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Abstract: Transcriptional regulation constitutes a key step in gene expression regulation. Myocyte
enhancer factor 2C (MEF2C) is a transcription factor of the MADS box family involved in the early
development of several cell types, including muscle cells. Over the last decade, a novel layer of com-
plexity modulating gene regulation has emerged as non-coding RNAs have been identified, impacting
both transcriptional and post-transcriptional regulation. microRNAs represent the most studied
and abundantly expressed subtype of small non-coding RNAs, and their functional roles have been
widely documented. On the other hand, our knowledge of the transcriptional and post-transcriptional
regulatory mechanisms that drive microRNA expression is still incipient. We recently demonstrated
that MEF2C is able to transactivate the long, but not short, regulatory element upstream of the
miR-23a-miR-27a-miR-24-2 transcriptional start site. However, MEF2C over-expression and silencing,
respectively, displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 mature cluster
members without affecting pri-miRNA expression levels, thus supporting additional MEF2C-driven
regulatory mechanisms. Within this study, we demonstrated a complex post-transcriptional regula-
tory mechanism directed by MEF2C in the regulation of miR-23a-miR-27a-miR-24-2 cluster members,
distinctly involving different domains of the MEF2C transcription factor and the physical interaction
with pre-miRNAs and Ksrp, HnRNPa3 and Ddx17 transcripts.

Keywords: Mef2c; microRNAs; RNPs

1. Introduction

Transcriptional regulation constitutes a key step in gene expression regulation. Multiple
types of transcription factors have been identified from flies to humans, regulating multiple
developmental, homeostatic and pathological processes [1–3]. In this context, a core of
transcription factors has been identified to play essential roles in myogenesis, such as SRF,
NKX2.5, GATA4 and MEF2C [4]. Myocyte enhancer factor 2C (MEF2C) is a transcription
factor of the MADS box family involved in the early development of several cell types,
including neural, immune, cartilaginous and endothelial cells, yet the main role of MEF2C
is exerted by regulating muscle development (i.e., skeletal, cardiac and smooth) [5–11].
MEF2C-deficient mice are embryonically lethal, displaying complex cardiovascular defects as
the early heart tube does not undergo looping morphogenesis, resulting in the absence of the
future right ventricle [12,13]. Notably, MEF2C also plays a pivotal role in cardiac pathological
conditions such as cardiac hypertrophy [14], and it represents an essential cornerstone for
cardiac reprogramming [15,16].
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Multiple studies have reported the essential role of MEF2C in regulating gene ex-
pression in different biological contexts, including cardiac [17–21], skeletal [7,22,23] and
smooth muscle [24] cells. The transcriptional activity of MEF2C relies on its carboxyl
terminal, a process that is sumoylation-dependent [25], whereas the MADS and MEF2
domains facilitate DNA-binding, dimerization and co-factor interactions [26–28]. Adjacent
to the MEF2 domain is the HJURP-C (Holliday junction recognition protein C-termial)
domain, followed by two transcriptional activation domains (TAD1 and TAD2), which are
responsible for transcriptional activation [28]. Although different MEF2C isoforms have
been reported, their functional role remains rather elusive [29].

