t, s)C−k(t, s)

= 2Re
t∫

t0

ds (Sk(t, s) + F0(k, t, s))R−k(t, s)
(30)

since the πω
k and Pω

k terms cancel because

Re{πω
k (t, s)C−k(t, s)− Pω

k (t, s)R−k(t, s)} = 0. (31)

4.2. The Abridged DIA Closure for Anisotropic Turbulence and Rossby Waves

As a first step towards developing Markovian Anisotropic Closures (MACs) for the
interaction of turbulence and Rossby waves, we present, in this subsection, an abridged
generalized DIA closure. We consider the situation where the large-scale field U(t) is
slowly varying in the time history integrals:

U(s) → U(t) ; ωU
k (s) → ωU

k (t). (32)

Thus, the abridged DIA closure equations are again given by Equations (21) to (25) and (28)
to (30), but with Equations (26) and (27) replaced by

πω
k (t, s) → πω

k (t, s) = Rk(t, s)[ωU
k (t)]

2
, (33)

and
Pω

k (t, s) → Pω
k (t, s) = Ck(t, s)[ωU

k (t)]
2
, (34)

where the Markov approximation in Equation (32) is denoted by the superscript ω.

4.3. Generalized SCFT and LET Closures for Ansotropic Turbulence and Rossby Waves

We can also arrive at generalized SCFT and LET closures from the generalized DIA
closure in the usual way by invoking the prior-time FDT in Equation (2). For the general-
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ized SCFT this FDT determines the two-time cumulant instead of Equation (21). For the
generalized LET closure, the FDT determines the response function instead of Equation (28).
For the corresponding abridged SCFT and LET closures, Equations (33) and (34) again
replace Equations (26) and (27).

5. Statistical Dynamical Equations for Markovian Anisotropic Closures
General Formulation of Markovian Anisotropic Closures

As the next step towards formulating the realizable EDMAC model with analytical
form for the relaxation function we outline the theory of associated Markovian Anisotropic
Closures (MACs). The MACs are described by the single-time cumulant equation and
auxiliary integral, or equivalent differential, equations for two relaxation functions. The
MACS result from employing any of the three FDTs in Equation (4) and Markovianizing
the generalized DIA in Section 4. As noted there the version with X = 0 is the current-time
FDT, X = 1

2 the correlation FDT, and X = 1 the prior-time FDT. The corresponding MACs
are denoted by MACX. The MACs can be formulated using the general expressions for
πω

k (t, s) and Pω
k (t, s) in Equations (26) and (27). However, since our final aim is to simplify

the MAC with X = 0 to the realizable EDMAC we make the derivations from the abridged
DIA with πω

k (t, s) and Pω
k (t, s) given in Equations (33) and (34).

The single-time two-point cumulant equation for the abridged generalized DIA, (and
as well for the corresponding SCFT and LET closure) that is also used for each of the MAC
models can be written as:

∂
∂t Ck(t, t) + 2 Re[Nη(k, t) +Nω(k, t) +N0(k)]
= 2 Re[
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Corrections to Fluids-09-00116 
 
From Equation (35) to Equation (94) the original Lucinda Handwriting italic upper case, or  
capital, F s have been replaced by lower case f s; they need to be restored to capital F s. 

As well, the subscripts on the f s have been displaced too far to the right. For example, 

   ( , )S tkf  should be replaced by ( , )S tkF . 
 
We also picked up the following typos in the manuscript: 

1. Just after Equation (35): 

   ( )tkf  needs to be replaced by ( , )tkF ; 

( )tkN  needs to be replaced by ( , )tkN . 
2. In Equation (73): 

0ν̂  needs to be replaced by 0ν . 
3. In Equation (91): 

2ω  needs to be replaced by 2ω . 
4. In the last line of paragraph 3 of Section 9: 

( )s tωk  needs to be replaced by sωk . 
 

In Section 10.2 the original Brush Script MT bold italic letters I , A1 , A2 , and A3  have been 
replaced by a different font that does not match the Brush Script MT letters within Figures 1 and 2. 
These letters need to be restored to Brush Script MT which was used in the 2012 MDPI Entropy 
papers of JSF so presumably are still available. 
 
In Appendix B the lower case Lucinda Handwriting italic f s are correct. However: 
In equation (A24): 
the subscripts on the f s have been displaced too far to the right. For example, 

   ( , )S tkf  should be replaced by ( , )S tkf  and    0 ( , )tkf  should be replaced by 0 ( , )tkf . 
In equation (A28): 

   0 ( , )tkf  should be replaced by 0 ( , )tkf . 
In Equation (A29): 

   ( , )S tkf  should be replaced by ( , )S tkf . 
 
The following CrossRef links are broken: 
 
Carnevale, G.F.; Martin, P.C. Field theoretic techniques in statistical fluid dynamics: With application to 
nonlinear wave dynamics. 
Geophys. Astrophys. Fluid Dyn. 1982, 20, 131–164. 

https://doi.org/10.1080/03091928208209002 

Zhou, Y.; Matthaeus, W.H.; Dmitruk, P. Magnetohydrodynamic turbulence and time scales in astrophysical and 
space plasmas. 

Rev. Mod. Phys. 2004, 76, 1015–1034. 

10.1103/RevModPhys.76.1015 

 

(k, t) and N (k, t) terms can be written in the
following convenient forms for subsequent Markovianization. Firstly,
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S(k, t) = 2∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)∆(− k,−p,−q)(t), (36)

where

∆(−k,−p,−q)(t) =
t∫

t0

dsR−k(t, s)C−p(t, s)C−q(t, s). (37)

As well,
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ω(k, t) = [ωU
k (t)]

2
Λ(−k, k)(t) (38)

with

Λ(−k, k)(t) =
t∫

t0

dsR−k(t, s)Ck(t, s). (39)
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0(k, t) =
t∫

t0

dsF0(k, t, s)R−k(t, s). (40)

In a similar way,

Nη(k, t) = −4∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)∆(− p,−q,−k)(t), (41)

with
Nω(k, t) = [ωU

k (t)]
2
Λ(k,−k)(t), (42)
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and
N0(k, t) = (ν0(k)k2 + iωU

k )Ck(t, t) = D0(k)Ck(t, t). (43)

Here, the dissipation and Rossby wave dispersion term is

D0(k, t) = ν0(k)k2 + iωU
k (t). (44)

Next, the three versions of the FDT in Equation (4) are applied and this simplifies the
nonlinear noise and nonlinear damping terms in Equations (36) and (41). Then, the time
history integrals can then be expressed by relaxation functions ΘX and ΨX for X = 0, 1

2 , 1.
The integral representations for ΘX and ΨX can in turn be replaced by differential equations
that augment Equation (35) for the single-time cumulant. This system is therefore Marko-
vian with the variant with X = 1

2 also guaranteed to be realizable since it is a generalization
of the RMC model of Bowman et al. [23].