Over the last decade, a novel layer of complexity in gene regulation has emerged with the
identification of non-coding RNAs, impacting both transcriptional and post-transcriptional
processes. Non-coding RNAs are broadly classified according to their transcript length into
small non-coding RNAs (<200 nt) and long non-coding RNAs (>200 nt) [30]. Among the
small non-coding RNAs, microRNAs represent the most studied and abundantly expressed
subtype. MicroRNAs are nuclearly encoded and transcribed into microRNA precursor
molecules by RNA polymerase II. In certain genomic locations, microRNAs are clustered,
resulting in a primary transcript containing multiple microRNA precursors, leading to a pri-
mRNA precursor. Pri-miRNAs are then processed by nucleases such as Drosha and Dgcr8 to
generate distinct pre-miRNA molecules that are subsequently exported by the exportin-5/Ran
protein complex to the cytoplasm [31]. Within the cytoplasm, the pre-miRNAs are further
processed into mature microRNA duplex by Dicer RNAse and loaded into the RISC complex.
Within the RISC complex, one strand of the double-stranded microRNA molecule is degraded,
leaving the mature microRNA to scan RNA molecules for the sequence homology of its
seed sequence, leading to post-transcriptional RNA target cleavage, translation repression
and/or RNA deadenylation. As a result, in most cases, the abundance of the miRNA/protein
target decreases [32]. Importantly, emerging evidence suggests that certain microRNAs can
also modulate transcriptional regulation by exerting their function within the nucleus, thus
impacting alternative splicing and RNA and microRNA transcriptional regulation [33].

MicroRNAs are highly conserved throughout evolution, ranging from C. elegans to hu-
mans. MicroRNAs display temporal and spatial differential expression during embryonic
and adulthood, thereby contributing to both embryonic development and tissue home-
ostasis [34]. Impaired expression and/or function of microRNAs have thus been recently
reported to lead to pathological conditions [35–39]. In this context, several microRNAs
have been reported to be regulated by MEF2C [40], while conversely, several microRNAs
also modulate MEF2C expression in different biological contexts [41–47].

The functional role of microRNAs during cardiac development and diseases has been ex-
tensively documented [35–38,48]. Within this context, the genetic deletion of miR-1-2 [49,50]
and miR-126 [51,52], respectively, has revealed the essential role of these miRNAs in cardiac
and vascular embryonic development. Importantly, several clustered microRNAs, such
as miR-19-72 [53–55], miR-106a-363 [56], miR-106b-25 [57,58] and miR-23/27/24 [59–61],
have been reported to play modulatory roles in distinct biological contexts, including the
cardiovascular system [58,59,62–64]. While our current understanding of the detailed func-
tional relevance of each of these microRNAs is progressively emerging, our knowledge of
the transcriptional and post-transcriptional regulatory mechanisms that drive microRNA
expression is still incipient.

Lee et al. [65] demonstrated that the miR-23a-miR-27a-miR-24-2 cluster is transcribed
as an RNA polymerase II-dependent primary transcript whose main transcriptional regula-
tion is driven by a −600 bp upstream promoter. We subsequently reported the identification
of upstream regulatory elements driving miR-23a-miR-27a-miR-24-2 transcriptional regula-
tion in both cardiac and skeletal muscle cells [66]. Within this context, we demonstrated
that MEF2C is able to transactivate the long (−1830 to +1 nt) regulatory element but not
the short (−776 to +1 nt) element, in accordance with the identification of MEF2 regulatory
binding sites distribution. However, MEF2C over-expression and silencing, respectively,
displayed distinct effects on each of the miR-23a-miR-27a-miR-24-2 cluster members with-
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out affecting pri-miRNA expression levels in different cell types [66], thus supporting
additional MEF2C-driven regulatory mechanisms. Within this study, we report complex
transcriptional and post-transcriptional regulatory mechanisms directed by MEF2C in the
regulation of the miR-23a-miR-27a-miR-24-2 cluster, distinctly involving different domains
of the MEF2C transcription factor and the physical interaction with pre-miRNAs and Ksrp,
HnRNPa3 and Ddx17 transcripts.