From Equations (36), (37) and (4) we have
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S(k, t) = 2∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)

×C1−X
−p (t, t)C1−X

−q (t, t)ΘX(−k,−p,−q)(t),
(45)

with the triad relaxation function

ΘX(−k,−p,−q)(t) =
t∫

t0

dsR−k(t, s)R−p(t, s)R−q(t, s)CX
−p(s, s)CX

−q(s, s). (46)

As well,
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ω(k, t) = [ωU
k (t)]

2
C1−X

k ΨX(−k, k)(t) (47)

where the relaxation function

ΨX(−k, k)(t) =
t∫

t0

dsR−k(t, s)Rk(t, s)CX
k (s, s). (48)

In a similar way, Nη(k, t) and Nω(k, t) simplify to

Nη(k, t) = Dη(k, t)Ck(t, t), (49)

where
Dη(k, t) = −4∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)

×C1−X
−q (t, t)C−X

−k (t, t)ΘX(−p,−q,−k)(t),
(50)

and
Nω(k, t) = Dω(k, t)Ck(t, t), (51)

with
Dω(k, t) = [ωU

k (t)]
2
C−X

k (t, t)ΨX(k,−k)(t). (52)

The equation for the single-time cumulant can also be written in the form:(
∂

∂t
+ 2 Re(Dr(k, t))

)
Ck(t, t) = 2 Re(
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r(k, t)) (53)

and for consistency the response function equation becomes:

∂

∂t
Rk(t, t′) +Dr(k, t)Rk(t, t′) = δ(t − t′). (54)
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The renormalized dissipation and noise functions in Equations (53) and (54) are defined by

Dr(k, t) = D0(k) +Dη(k, t) +Dω(k, t);
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ω(k, t) (55)

with the contributing terms given above.
The modified form of the response function can also be written as:(

∂
∂t + ν0(k)k2 + iωU

k (t)
)

Rk(t, t′)− δ(t − t′)

= −
[

t∫
t0

ds(ηX
k (t, s) + πω

k (t, s))R−k(t, s)[Ck(s, s)]X [Ck(t, t)]−X

]
Rk(t, t′)

(56)

for t ≥ t′ with Rk(t, t) = 1 and Ck(t, t) = C−k(t, t) is real. Here we have used the
general FDT in Equation (4) and ηX

k is then also obtained from ηk in Equation (24) and has
the expression:

ηX
k (t, s) = −4∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)

×R−p(t, s)R−q(t, s)C1−X
q (t, t)CX

q (s, s).
(57)

The simplified form of the response function in Equation (54) together with the
FDT in Equation (4) means that the relaxation functions ΘX in Equation (46) and ΨX

in Equation (48) can be replaced by differential equations. The differential equation for
ΘX is:

∂
∂t ΘX(k, p, q)(t) + (Dr(k, t) +Dr(p, t) +Dr(q, t))ΘX(k, p, q)(t)
= CX

p (t, t)CX
q (t, t)

(58)

where ΘX(k, p, q)(0) = 0 and Dr
k is given in Equation (55). The corresponding differential

equation for ΨX is:

∂

∂t
ΨX(k,−k)(t) + (Dr(k, t) +Dr(−k, t))ΨX(k,−k)(t) = CX

k (t, t) (59)

with ΨX(k,−k)(0) = 0.
Now, the closure for any of the three MACs with X = 0, 1

2 , 1 is Equation (53) for the
single-time cumulant Ck(t, t), augmented by the differential equations for ΘX(k, p, q)(t) in
Equation (58) and ΨX(k,−k)(t) in Equation (59). The replacement of the integral forms for
ΘX and ΨX by the differential equations has made the system Markovian. The auxiliary
differential equations for ΘX and ΨX of course generate the same information as the time
history integral forms but for long time simulations are more efficient. Nevertheless,
analytical forms for ΘX and ΨX result in even more efficient closures, such as the EDQNM
and EDMAC of Section 7. Each of the three MACX formulated in this section is realizable
for pure turbulence without transient wave phenomena. The MAC model with X = 1

2 is
also realizable when transient Rossby waves are present [23]. We note that, in fact,

Dω(k, t)Ck(t, t) =
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ω(k, t) (60)

so these terms can be dropped from Equation (53).

6. Markovian Anisotropic Closure with Current-Time FDT

In this Section, we consider the further simplifications of the MACX models when
X = 0 so that the current-time FDT is used. This is a step towards the formulation of the
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EDMAC model, in the following Section, with analytical forms for the relaxation functions.
When X = 0, Equation (53), for the single-time cumulant, simplifies to:(

∂
∂t + 2ν0(k)k2

)
Ck(t, t) = Nk(t)

= 8∑
p

∑
q

δ(k, p, q)K(k, p, q)K(p, q, k)ReΘX=0(k, p, q)(t)

×Cq(t, t)
[
Ck(t, t)− Cp(t, t)

]
+
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0(k, t),

(61)

where, for white noise,
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0(k, t) = F0(k, t, t). Here, we have used Equation (60) and the
fact that the interaction coefficients have the properties that K(k, p, q) = K(k, q, p), and
K(k, p, q) + K(p, q, k) + K(q, k, p) = 0. Also note that single-time cumulants are real. As
well, to establish Equation (61), we have used the fact that the triad relaxation function
ΘX=0 is symmetric in the three wavenumber indices:

ΘX=0(k, p, q)(t) =
t∫

t0

dsRk(t, s)Rp(t, s)Rq(t, s) (62)

as seen from Equation (46), when X = 0.
Similarly, the expression for ΨX=0 simplifies to

ΨX=0(k,−k)(t) = ΨX=0(−k, k)(t) =
t∫

t0

dsR−k(t, s)Rk(t, s). (63)

The corresponding differential equation forms of ΘX=0 and ΨX=0 are given in
Equations (58) and (59) with the simplification that CX=0 → 1 on the right-hand sides.
Also, when X = 0, Equation (50) reduces to

Dη(k, t) = −4∑
p

∑
q

δ(k, p, q)K(k, p, q)K(p, q, k)Cq(t, t)ΘX=0(k, p, q)(t) (64)

where we have used the properties of the interaction coefficients noted above and the
symmetry properties of the triad relaxation function. Also, Equation (52) becomes

Dω(k, t) = [ωU
k (t)]

2
ΨX=0(k,−k)(t) = [ωU

k (t)]
2

t∫
t0

dsRk(t, s)R−k(t, s). (65)

We also note that if the current-time FDT in Equation (1) is used (with X = 0 in Equation (4)),
then the expression for the response function simplifies to(

∂
∂t + ν0(k)k2 + iωU

k (t)
)

Rk(t, t′)

+

[
t∫

t0

ds(ηX=0
k (t, s) + [ωU

k (t)]2Rk(t, s))R−k(t, s)

]
Rk(t, t′)

= δ(t − t′)

(66)

for t ≥ t′ with Rk(t, t) = 1 and ηX
k is defined in Equation (57). Here we note that the

expression for Dη(k, t) in Equation (64) where X = 0 can also be written as

Dη(k, t) =
t∫

t0

dsηX=0
k (t, s)R−k(t, s) (67)

and Dω(k, t) is given in Equation (52) with CX=0 → 1 . Thus, Equation (66) is of course just
Equation (54) written out in detail when X = 0.
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For general X = 0, 1
2 , 1, corresponding to the three FDTs, the solution to the response

function differential Equation (54) (and Equation (66)) is

Rk(t, t′) = exp
(
−
∫ t

t′
dsDr(k, s)

)
(68)

where Dr is defined in Equation (55). Of course, when X = 0, Dη and Dω are given in
Equations (64) and (65). We also note that, for X = 0 the triad relaxation function in
Equation (46) reduces to

ΘX=0(k, p, q)(t) =
t∫

t0

dt′ exp
(
−
∫ t

t′
ds[Dr(k, s) +Dr(p, s) +Dr(q, s)]

)
. (69)

7. Realizable Eddy-Damped Markovian Anisotropic Closure

In this Section, we consider further simplifications that lead to the realizable EDMAC
model. The approach involves the Markovian approximation for the damping terms, as in
the EDQNM, and leads to analytical expressions for the relaxation functions.

7.1. Markovian Approximation and Analytical Eddy Damping

Thus, with the Markov approximation for Dr, namely Dr(k, s) → Dr(k, t) , the re-
sponse function takes the simple form:

Rk(t, t′) = exp
(
−Dr(k, t)(t − t′)

)
, (70)

since integral in Equation (68) can then be evaluated. Also, the integrals in the expression
for the triad relaxation function ΘX=0 in Equation (69) can also be evaluated to give

ΘX=0(k, p, q)(t) =
t∫

t0

dt′ exp(−[Dr(k, t) +Dr(p, t) +Dr(q, t)](t − t′))

=
1−exp(−[Dr(k,t)+Dr(p,t)+Dr(q,t)](t−t0))

[Dr(k,t)+Dr(p,t)+Dr(q,t)] .
(71)

For the EDMAC model, like the EDQNM closure, we use a parameterized form for
the eddy damping Dη , which appears in Equation (71) through Dr = D0 +Dη +Dω, and
that is consistent with the k−3 forward enstrophy cascading inertial range:

Dη(k, t) =
t∫

t0

dsηX=0
k (t, s)R−k(t, s) → µ

eddy
k (t) = γ

[
k2Ck(t, t)

] 1
2 (72)

where

µk(t) = ν0(k)k2 + µ
eddy
k (t) = ν0(k)k2 + γ

[
k2Ck(t, t)

] 1
2 . (73)

Here γ is a positive dimensionless parameter. This local form for µ
eddy
k (t) is consistent with

that of Leith [2] for 2D turbulence, and Orszag [1] used a corresponding local form for 3D
turbulence applicable to the k−

5
3 forward energy cascading inertial range. Note, however,

that our approach applies equally if an integral form over wavenumbers (Pouquet et al. [50];
Herring et al. [51]) is used instead for the eddy damping.

7.2. Frequency-Dependent Damping from Renormalized Perturbation Theory

Here, we consider the problem where the damping µk(t) is taken as the zero-order
term and the Doppler-shifted frequency ωU

k (t) → λωU
k (t) is supposed to be a small per-
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turbation of order λ. Then, we carry out the perturbation expansion as in Appendix A with
the result that:(

∂
∂t + µk(t)

)
Rk(t, t′)− δ(t − t′)

= −iλωU
k (t)R(0)

k (t, t′)− λ2ωU
k (t)

[
t∫

t0

dsωU
k (s)R(0)

k (t, s)R(0)
−k(t, s)

]
R(0)

k (t, t′)

≈ −iλωU
k (t)R(0)

k (t, t′)− λ2[ωU
k (t)]2

[
t∫

t0

dsR(0)
k (t, s)R(0)

−k(t, s)

]
R(0)

k (t, t′).

(74)

Here, R(0)
k (t, t′) = exp−µk(t)(t − t′) is the zero-order response function, as in Appendix A.

We have assumed that µ and ω are slowly varying, and then we can evaluate the integral
to obtain: (

∂
∂t + µk(t)

)
Rk(t, t′)− δ(t − t′)

≈ −iλωU
k (t)R(0)

k (t, t′)− λ2 [ωU
k (t)]2

2µk(t)
[1 − exp−(2µk(t)t)]R

(0)
k (t, t′).

(75)

In formulating the EDQNM model, µ
eddy
k (t) is specified to have the form in Equation (72)

(or the integral form of Pouquet et al. [50]) from the initial conditions rather than developing
from zero. In the same way, we take the quasi-steady state expression for the contribution
from [ωU

k (t)]2. The result is:(
∂
∂t + µk(t)

)
Rk(t, t′)

≈ −iλωU
k (t)R(0)

k (t, t′)− λ2 [ωU
k (t)]2

2µk(t)
R(0)

k (t, t′) + δ(t − t′).
(76)

Renormalizing, we obtain our required expression for establishing the realizable ED-
MAC model: (

∂
∂t + µk(t)

)
Rk(t, t′)

≈ −iωU
k (t)Rk(t, t′)− [ωU

k (t)]2

2µk(t)
Rk(t, t′) + δ(t − t′).

(77)

Thus, comparing the frequency-dependent termDω, for the MAC model, in Equation (65)
with Equation (77), we see that

Dω(k, t) → c
[ωU

k (t)]2

µk(t)
(78)

where the above analysis indicates that c = 1
2 . We leave the constant c in Equation (78) and

in the following analysis, since it could be used as an empirical parameter in situations when
the wave frequency is not small compared with the eddy damping. From Equation (52),
with CX=0 → 1 , and Equation (78), we see that

ΨEDMAC(k,−k)(t) =
c

µk(t)
(79)

where µk(t) is given in Equation (73).
Combining the above results with those of Section 7.1, we find

Dr(k, t) → ρk(t) + iωU
k (t) (80)

where

ρk(t) = µk(t) + c
[ωU

k (t)]2

µk(t)
> 0 (81)
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is the frequency renormalized damping. Thus, the EDMAC response function becomes:

Rk(t, t′) ≈ REDMAC
k (t, t′) = exp

(
−[ρk(t) + iωU

k (t)](t − t′)
)

, (82)

and the EDMAC triad relaxation function:

ΘEDMAC(k, p, q)(t)

=
1−exp(−[ρk(t)+ρp(t)+ρq(t)+i(ωU

k (t)+ωU
p (t)+ωU

q (t))](t−t0))
ρk(t)+ρp(t)+ρq(t)+i(ωU

k (t)+ωU
p (t)+ωU

q (t))
.

(83)

The EDMAC model is then defined by Equation (61), but with ΘEDMAC in Equation (83)
replacing ΘX=0. In Section 8, to follow, and Appendix B, we determine sufficient conditions
for the EDMAC to be realizable. The EDMAC has the same structure as the EDQNM, but
with just ρk replacing µk in the triad relaxation function. It is essentially as computationally
efficient as the EDQNM, as discussed further in Section 10, but with the advantage of
guaranteed realizability.

8. Conditions for Realizability of EDMAC with Variable Rossby Wave Frequency

In this Section, we determine sufficient conditions on the damping ρk(t) > 0, in
Equation (81), so that ReΘEDMAC ≥ 0; that is, so that the real part of the triad relaxation in
Equation (83) is a positive semi-definite. We consider the general case where the Doppler
shifted frequencies ωU

k (t) are time-dependent and are not necessarily monotonic.
The results of Section 7 suggest that c = 1

2 is an appropriate value for small ωU
k (t).

More generally, for larger ωU
k (t), the constant c may be regarded as an empirical factor that

is specified. Our aim is therefore to determine sufficient conditions on c for realizability of
the EDMAC model.

The triad relaxation function, ΘEDMAC(t) = ΘEDMAC(k1, k2, k3)(t), in Equation (83)
for the EDMAC model, can be written in simplified form as:

ΘEDMAC(t) =
1 − exp−[ρ + iω](t − t0)

ρ + iω
(84)

where we take t0 = 0 (without loss of generality). In Equation (84),

µ(t) =
N
∑

j=1
µkj(t) > 0,

ω(t) =
N
∑

j=1
ωU

kj
(t),

ρ(t) =
N
∑

j=1
ρkj(t) =

N
∑

j=1

(
µkj(t) + c

[ωU
kj
(t)]2

µkj
(t)

)
> 0,

(85)

with N = 3 for triad interactions. The real part of the relaxation function that appears in
the EDMAC model for the two-point cumulant (Equations (53) and (61) with superscript
X = 0 replaced by EDMAC) is then given by:

ReΘEDMAC(t)
= 1

ρ2+ω2 [ρ{1 − [exp−ρt] cos ωt}+ ω[exp−ρt] sin ωt]. (86)

Then, sufficient conditions for ReΘEDMAC(t) ≥ 0 are determined as follows. In Equation (86),
we can replace ω by |ω| for t ≥ 0, since both cos ωt and ω sin ωt are even functions of ω.
On the basis of the analysis in Section 7.2, we suppose that

ρ ≥|ω|. (87)
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Firstly, we see that ReΘEDMAC(t) ≥ 0, for 0 <|ω(t)|t ≤ π , since then

1 − [exp−ρt] cos|ω|t > 0; |ω| [exp−ρt] sin|ω|t ≥ 0. (88)

Secondly, from Equation (87), we see that for |ω(t)|t > π ,

exp−ρt ≤ exp−(|ω|t) < exp−(π) < 0.05. (89)

Further, in general,
−1 ≤ cos|ω|t ≤ 1;−1 ≤ sin|ω|t ≤ 1 (90)

and thus, for |ω(t)|t > π , [
ρ2 + ω2

]
ReΘEDMAC(t) > 0.9ρ > 0. (91)

This then means that ReΘEDMAC(t) ≥ 0, for 0 ≤|ω(t)|t < ∞ . Sufficient conditions for the
validity of Equation (87) is that each wavevector component satisfies

ρkj(t) =

µkj(t) + c
[ωU

kj
(t)]2

µkj(t)

 ≥ |ωU
kj
(t)|. (92)

In turn, the inequalities in Equation (92) are valid provided c ≥ 1
4 , as seen by solving

quadratic equations.