2. Results

We have previously characterized the transcriptional potential of the 1.8 Kb upstream
sequences of the miR-23a-miR-27a-miR-24-2 cluster and reported that MEF2C is capable of
transcriptionally activating these regulatory regions in HL1 atrial cardiomyocytes. Such
transcriptional activation thus enhances the expression of the miR-23a-miR-27a-miR-24-2
pri-miRNA. However, we have also previously reported that MEF2C over-expression and
inhibition, respectively, distinctly regulate the expression of each of the miR-23a-miR-27a-
miR-24-2 mature cluster members independently of its transcriptional potential. Notably,
the modulation of miR-23a-miR-27a-miR-24-2 cluster members by MEF2C is tissue-specific.
Therefore, our previous data suggest that MEF2C modulation of miR-23a-miR-27a-miR-24-
2 cluster members is exerted by either direct or indirect post-transcriptional mechanisms.
Since microRNAs have been recently reported to exert both cytoplasmic and nuclear
functions, we initially explored the subcellular location of the miR-23a-miR-27a-miR-24-2
mature cluster members. RT-qPCR of nuclear and cytoplasmic fractions revealed that all
three members, i.e., miR-23a_3p, miR-27a_3p and miR-24_3p, are similarly localized in
both subcellular compartments in HL1 cardiomyocytes (Figure 1A), in contrast to miR-130a,
which is preferentially and significantly enhanced in the cytoplasm (Figure 1A), while Xist2
is enhanced in the nucleus (Figure 1A), serving as internal subcellular fractioning control.

Subsequently, we therefore tested whether MEF2C modulation of miR-23a-miR-27a-
miR-24-2 cluster members is exerted by either direct or indirect post-transcriptional mecha-
nisms. We first explored the plausible interaction between MEF2C and miR-23a-miR-27a-
miR-24-2 cluster members by performing MEF2C protein pulldown assays (Supplementary
Figure S1A). Our data demonstrated that MEF2C interacts with pre-miR-23a and pre-miR-
27a but not with pre-miR-24-2 (Figure 1B). Importantly, MEF2C neither binds to the mature
microRNAs, i.e., miR-23a_3p, miR-27a_3p and miR-24_3p (Figure 1C) nor the miR-23a-
miR-27a-miR-24-2 pri-miRNA (Figure 1D), demonstrating a direct post-transcriptional role
of MEF2C governing the expression of the precursor forms of miR-23a_3p and miR-27a_3p
but not miR-24_3p (Figure 1E).

We subsequently tested which part of the MEF2C transcription factor exerts pre-miR-
23a and pre-miR-27a modulation and whether it also affects the expression of the mature
microRNA cluster members. For this purpose, we constructed two distinct MEF2C variants.
The first one lacks the SRF-type DNA-binding and dimerization domain, the MADS_MEF2_like
and the HJURP_C domain at the 5’ end (MEF2C 5′del) (Supplementary Figure S1B).
The second variant lacks the 3’ end (MEF2C 3′del) while maintaining these domains (Supple-
mentary Figure S1B). In addition, we also performed MEF2C over-expression and silencing
studies, achieving successful modification of MEF2C expression levels. In addition, the over-
expression of MEF2C full-length, MEF2C 5′del and MEF2C 3′del showed increased levels,
both at the transcript and protein levels, as compared to non-transfected controls, respec-
tively (Supplementary Figure S1C,D). Furthermore, transactivation assays of the L regulatory
element of the miR-23a-miR-27a-miR-24-2 locus were successfully achieved with MEF2C
full-length and MEF2C 3′del constructs but not with MEF2C 5′del, as expected, since the latter
lacks DNA-binding and dimerization domains (Supplementary Figure S1E).
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Figure 1. Panel (A) RT-qPCR analyses of the nuclear and cytoplasmic distribution of miR-23a_3p, 
miR-27a_3p and miR-24_3p mature microRNAs in HL1 cardiomyocytes. Note that all three mi-
croRNAs are similarly expressed in the nucleus and cytoplasm in contrast to miR-130a, which is 
primarily cytoplasmic, and the long non-coding RNA Xist2, which is preferentially nuclear. Panel 
(B) RT-qPCR analyses of Mef2c pulldown assays for pre-miR-23a, pre-miR-27a and pre-miR-24, re-
spectively. Note that increased levels are observed for pre-miR-23a and pre-miR-27a but not for pre-
miR-24. Panel (C) RT-qPCR analyses of Mef2c pulldown assays for mature miR-23a_3p, miR-27a_3p 
and miR-24_3p, respectively. Note that none of the mature microRNAs are increased after Mef2c 
pulldown assays. Panel (D) RT-qPCR analyses of Mef2c pulldown assays for pri-miR-23-miR-27a-
miR-24-2. Panel (E) Schematic representation of the Mef2c association with the miR-23a-miR-27a-