9. Generalizations of the EDMAC Model

The analysis of Section 8, determining sufficient conditions for ReΘEDMAC ≥ 0, can in
fact be generalized to all dimensions d ≥ 2 and with N ≥ 3 components interacting instead
of just the three. The condition for this is again that c ≥ 1

4 since none of the argument
in Section 8 depends on the dimension or the number of interacting components. It just
requires that µk(t) > 0 and ωU

k (t), with a general dispersion relationship, is finite.
This again has important implications for general EDQNM-type closures for which

realizability is dependent on the relaxation function having positive semi-definite real
part. Suppose that the relaxation function ΘEDQNM(t) is given by the right hand side of
Equation (84), but with µ replacing ρ. Then, including the effects of frequency renormal-
ized damping, µ → ρ , as specified in Equation (85), results in the associated realizable
EDMAC model.

It is straightforward to extend the EDMAC model to 2D turbulent flows and Rossby
waves on a differentially rotating sphere [9,27]. It is also a simple matter to extend the
EDMAC to 3D quasigeostrophic turbulent flows and waves in the model in Appendix B of
Frederiksen [48] generalized to rotating flows on a β–plane and on a sphere. The EDQNM
closure of Carnevale and Frederiksen [25] for two-dimensional internal gravity waves used
the quasi-steady state form for the triad relaxation function to ensure realizability. This
restriction can be removed, and transient internal gravity waves considered, by going to
the EDMAC model form for the relaxation functions. Realizability can be assured by using
the frequency renormalized form of the damping in Equation (81) where ωU

k (t) is replaced
by the internal wave frequency ωs

k = skx/k with s = ±1 (Equation (2.7c) of Ref. [25]).
One might also expect to be able to develop suitable generalizations of the EDMAC to

3D Navier–Stokes turbulence [1,10,22], including with rotation and waves. In particular,
the study by Cambon and Jacqui [52] considered 3D anisotropic turbulence subject to
rotation with different Rossby numbers and waves in EDQNM type models. They also
used the quasi-steady state form for the triad relaxation function that ensures realizability.
This might be extended to the transient regime form by using a frequency renormalized
damping as for the EDMAC model. Rose and Sulem [53] and Clark et al. [54] formulate the
EDQNM closure for isotropic turbulence in general d ≥ 2 dimensions, and it would be of
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interest to see if this could be generalized to anisotropic turbulence, with preferred zonal
motion [27,36,37], subject to differential rotation and waves with the realizable EDMAC.

There are, of course, also important physical systems for which the nonlinearity is of a
higher order than quadratic. Two examples, with cubic nonlinearity in the field equations,
are the nonlinear Schrodinger equation (Nazarenko [55] reviews the literature) and the
Klein Gordon equation with λϕ4 Lagrangian (Frederiksen [49] reviews the literature). The
nonlinear Schrodinger equation is of major importance in the study of optical turbulence,
plasma physics and continuum mechanics [55,56] and the Klein Gordon equation in the
classical and quantum statistical dynamics of Bose–Einstein condensation and scalar field
theory [49,57,58]. In spectral space, N = 4 in Equation (85), corresponding to quartic
interactions, would then be needed in closures including EDMAC, EDQNM, and resonant
interaction or wave turbulence models [25,49,54–58] of such phenomena.

10. Comparison of Closure Integrations for Turbulence and Rossby Wave Dynamics

In this Section, we compare closure calculations with the EDQNM and EDMAC mod-
els for isotropic turbulence and anisotropic turbulence with Rossby waves and possibly a
large-scale mean flow. The integrations start from the isotropic spectrum B that was studied
by Frederiksen and Davies [15,16] for closures with discrete spectra and which is very
similar to the continuous spectrum II of Herring et al. [59]. These spectra were used by Her-
ring et al. [59] and Frederiksen and Davies [15] in studies of the comparison of closures with
DNS for 2D isotropic turbulence. In particular, the continuous wavenumber formulation
of the DIA closure was compared with discrete wavenumber DNS by Herring et al. [59],
while Frederiksen and Davies [15] used the discrete formulation for both. In both studies,
the DIA closure, and its associated SCFT and LET closures in Ref. [15], were found to
underestimate the small-scale amplitudes (Figures 22 and 23 of Ref. [59]; Figures 3 and 4 of
Ref. [15]). However, the discrete closures [15] were found to be in better agreement with
the statistics of DNS than the continuous closures [59]. O’Kane and Frederiksen [17] also
used spectrum B [15,16] for the initial transient spectrum in studies of inhomogeneous
turbulence interacting with mean flows and topography with the QDIA closure.

A regularized version of the DIA, the RDIA, in which the wavenumber ranges of
interaction are restricted in the response function and two-time cumulant [16], was found
to give quite close agreement with the statistics of DNS at the expense of an empirical
parameter α. This is shown in Figures 1 and 2 of Ref. [16], although there does seem
to be a tendency of the smallest scales of the DNS to kick up somewhat in all these
studies [15,16,59].

The EDQNM and EDMAC models also depend on the empirical parameter γ in
Equation (72). For the EDMAC model, we have estimated c = 1

2 to be the strength of the
frequency-dependent damping in Section 7.2, and we use that value. More generally, if the
waves do not satisfy the formal requirement of being of small amplitude, then c could also
be regarded as an empirical parameter. Here, our aim is first to compare the EDQNM and
EDMAC models for a commonly used value of γ = 0.6 [2,9] for 2D turbulence and then to
discuss the generality of our findings for a range of γ.

10.1. Diagnostics

The evolved closure integrations for the EDQNM and EDMAC models are compared
in terms of the similarity of their evolved kinetic energy and palinstrophy spectra and
Reynolds number and skewness. These diagnostics are defined as follows. Firstly, we
specify the energy,

E =
1
2∑

k
Ck(t, t)k−2, (93)

enstrophy,
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palinstrophy,

P =
1
2∑

k
k2Ck(t, t), (95)

enstrophy dissipation,
η = ∑

k
ν0k2Ck(t, t) = 2ν0P , (96)

and palintrophy production,
K = ∑

k
k2Nk(t). (97)

Here, Nk(t) is defined in Equation (61). The large-scale Reynolds number and skewness
are then specified by

RL(t) = E/(ν0η
1
3 ) (98)

and
S(t) = 2K/(P
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1
2 ). (99)

The transient kinetic energy spectra, and palinstrophy spectra, averaged over circular
bands, are defined by:

E(ki, t) =
1
2 ∑

k∈S
Ck(t, t)k−2, (100)

and
P(ki, t) =

1
2 ∑

k∈S
k2Ck(t, t), (101)

with the set S is defined by

S = [k|ki = Int.(|k|+ 1
2
)]. (102)

The band-average is over all k within a band of unit width at a radius ki.

10.2. Initial Spectra and Parameter Specifications

In this subsection, we specify the parameters and initial spectra used in our closure
calculations. They are based on the related studies in Refs. [9,15,16,47,59]. The length scale
used is of one half the earth’s radius, ae/2, and time scale is the inverse of the earth’s rota-
tion rate, Ω−1. The the β–effect is zero in the isotropic integrations and 1.15 × 10−11 m−1s−1

(corresponding to β = 1
2 in non-dimensional units) in the anisotropic runs. This is char-

acteristic of the earth’s differential rotation at 60o latitude, and the parameter k2
0 = 1

2 in
Equation (6). We use a (bare) viscosity coefficient ν0 of 1.85 × 106 m2s−1(non-dimensional
ν0 = 2.5 × 10−3). In the closure integrations, the mean eastward flow U is either zero or
has a speed of 15 m s−1 (non-dimensional U = 0.065). The closure runs are all unforced,
with f0 = 0 in Equation (6) and the drag on the large-scale flow αU = 0 in Equation (5). The
parameter γ in Equation (72) that specifies the strength of the eddy damping is specified
at γ = 0.6 as used in [9]. We have, however, checked that the broad conclusions regard-
ing the similarity of the closure calculations described in Section 10.3 to follow hold for
a wide range of γ down to 0.01. The closure calculations are performed at a resolution
of circular truncation C64 where |k| = k ≤ 64. All integrations proceed to tmax = 90 s
(non-dimensional tmax = 0.4) with a time step of ∆t = 0.9 s (non-dimensional ∆t = 0.004).
The time stepping is performed with a predictor-corrector scheme.

The closure calculations start from Gaussian initial conditions with Ck(t0, t0) = Ck(0, 0)
for spectrum B of Frederiksen and Davies [15,16]:

Ck(0, 0) = 0.18k2 exp
(
−2

3
k
)

. (103)
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From this spectrum, the closure integrations proceed with one run being for isotropic
turbulence, denoted run
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Table 1. Non-dimensional parameters specifying the isotropic and three anisotropic closure runs.

Closure Runs β c U

Isotropic Run

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

0 0 0
Anisotropic Run

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

0.5 0 0
0.5 0.5 0

Anisotropic Run 1 
Anisotropic Run 2 
Anisotropic Run 3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U  within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 

0c = , 0U = , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with 0.5=β . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1  with the EDQNM and the anisotropic run A2  with 

0.5c =  performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow 0.065U = , corresponding to a dimen-
sional value of 115 msU −=  , in the anisotropic run A3   with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

0.5 0 0
Anisotropic Run

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

0.5 0 0
0.5 0.5 0

Anisotropic Run 1 
Anisotropic Run 2 
Anisotropic Run 3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U  within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 

0c = , 0U = , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with 0.5=β . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1  with the EDQNM and the anisotropic run A2  with 

0.5c =  performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow 0.065U = , corresponding to a dimen-
sional value of 115 msU −=  , in the anisotropic run A3   with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

0.5 0.5 0
Anisotropic Run

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

0.5 0 0
0.5 0.5 0

Anisotropic Run 1 
Anisotropic Run 2 
Anisotropic Run 3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U  within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 

0c = , 0U = , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with 0.5=β . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1  with the EDQNM and the anisotropic run A2  with 

0.5c =  performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow 0.065U = , corresponding to a dimen-
sional value of 115 msU −=  , in the anisotropic run A3   with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations

Next, we consider the evolution of the statistics of turbulence, possibly interacting
with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC models
described in Section 7. For the isotropic run

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

and the anisotropic run

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

0.5 0 0
0.5 0.5 0

Anisotropic Run 1 
Anisotropic Run 2 
Anisotropic Run 3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U  within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 

0c = , 0U = , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with 0.5=β . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1  with the EDQNM and the anisotropic run A2  with 

0.5c =  performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow 0.065U = , corresponding to a dimen-
sional value of 115 msU −=  , in the anisotropic run A3   with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

, c = 0, U = 0, and
the EDQNM closure has been used for these. The EDQNM is not guaranteed to be realizable
for the anisotropic run with β = 0.5. However, the EDQNM remained stable throughout
the integration. Indeed, we found little difference in the results for the anisotropic run

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

0.5 0 0
0.5 0.5 0

Anisotropic Run 1 
Anisotropic Run 2 
Anisotropic Run 3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U  within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 

0c = , 0U = , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with 0.5=β . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1  with the EDQNM and the anisotropic run A2  with 

0.5c =  performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow 0.065U = , corresponding to a dimen-
sional value of 115 msU −=  , in the anisotropic run A3   with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

with the EDQNM and the anisotropic run

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

0.5 0 0
0.5 0.5 0

Anisotropic Run 1 
Anisotropic Run 2 
Anisotropic Run 3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U  within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 

0c = , 0U = , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with 0.5=β . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1  with the EDQNM and the anisotropic run A2  with 

0.5c =  performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow 0.065U = , corresponding to a dimen-
sional value of 115 msU −=  , in the anisotropic run A3   with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

with c = 0.5 performed with the EDMAC
model, which is guaranteed to be realizable in the presence of Rossby waves. This is shown
in Table 2 for the large-scale Reynolds number, and for the skewness, which are identical or
essentially the same for runs

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

,

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

0.5 0 0
0.5 0.5 0

Anisotropic Run 1 
Anisotropic Run 2 
Anisotropic Run 3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U  within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 

0c = , 0U = , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with 0.5=β . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1  with the EDQNM and the anisotropic run A2  with 

0.5c =  performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow 0.065U = , corresponding to a dimen-
sional value of 115 msU −=  , in the anisotropic run A3   with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

, and

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

Anisotropic Run A1  0.5 0 0
Anisotropic Run A2 0.5 0.5 0
Anisotropic Run A3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 
c = 0 , U = 0 , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with β = 0.5 . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1 with the EDQNM and the anisotropic run A  with c = 
0.5 performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow U = 0.065 , corresponding to a dimen-
sional value of U = 15 ms−1 , in the anisotropic run A3  with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

Fluids 2024, 9, x FOR PEER REVIEW 22 of 32 

0.5 0 0
0.5 0.5 0

Anisotropic Run 1 
Anisotropic Run 2 
Anisotropic Run 3 0.5 0.5 0.065

10.3. Moderate Reynolds Number Closure Integrations 
Next, we consider the evolution of the statistics of turbulence, possibly interacting 

with Rossby waves and a large-scale mean flow U  within the EDQNM and EDMAC 
models described in Section 7. For the isotropic run I  and the anisotropic run A1  , 

0c = , 0U = , and the EDQNM closure has been used for these. The EDQNM is not 
guaranteed to be realizable for the anisotropic run with 0.5=β . However, the EDQNM 
remained stable throughout the integration. Indeed, we found little difference in the re-
sults for the anisotropic run A1  with the EDQNM and the anisotropic run A2  with 

0.5c =  performed with the EDMAC model, which is guaranteed to be realizable in the 
presence of Rossby waves. This is shown in Table 2 for the large-scale Reynolds number, 
and for the skewness, which are identical or essentially the same for runs I, A1 , and 
A2 . The close similarity between these runs for the evolved transient kinetic energy and 

palinstrophy is also seen from Figures 1 and 2. In fact, the results are so close that we have 
had to shift down the plots by increasing factors of 10 in order separate the results. 

The inclusion of the large-scale mean flow 0.065U = , corresponding to a dimen-
sional value of 115 msU −=  , in the anisotropic run A3   with the EDMAC model in-
creases the evolved Reynolds number slightly and decreases the evolved skewness more. 
Thus, Rossby waves, in the presence of the large-scale flow, make the turbulence more 
Gaussian. 

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic 
closure runs. 

Closure Runs (0)LR (0.4)LR (0)S  (0 .4)S

Isotropic Run I 304.8 263.7 0 0.735 
Anisotropic Run A1  304.8 263.8 0 0.734 

Anisotropic Run A2 304.8 263.8 0 0.735 
Anisotropic Run A3 304.8 265.7 0 0.690 

. The close similarity between these runs for
the evolved transient kinetic energy and palinstrophy is also seen from Figures 1 and 2. In
fact, the results are so close that we have had to shift down the plots by increasing factors
of 10 in order separate the results.