Figure 1. Panel (A) RT-qPCR analyses of the nuclear and cytoplasmic distribution of miR-23a_3p, miR-
27a_3p and miR-24_3p mature microRNAs in HL1 cardiomyocytes. Note that all three microRNAs
are similarly expressed in the nucleus and cytoplasm in contrast to miR-130a, which is primarily
cytoplasmic, and the long non-coding RNA Xist2, which is preferentially nuclear. Panel (B) RT-qPCR
analyses of Mef2c pulldown assays for pre-miR-23a, pre-miR-27a and pre-miR-24, respectively. Note
that increased levels are observed for pre-miR-23a and pre-miR-27a but not for pre-miR-24. Panel
(C) RT-qPCR analyses of Mef2c pulldown assays for mature miR-23a_3p, miR-27a_3p and miR-
24_3p, respectively. Note that none of the mature microRNAs are increased after Mef2c pulldown
assays. Panel (D) RT-qPCR analyses of Mef2c pulldown assays for pri-miR-23-miR-27a-miR-24-2.
Panel (E) Schematic representation of the Mef2c association with the miR-23a-miR-27a-miR-24-2
clustered microRNAs. All data are normalized to Gapdh for mRNA expression analyses and to 5S for
microRNA expression analyses. * p < 0.05, ** p < 0.01, *** p < 0.001.

RT-qPCR analyses of precursor pre-miR-23a, pre-miR-27a and pre-miR-24-2, followed
by Sanger sequencing (Supplementary Figures S2A,B and S3), demonstrate that both MEF2C
5′del and MEF2C 3′del significantly increase the steady-state levels of pre-miR-23a_3p and
pre-miR-27a_3p but not of pre-miR-24_3p (Figure 2A), while the over-expression of full-length
MEF2C and silencing resulted in minimal but significant downregulation of pre-miR-23a and
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pre-miR-27a but not of pre-miR-24-2 (Figure 2A). Thus, these data reinforced the previous
observations by MEF2C pulldown experiments, demonstrating a regulatory role on pre-miR-
23a and pre-miR-27a but not on pre-miR-24-2. RT-qPCR analyses of mature miR-23a-miR-27a-
miR-24-2 cluster members demonstrate that MEF2C full-length over-expression significantly
downregulates miR-23a_3p and miR-27a_3p but not miR-24_3p expression (Figure 2B),
while MEF2C silencing selectively downregulates only miR-27a_3p. Importantly, MEF2C
3′del and MEF2C 5′del significantly upregulate all mature microRNA cluster members,
i.e., miR-23a_3p, miR-27a_3p and miR-24_3p (Figure 2B).
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not for pre-miR-24 after Mef2c 5′del and Mef2c 3′del over-expression, while Mef2c FL and Mef2c 
siRNA significantly decreased them. Panel (B) RT-qPCR analyses of mature miR-23a_3p, miR-
27a_3p and miR-24_3p expression after over-expression of Mef2c full-length (FL), Mef2c 5′del, Mef2c 
3′del and Mef2c siRNA in HL1 cardiomyocytes, respectively. Note increased levels are observed for 
all mature microRNAs after Mef2c 5′del and Mef2c 3′del over-expression, while Mef2c FL signifi-
cantly decreased miR-23a_3p and miR-27a_3p but not miR-24, while Mef2c siRNA only decreased 
miR-27a_3p. Panel (C) Schematic representation of the Mef2c 5′del and Mef2c 3′del regulation of the 
miR-23a-miR-27a-miR-24-2 clustered microRNAs. All data are normalized to Gapdh for mRNA ex-
pression analyses and to 5S for microRNA expression analyses. * p < 0.05, ** p < 0.01, *** p < 0.001, 
**** p < 0.0001. 

Figure 2. Panel (A) RT-qPCR analyses of pre-miR-23a, pre-miR-27a and pre-miR-24 expression after over-
expression of Mef2c full-length (FL), Mef2c 5′del, Mef2c 3′del and Mef2c siRNA in HL1 cardiomyocytes,
respectively. Note increased levels are observed for pre-miR-23a and pre-miR-27a but not for pre-miR-24
after Mef2c 5′del and Mef2c 3′del over-expression, while Mef2c FL and Mef2c siRNA significantly
decreased them. Panel (B) RT-qPCR analyses of mature miR-23a_3p, miR-27a_3p and miR-24_3p
expression after over-expression of Mef2c full-length (FL), Mef2c 5′del, Mef2c 3′del and Mef2c siRNA
in HL1 cardiomyocytes, respectively. Note increased levels are observed for all mature microRNAs
after Mef2c 5′del and Mef2c 3′del over-expression, while Mef2c FL significantly decreased miR-23a_3p
and miR-27a_3p but not miR-24, while Mef2c siRNA only decreased miR-27a_3p. Panel (C) Schematic
representation of the Mef2c 5′del and Mef2c 3′del regulation of the miR-23a-miR-27a-miR-24-2 clustered
microRNAs. All data are normalized to Gapdh for mRNA expression analyses and to 5S for microRNA
expression analyses. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Therefore, our data indicate that both the 5’ end and 3’ end of MEF2C regions play
inhibitory roles in modulating mature miR-23a-miR-27a-miR-24-2 cluster members. More-
over, mature miR-24_3p expression is modulated by both MEF2C 5′del and MEF2C 3′del
but not its precursor form (pre-miR-24-2) (Figure 2C), suggesting a dual role for MEF2C
in regulating such post-transcriptional events (Figure 2A,B). However, it should be taken
into account that miR-24-1 precursor, located in a distinct chromosomal locus, might also
contribute to miR-24_3p expression levels.

Modulation of miR-23a-miR-27a-miR-24-2 cluster members by MEF2C can also be
indirectly exerted through association with ribonucleic proteins (RNPs). We therefore
tested the tissue-specific expression of distinct RNPs previously reported to interact with
distinct microRNAs in different cell types [67–70]. We evaluated the expression of seven
distinct RNPs (Adar1, Ddx5, Ddx17, HnRNPa1, HnRNPa3, HnRNPa2b1 and Ksrp) in 3T3
fibroblasts, HL1 atrial cardiomyocytes and Sol8 skeletal myoblasts.

Adar1, Ddx5 and HnRNPa1 displayed increased expression in 3T3 fibroblasts as com-
pared to HL1 atrial cardiomyocytes and Sol8 skeletal myoblasts (Figure 3A). Ksrp displayed
similarly enhanced expression in 3T3 fibroblasts and HL1 atrial cardiomyocytes as com-
pared to Sol8 skeletal myoblasts (Figure 3A). HnRNPa2b1 and Ddx17 display a similar
expression pattern with enhanced expression in HL1 cardiomyocytes, while HhRNPa3
displayed the opposite pattern, i.e., decreased expression in HL1 atrial cardiomyocytes as
compared to 3T3 fibroblasts and Sol8 skeletal myoblasts (Figure 3A). Overall, these data
showed that the RNA constituents of all mentioned RNPs are expressed in these three
distinct cell lines tested. However, the distinct RNPs showed a differential expression in
these cell lines, thus supporting the plausible contribution of these RNPs in regulating the
distinct miR-23a-miR-27a-miR-24-2 cluster members by MEF2C in different cell types, as
previously demonstrated [64].