Fluids 2024, 9, x FOR PEER REVIEW 24 of 34 
 

 
Figure 1. Comparison of transient kinetic energy spectra ( )E k   for the EDQNM and EDMAC 

models for the runs in Table 2 at the initial ( 0t = ) and final times ( 0.4t = ). 

 
Figure 2. As in Figure 1 for the palinstrophy spectra ( )P k . 

Thus, in these closure integrations, we conclude that the addition of the frequency-
dependent damping in the EDMAC model does not greatly change the results compared 
with the EDQNM. This is the case for the strength of the eddy damping 0.6=γ  used in 
the displayed results. We have also checked that applies equally for strengths of γ down 
to 0.01. As γ is increased to larger values, the frequency-dependent contribution to the 
eddy damping becomes smaller and the damping experienced by the EDMAC is closer to 
that of the EDQNM. While the EDQNM closure remained stable for the anisotropic run 
A1 , this cannot always be guaranteed for the EDQNM, but it can for the EDMAC model 
under the conditions determined in Section 8 and Appendix B. 

11. Discussion and Conclusions 

Figure 1. Comparison of transient kinetic energy spectra E(k) for the EDQNM and EDMAC models
for the runs in Table 2 at the initial (t = 0) and final times (t = 0.4).



Fluids 2024, 9, 116 20 of 28

Table 2. Initial and evolved Reynolds number and skewness for the isotropic and three anisotropic
closure runs.

Closure Runs RL(0) RL(0.4) S(0) S(0.4)

Isotropic Run
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11. Discussion and Conclusions

The theoretical development of the Eddy Damped Markovian Anisotropic Closure
(EDMAC) has been presented for anisotropic turbulence interacting with Rossby waves in
the presence of advection by a large-scale mean flow. The EDMAC generalizes the Eddy
Damped Quasi Normal Markovian (EDQNM) to a form that is realizable in the presence
of transient waves. We have documented the equations for two-dimensional turbulence
interacting with Rossby waves and a large-scale flow in physical space and in discrete
Fourier spectral space.
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11.1. Theoretical Results

The development of the EDMAC model has then proceeded in a number of steps
requiring the formulation of generalized non-Markovian and Markovian closures.

11.1.1. Generalized Non-Markovian Closures

Firstly, renormalized perturbation theory has been employed to construct a generaliza-
tion of the non-Markovian Direct Interaction Approximation (DIA) closure with additional
eddy damping and nonlinear noise terms that depend on the Doppler shifted Rossby
wave frequencies. Associated generalized Self Consistent Field Theory (SCFT) and Local
Energy-Transfer Theory (LET) closures have also been introduced. The next step has been to
slightly simplify these non-Markovian closures to abridged forms in which the large-scale
mean flow is regarded as slowly varying in the time history integrals.

11.1.2. Markovian Anisotropic Closures

Markovian Anisotropic Closures (MACs) have then been developed by employing any
of three forms of the Fluctuation Dissipation Theorem in Equation (4). This simplifies the
time history integrals to the extent that their effects can be encapsulated in two relaxation
functions that can also be determined by ordinary Markovian differential equations. While
the MACs are more efficient for long time integrations than the non-Markovian closures,
the calculation of the relaxation functions through differential equations is a considerable
overhead compared with the analytical forms that are used for the EDQNM and established
here for the EDMAC.

11.1.3. Realizable Eddy Damped Markovian Anisotropic Closure

The EDMAC has been derived from the MAC employing the current-time Fluctuation
Dissipation Theorem (FDT) in Equation (1). Further simplification of the relaxation func-
tions has been achieved by making the Markov approximation that the generalized dissipa-
tion functionals are slowly varying in the time history integrals, as for the EDQNM [1]. The
consequent EDMAC model has the same eddy damping term as in the EDQNM that param-
eterizes turbulent mixing [1,2,50,51], but also has a frequency-dependent damping, which
ensures the realizability of the EDMAC in the presence of transient waves. The strength of
the frequency dependent damping has been determined under the assumption of small
amplitude waves, again based on renormalized perturbation theory. More generally, the
strength may be specified empirically, and sufficient conditions on the frequency-dependent
damping that ensure realizability of the EDMAC have been determined.

11.1.4. Generalizations of the Eddy Damped Markovian Anisotropic Closure

We have considered the relationships between EDQNM and EDMAC models for
anisotropic turbulence interacting with transient waves for systems involving higher order
nonlinearity than quadratic and in higher dimension than two. The conditions that ensure
that the real part of the EDMAC relaxation function is again positive semi-definite have
been determined.

11.2. Numerical Closure Calculations

In this largely theoretical paper, we have also reported in detail four integrations of
the closures for rapidly evolving turbulence. They have been performed for isotropic 2D
turbulence, for anisotropic turbulence with Rossby waves with and without the frequency-
dependent damping, and for anisotropic turbulence with Rossby waves and large-scale
mean flow and frequency-dependent damping. In these numerical experiments, with
empirical parameter γ = 0.6 in Equation (72), the results of the evolved simulations
with EDQNM and EDMAC turn out very similar to each other with little effect on one-
dimensional spectra. This is also so for smaller γ down to γ = 0.01, while for larger γ, the
frequency-dependent drain becomes smaller and the total drain in the EDMAC approaches
that of the EDQNM.



Fluids 2024, 9, 116 22 of 28

11.3. Conclusions and Future Prospects

The realizability of the EDMAC in the presence of waves at little or no extra computa-
tional cost over the EDQNM should make it attractive provided the additional frequency-
dependent damping does not change the broad properties of the numerical integrations
with the closures. We have noted, in Section 9, the prospects for generalizing the realiz-
able EDMAC model to higher dimensions and different physical systems, including with
higher-order nonlinearity. In future studies, we plan to explore the performance of the
EDMAC model in various settings. Also, we aim to formulate and study the performance
of a similar inhomogeneous closure, the Eddy Damped Markovian Inhomogeneous Clo-
sure (EDMIC) [45], generalized to be realizable for turbulence interacting with transient
Rossby waves.
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Appendix A. Renormalized Perturbation Theory

The aim of this Appendix is to provide motivation for the modified form of the
eddy damping used for the realizable EDMAC model. We begin by expanding ζ̃k in a
perturbation series where, from Equations (11), (16) and (17),(

∂
∂t + ν0(k)k2+iλωU

k (t)
)

ζ̃k(t)

= λ∑
p

∑
q

δ(k, p, q)K(k, p, q)ζ̃−p(t)ζ̃−q(t) + f̃0(k, t). (A1)

That is,
ζ̃k = ζ̃

(0)
k + λζ̃

(1)
k + . . . (A2)

where, in both Equations (A1) and (A2), we have introduced the bookkeeping small
parameter λ that will be set to unity after the renormalization process.
In Equation (A1), ωU

k is the Doppler shifted Rossby wave frequency defined in Equation (13).
We note that ωU

k can also be written in the form:

iωU
k (t) = ik0U(t) k0kx(k2−k2

0)

k2k2
0

− ik−1
0 β k0kx

k2

= −[2K(k,−k, 0)ζ−0 + A(k,−k, 0)hβ
−0]

(A3)

where the interaction coefficients are defined by

A(k,−k, 0) = k0kx/k2 (A4)

and
K(k,−k, 0) =

1
2
[A(k,−k, 0) + A(k, 0,−k)] = −1

2
k0kx(k2 − k2

0)/k2k2
0. (A5)

Also, we have defined
ζ−0 = ik0U, ζ0 = ζ∗−0 (A6)

and

hβ
−0 = ik−1

0 β, hβ
0 = (hβ

−0)
∗
. (A7)
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Here, we have been motivated by the study of Frederiksen and O’Kane [47]. There the
transformation in Equation (A6), and the suitable definitions of the interaction coefficients
in Equations (A4) and (A5) allowed the combination of the equations for the small scales
and the large scale flow into a single form. Here, our aim has been to demonstrate that the
term involving the Doppler shifted Rossby wave frequency in Equation (A1) is proportional
to the interaction coefficients and, as for the other terms multiplying interaction coefficients
there, is assumed to be order λ in the perturbation theory.