We also tested whether these RNP transcripts are distinctly distributed within the
subcellular compartments in HL1 cardiomyocytes. Our data revealed that Adar1 is highly
enriched in the nuclear compartment, whereas Ddx5, Ddx17 and Ksrp are prominently
localized in the cytoplasm. On the other hand, HnRNPa1, HnRNPa3 and HnRNPa2b1
are similarly distributed within both nuclear and cytoplasmic compartments, in line with
MEF2C mRNA distribution (Figure 3B).

We additionally tested whether these RNP transcripts are regulated by MEF2C. Over-
expression of MEF2C full-length resulted in the upregulation of Adar1 and downregulation
of HnRNPa3 and Ksrp, while Ddx5, Ddx17, HnRNPa1 and HnRNPa2b1 were not altered
(Figure 3C). MEF2C silencing decreased Ddx17, HnRNPa3, HnRNPa2b1 and Ksrp while
increasing HnRNPa1. Adar1 and Ddx5 did not display significant differences (Figure 3C).
MEF2C 5′del significantly increased Adar1 and significantly downregulated Ddx5, Ddx17,
HnRNPa1, HnRNPa3, HnRNPa2b1 and Ksrp (Figure 3C), while MEF2C 3′del significantly
increased Adar1, HnRNPa1 and HnRNPa3, while Ddx5, Ddx17 and Ksrp displayed signifi-
cant downregulation (Figure 3C). HnRNPa2b1 displayed no significant differences after
MEF2C 3′del over-expression (Figure 3C). In sum, our data demonstrate that these RNP
transcripts are distinctly modulated by MEF2C. Particularly, it is important to highlight that
Ksrp is similarly downregulated in all experimental conditions, Ddx17 is downregulated
in MEF2C 3′del, MEF2C 5′del and MEF2C siRNAs conditions, while HnRNPa3 is down-
regulated by MEF2C full-length, MEF2C siRNA and MEF2C 3′del. Furthermore, Ddx5,
Ddx17 and Ksrp are downregulated by MEF2C 3′del and MEF2C 5′del over-expression
(Figure 3D), supporting the plausible role of these RNPs in the distinct regulation of
miR-23a-miR-27a-miR-24-2 cluster members and/or its precursors.
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each of the tested cell lines. Panel (B) RT-qPCR analyses of the nuclear and cytoplasmic distribution 
of these RNPs in HL1 cardiomyocytes. Note that Adar1 is preferentially expressed in the nucleus, 
while Ddx5, Ddx17 and Ksrp are preferentially expressed in the cytoplasm. Panel (C) RT-qPCR anal-
yses of RNP expression after over-expression of Mef2c full-length (FL), Mef2c 5′del, Mef2c 3′del and 
Mef2c siRNA in HL1 cardiomyocytes, respectively. Note that these RNPs are distinctly regulated 
by each of the Mef2c constructs analyzed. Panel (D) Schematic representation of the Mef2c 5′del and 
Mef2c 3′del regulation of the RNPs. All data are normalized to Gapdh expression. * p < 0.05, ** p < 
0.01, *** p < 0.001. 

Figure 3. Panel (A) RT-qPCR analyses of distinct RNPs (Adar1, Ddx5, Ddx17, HnRNPa1, HnRNPa2b1,
HnRNPa3 and Ksrp) in three distinct cell lines: 3T3 fibroblasts, HL1 cardiomyocytes and Sol8 skeletal
muscle myoblasts. Observe that these RNPs display distinct expression levels on each of the tested cell
lines. Panel (B) RT-qPCR analyses of the nuclear and cytoplasmic distribution of these RNPs in HL1
cardiomyocytes. Note that Adar1 is preferentially expressed in the nucleus, while Ddx5, Ddx17 and
Ksrp are preferentially expressed in the cytoplasm. Panel (C) RT-qPCR analyses of RNP expression
after over-expression of Mef2c full-length (FL), Mef2c 5′del, Mef2c 3′del and Mef2c siRNA in HL1
cardiomyocytes, respectively. Note that these RNPs are distinctly regulated by each of the Mef2c
constructs analyzed. Panel (D) Schematic representation of the Mef2c 5′del and Mef2c 3′del regulation
of the RNPs. All data are normalized to Gapdh expression. * p < 0.05, ** p < 0.01, *** p < 0.001.

We subsequently tested whether MEF2C can interact with these RNP transcripts.
MEF2C protein pulldown demonstrated that Ddx17, Ksrp and HnRNPa3 transcripts inter-
acted with MEF2C (Figure 4A), while no significant interaction was observed for HnRNPa1,
HnRNPa2b1, Ddx5 and Adar1, respectively (Figure 4A). Therefore, these data demonstrate
that MEF2C can directly interact with distinct RNP transcripts and thus further support
the notion that MEF2C can post-transcriptionally modulate additional RNA transcripts
involved in miR-23a-miR-27a-miR-24-2 cluster member expression.
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Figure 4. Panel (A) RT-qPCR analyses of Mef2c pulldown assays for RNPs in HL1 cardiomyocytes.
Note that increased levels for Ddx17, HnRNPa3 and Ksrp are observed. Panel (B) RT-qPCR analyses
of pre-miR-23a, pre-miR-27a and pre-miR-24-2 expression after silencing each of the RNPs previously
tested in HL1 cardiomyocytes, respectively. Note that silencing Ddx5 and HnRNPa3 enhanced the
expression of all pre-microRNAs while silencing Ksrp only upregulated pre-miR-23a and pre-miR-
27a but not pre-miR-24-2. Panel (C) RT-qPCR analyses of mature miR-23a_3p, miR-27a_3p and
miR-24_3p expression after silencing each of the RNPs previously tested in HL1 cardiomyocytes,
respectively. Note that silencing Ddx5 and Ksrp decreased the expression of all pre-microRNAs while
silencing HnRNPa2b1 selectively upregulated only pre-miR-23a. Panel (D) Schematic representation
of the effects of RNP silencing on miR-23a-miR-27a-miR-24-2 pre-miRNA and mature microRNA
expression, respectively. All data are normalized to Gaped for mRNA expression analyses and to 5S
for microRNA expression analyses. * p < 0.05, ** p < 0.01, *** p < 0.001, *** p < 0.0001.

Finally, we performed RNPs silencing assays in order to determine whether RNP inhi-
bition can modulate miR-23a-miR-27a-miR-24-2 cluster members. Ddx17, HnRNPa1 and
HnRNPa2b1 siRNA administration did not significantly modulate miR-23a_3p, miR-27a_3p
and miR-24_3p pre-miRNAs, respectively, except for HnRNPa1, which significantly upregu-
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lated pre-miR-27a and pre-miR-24-2 (Figure 4B,D). On the other hand, Ddx5, HnRNPa3 and
Ksrp inhibition enhanced miR-23a_3p, miR-27a_3p and miR-24_3p pre-miRNAs, except for
pre-miR-24-2 after Ksrp inhibition (Figure 4B,D). For the mature miR-23a-miR-27a-miR-
24-2 cluster members, Ddx17 and HnRNPa1 silencing significantly upregulated, while
Ddx5 significantly downregulated all miR-23a-miR-27a-miR-24-2 cluster members, i.e.,
miR-23a_3p, miR-27a_3p and miR-24_3p (Figure 4C,D). On the other hand, HnRNPa2b1
inhibition exclusively upregulated miR-23a_3p, but not miR-27a_3p and miR-24_3p, while
HnRNPa3 silencing led to downregulation of miR-23a_3p, upregulation of miR-27a_3p and
no significant modulation of miR-24_3p (Figure 4C,D). Finally, Ksrp silencing led to down-
regulation of all miR-23a-miR-27a-miR-24-2 cluster members, i.e., miR-23a_3p, miR-27a_3p
and miR-24_3p (Figure 4C,D). Thus, these observations revealed that Ddx5, HnRNPa3 and
Ksrp are essential primarily for pre-miR-23a and pre-miR-27a and, to a lesser extent, for
pre-miR-24-2 (only Ddx5 and HnRNPa3), supporting a key role modulating differential
expression of the miR-23a-miR-27a-miR-24-2 cluster members. Similarly, HnRNPa2b1,
HnRNPa3 and Ksrp silencing also distinctly modulate mature miR-23a-miR-27a-miR-24-2
cluster members. In sum, these data illustrate that distinct RNPs can impact differential
pre-miRNA and mature miR-23a-miR-27a-miR-24-2 cluster member expression.