From Equations (A1) and (A2), we see that, to zero order in perturbation theory, we have(
∂

∂t
+ ν0(k)k2

)
ζ̃
(0)
k (t) = f̃0(k, t). (A8)

To first order, we have(
∂
∂t + ν0(k)k2

)
ζ̃
(1)
k (t) = −iωU

k (t)ζ̃(0)k (t)

+∑
p

∑
q

δ(k, p, q)K(k, p, q)ζ̃(0)−p(t)ζ̃
(0)
−q(t).

(A9)

Then, the formal solution to Equation (A9) can be written, using the Greens function
R(0)

k (t, s) ≡ R(0)
k,k(t, s) corresponding to Equation (A8), as follows:

ζ̃
(1)
k (t) =

t∫
t0

ds R(0)
k (t, s){−iωU

k (s)ζ̃(0)k (s)

+∑
p

∑
q

δ(k, p, q)K(k, p, q)ζ̃(0)−p(s)ζ̃
(0)
−q(s)}.

(A10)

The two-time cumulant can also be expressed in a perturbation series. Here, we
consider homogenous turbulence and

Ck,−k(t, t′) ≡ Ck(t, t′) =< ζ̃k(t)ζ̃−k(t′) >
=< ζ̃

(0)
k (t)ζ̃(0)−k(t

′) > +λ < ζ̃
(1)
k (t)ζ̃(0)−k(t

′) > +λ < ζ̃
(0)
k (t)ζ̃(1)−k(t

′) > + . . .
(A11)

To first order in λ , we have the two-time cumulant contribution

C(1)
k (t, t′) =

t∫
t0

ds R(0)
k (t, s) < ζ̃

(0)
k (s)ζ̂(0)−k(t

′) > [−iωU
k (s)]

+
t′∫

t0

ds R(0)
−k(t

′, s) < ζ̃
(0)
−k(s)ζ̂

(0)
k (t) > [−iωU

−k(s)]

=
t∫

t0

ds R(0)
k (t, s)C(0)

−k(t
′, s)[−iωU

k (s)] +
t′∫

to

ds R(0)
−k(t

′, s)C(0)
k (t, s)[−iωU

−k(s)].

(A12)

Next, we consider the perturbation expansion for the response function

Rk,k(t, t′) ≡ Rk(t, t′) =
〈

δζ̃
(0)
k (t)

δ f̃k(t′)

〉
+ λ

〈
δζ̃

(1)
k (t)

δ f̃k(t′)

〉
+ . . .

=
〈

R̃(0)
k (t, t′)

〉
+ λ

〈
R̃(1)

k (t, t′)
〉
+ . . .

(A13)

where R̃(0)
k (t, t′) is the response function corresponding to Equation (A8) and

R(0)
k (t, t′) =

〈
R̃(0)

k (t, t′)
〉

is the corresponding average. To first order in λ, we have

R(1)
k (t, t′) =

t∫
t′

ds R(0)
k (t, s)R(0)

k (s, t′)[−iωU
k (s)]. (A14)

We are now able to write down the dynamical equation for the response function to second
order in the perturbation parameter λ:
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(
∂
∂t + v0(k)k2

)
Rk(t, t′)− δ(t − t′)

= λ[R(0)
k (t, t′) + λR(1)

k (t, t′)][−iωU
k (t)]

+2λ2∑
p

∑
q

δ(k, p, q)K(k, p, q)

×
{
< R̃(0)

−p(t, t′)ζ(1)−q (t) > + < R̃(1)
−p(t, t′)ζ(0)−q (t) >

}
= λ[−iωU

k (t)]R(0)
k (t, t′) + λ2[−iωU

k (t)]
t∫

t′
ds R(0)

k (t, s)[−iωU
k (s)]R(0)

k (s, t′)]

+4λ2
t∫

t′
ds∑

p
∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)

×R(0)
−p(t, s)C(0)

−q(t, s)R(0)
−k(s, t′)

(A15)

with Rk(t, t) = 1. Perturbation expansion of the last term in Equation (A15) is as described
in Frederiksen [9]. On renormalizing with λ → 1 and the zero-order terms replaced by the
renormalized terms, we have(

∂
∂t + v0(k)k2 + iωU

k (t)
)

Rk(t, t′)

+
t∫

t′
ds(ηk(t, s) + πω

k (t, s))Rk(s, t′) = δ(t − t′)
(A16)

where the delta function ensures the initial condition Rk(t, t) = 1 and

πω
k (t, s) = Rk(t, s)ωU

k (t)ωU
k (s) (A17)

as also shown in Equation (26). Here the nonlinear damping ηk(t, s) is given by

ηk(t, s) = −4∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)R−p(t, s)C−q(t, s), (A18)

as also shown in in Equation (24).
Next, we consider the two-time two-point cumulant equation, which takes the form:(

∂
∂t + ν0(k)k2

)
Ck(t, t′)

= λ[C(0)
k (t, t′) + λC(1)

k (t, t′)][−iωU
k (t)]+ < f̃ 0

k(t)ζ̃−k(t′) >
+λ∑

p
∑
q

δ(k, p, q)K(k, p, q)

×
{

2λ < ζ̃
(1)
−p(t) ζ̃

(0)
−q(t)ζ̃

(0)
−k(t

′) > +λ < ζ̃
(0)
−p(t) ζ̃

(0)
−q(t)ζ̃

(1)
−k(t

′) >
}

= λ[−iωU
k (t)]C(0)

k (t, t′) + λ2[−iωU
k (t)]

t∫
t0

ds R(0)
k (t, s)C(0)

−k(t
′, s)[−iωU

k (s)]

+λ2[−iωU
k (t)]

t′∫
t0

ds R(0)
−k(t

′, s)C(0)
k (t, s)[−iωU

−k(s)]+ < f̃ 0
k(t)ζ̃−k(t′) >

+4λ2
t∫

t0

ds∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−p,−q,−k)

×R(0)
−p(t, s)C(0)

−q(t, s)C(0)
−k(t

′, s)

+2λ2
t′∫

t0

ds∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)

×C(0)
−p(t, s)C(0)

−q(t, s)R(0)
−k(t

′, s).

(A19)
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Again, the perturbation expansion of the three-point terms in Equation (A19) is as described
in Frederiksen [9]. Finally, renormalizing with λ → 1 and the zero-order terms replaced by
the renormalized terms, we have(

∂
∂t + ν0(k)k2 + iωU

k (t)
)

Ck(t, t′)

+
t∫

t0

ds (ηk(t, s) + πω
k (t, s))C−k(t′, s)

=
t′∫

t0

ds (Sk(t, s) + Pω
k (t, s) + F0(k, t, s))R−k(t′, s).

(A20)

Here, the bare noise F0
k(t, s) is given in Equation (23) and

Pω
k (t, s) = Ck(t, s)ωU

k (t)ωU
k (s) (A21)

as also shown in Equation (27) with πω
k (t, s) given in Equation (A17) and ηk(t, s) in

Equation (A18). The nonlinear noise Sk(t, s) takes the form:

Sk(t, s) = 2∑
p

∑
q

δ(k, p, q)K(k, p, q)K(−k,−p,−q)C−p(t, s)C−q(t, s) (A22)

as also given in Equation (25).
To close the system of equations, we also need the single-time cumulant equation

which takes the form:(
∂
∂t + 2ν0(k)k2

)
Ck(t, t)

+2Re
t∫

t0

ds (ηk(t, s) + πω
k (t, s))C−k(t, s)

= 2Re
t∫

t0

ds (Sk(t, s) + Pω
k (t, s) + F0(k, t, s))R−k(t, s).

(A23)

Here, the single-time cumulant Ck(t0, t0) is to be specified as the initial condition.

Appendix B. Langevin Equation Underpinning the EDMAC Model

In this Appendix, we consider the realizability of the EDMAC model for the single-
time cumulant in Equation (61), with ΘEDMAC replacing ΘX=0. The approach follows
that of Leith [3] and Herring and Kraichnan [60] in establishing the realizability of the
EDQNM. Again, EDMAC can be shown to be realizable by being underpinned by a suitable
stochastic model. The EDMAC model can be constructed exactly from the following
Langevin equation:(

∂

∂t
+D0(k, t) +Dη(k, t)

)
ζ̃k(t) =
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0( , ) ( , ) ( ) ( , ) ( , )t t t t t
t η ζ∂ + + = + ∂ 

kk k k kD D f f   (A24)

Here, 
2

0 0( , ) ( ) i ( )Ut k k tν ω= + kkD   (A25)

as in Equation (44), but with: 

( , )

4 ( , , ) ( , , ) ( , , ) ( , ) ( , , )( ),EDMAC

t

K K C t t t
η

δ= − Θ q
p q

k

k p q k p q p q k k p q

D
  (A26)

also displayed in Equation (64), and with EDMACΘ  replacing 0X =Θ . As shown in Equa-
tion (83), 

( )0

( , , )( )

1 exp ( ) ( ) ( ) i( ( ) ( ) ( )) ( )
.

( ) ( ) ( ) i( ( ) ( ) ( ))

EDMAC

U U U

U U U

t

t t t t t t t t

t t t t t t

Θ

 − − + + + + + − =
+ + + + +

k p q k p q

k p q k p q

k p q

ρ ρ ρ ω ω ω
ρ ρ ρ ω ω ω

(A27)

In Equation (A24), 

0 0( , ) ( , ),t f t=k kf (A28)

the bare random forcing, and: 
1
2

(1) (2)

( , ) 2 ( ) ( ) Re ( , , )( )

             ( ) ( ) ( ).

EDMAC
S t K t

w t W t W t

δ

− −

 = + + Θ 

×


p q

p q

k k p q k,p,q k p qf
  (A29)

which determines the nonlinear noise. Equation (A29) contains the independent random 
variables ( ) ( )iW tk

, where i = 1, 2, or 3, and ( )w t . Their properties are such that the sta-
tistical dynamical closure for the single-time cumulant in Equation (61), but with EDMACΘ
replacing 0X =Θ , is reconstructed. The statistics of the random variables are such that: 

0(k, t) +
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In Equation (A24), 

0 0( , ) ( , ),t f t=k kf (A28)

the bare random forcing, and: 
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2
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δ

− −
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which determines the nonlinear noise. Equation (A29) contains the independent random 
variables ( ) ( )iW tk

, where i = 1, 2, or 3, and ( )w t . Their properties are such that the sta-
tistical dynamical closure for the single-time cumulant in Equation (61), but with EDMACΘ
replacing 0X =Θ , is reconstructed. The statistics of the random variables are such that: 

S(k, t) (A24)

Here,
D0(k, t) = ν0(k)k2 + iωU

k (t) (A25)

as in Equation (44), but with:

Dη(k, t)
= −4∑

p
∑
q

δ(k, p, q)K(k, p, q)K(p, q, k)Cq(t, t)ΘEDMAC(k, p, q)(t), (A26)
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also displayed in Equation (64), and with ΘEDMAC replacing ΘX=0. As shown in Equation (83),

ΘEDMAC(k, p, q)(t)

=
1−exp(−[ρk(t)+ρp(t)+ρq(t)+i(ωU

k (t)+ωU
p (t)+ωU

q (t))](t−t0))
ρk(t)+ρp(t)+ρq(t)+i(ωU

k (t)+ωU
p (t)+ωU

q (t))
.

(A27)

In Equation (A24),
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In Equation (A24), 

0 0( , ) ( , ),t f t=k kf (A28)
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which determines the nonlinear noise. Equation (A29) contains the independent random 
variables ( ) ( )iW tk

, where i = 1, 2, or 3, and ( )w t . Their properties are such that the sta-
tistical dynamical closure for the single-time cumulant in Equation (61), but with EDMACΘ
replacing 0X =Θ , is reconstructed. The statistics of the random variables are such that: 

0(k, t) = f̃0(k, t), (A28)

the bare random forcing, and:
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0 0( , ) ( ) i ( )Ut k k tν ω= + kkD   (A25)

as in Equation (44), but with: 

( , )

4 ( , , ) ( , , ) ( , , ) ( , ) ( , , )( ),EDMAC

t

K K C t t t
η

δ= − Θ q
p q

k

k p q k p q p q k k p q

D
  (A26)

also displayed in Equation (64), and with EDMACΘ  replacing 0X =Θ . As shown in Equa-
tion (83), 

( )0

( , , )( )

1 exp ( ) ( ) ( ) i( ( ) ( ) ( )) ( )
.

( ) ( ) ( ) i( ( ) ( ) ( ))

EDMAC

U U U

U U U

t

t t t t t t t t

t t t t t t

Θ

 − − + + + + + − =
+ + + + +

k p q k p q

k p q k p q

k p q

ρ ρ ρ ω ω ω
ρ ρ ρ ω ω ω

(A27)

In Equation (A24), 

0 0( , ) ( , ),t f t=k kf (A28)

the bare random forcing, and: 
1
2

(1) (2)

( , ) 2 ( ) ( ) Re ( , , )( )

             ( ) ( ) ( ).

EDMAC
S t K t

w t W t W t

δ

− −

 = + + Θ 

×


p q

p q

k k p q k,p,q k p qf
  (A29)

which determines the nonlinear noise. Equation (A29) contains the independent random 
variables ( ) ( )iW tk

, where i = 1, 2, or 3, and ( )w t . Their properties are such that the sta-
tistical dynamical closure for the single-time cumulant in Equation (61), but with EDMACΘ
replacing 0X =Θ , is reconstructed. The statistics of the random variables are such that: 

S(k, t) =
√

2∑
p

∑
q

δ(k + p + q)K(k, p, q)
[
ReΘEDMAC(k, p, q)(t)

] 1
2

×w(t)W(1)
−p(t)W

(2)
−q(t).

(A29)

which determines the nonlinear noise. Equation (A29) contains the independent random
variables W(i)

k (t), where i = 1, 2, or 3, and w(t). Their properties are such that the statis-
tical dynamical closure for the single-time cumulant in Equation (61), but with ΘEDMAC

replacing ΘX=0, is reconstructed. The statistics of the random variables are such that:

< W(i)
k (t)W(j)

−l (t
′) >= δijδklCk(t, t′), (A30)

with
< ζ̃k(t)ζ̃−k(t′) >= Ck(t, t′), (A31)

and
< w(t)w(t′) >= δ(t − t′). (A32)

Here, δij and δkl are Kronecker delta functions, and δ(t − t′) is the Dirac delta function.
The single-time cumulants Ck(t, t), in the EDMAC model, which are determined by

Equation (61) but with ΘEDMAC replacing ΘX=0, are realizable. This follows from the

Langevin Equation (A24) provided ReΘEDMAC(k, p, q)(t) ≥ 0. Section 8 outlines the

demonstration of the positivity of ReΘEDMAC provided c ≥ 1
4 . In the inviscid unforced

case, the EDMAC equations conserve kinetic energy and enstrophy.
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