3. Discussion

Within the last decade, our understanding of the functional role of distinct mi-
croRNAs has greatly emerged; however, our knowledge of the transcriptional and post-
transcriptional regulatory mechanisms driving microRNA expression is still incipient. We
previously demonstrated that MEF2C over-expression and silencing, respectively, displayed
distinct effects on each of the mature miR-23a-miR-27a-miR-24-2 cluster members [66], thus
supporting additional MEF2C-driven regulatory mechanisms. We provide herein evidence
that MEF2C can directly bind to pre-miR23a and pre-miR-27a but not to pre-miR-24-2.
Importantly, MEF2C does not directly bind to either the pri-miRNA miR-23a-miR-27a-24-2
precursor or to the mature miR-23a_3p, miR-27a_3p and miR-24_3p molecules. Further-
more, we also demonstrated that distinct MEF2C domains can differentially modulate both
pre-miRNA and microRNA expression. While there is emerging evidence that distinct
proteins can influence MEF2C expression levels, leading to sumoylation and caspase cleav-
age [26,71], this is, to the best of our knowledge, the first proof that a transcription factor
can influence microRNA biogenesis by directly interacting with pre-miRNA molecules.

On the other hand, ample evidence is reported on the key role of distinct ribonucle-
oproteins (RNPs) in modulating microRNA expression [72–77]. Thus, to further support
the plausible role of several of these RNPs in MEF2C-driven miR-23a-miR-27a-miR-24-2
expression, we analyzed the expression of seven distinct RNP transcripts in three distinct
cell types (fibroblasts, cardiomyocytes and skeletal muscle myoblasts), demonstrating
that all of them are indeed expressed while displaying cell type enrichment, i.e., Ddx17
and HnRNPa2b1 are more abundantly expressed in cardiomyocytes, while Adar1, Ddx5
and HnRNPa3 are widely expressed in fibroblasts. Furthermore, we demonstrated that
these RNP transcripts displayed distinct subcellular distribution patterns, i.e., Adar1 is
primarily located in the nucleus, Ddx5, Ddx17 and Ksrp are primarily in the cytoplasm,
while HnRNPa1, HnRNPa2b1 and HnRNPa3 are both nuclear and cytoplasmic, in line
with previous reports [78–83]. Importantly, we firstly demonstrated that mature miR-23a-
miR-27a-miR-24-2 cluster microRNA members are equally distributed in both nuclear
and cytoplasmic subcellular compartments, supporting the notion that they might exert
distinct functional roles, as recently reported [84–88], and thus can be distinctly regulated
in the cytoplasm vs. the nucleus. Furthermore, these data also support that distinct RNPs
might be involved in the differential and subcellular compartment-specific expression of
miR-23a-miR-27a-miR-24-2 cluster members.

Scarce evidence has been reported for transcription factors directly binding to RNPs [88],
supporting their plausible role in post-transcriptional regulation. For MEF2C, only AUF1
binding has been reported, promoting skeletal muscle myogenesis [83]. Within this study,
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we report for the first time that MEF2C can directly bind to Ddx17, HnRNPa3 and Ksrp
mRNAs, respectively. Additionally, MEF2C indirectly regulates Adar1 and HnRNPa2b1
expression. Furthermore, we also demonstrate that distinct MEF2C domains differently
contribute to RNP transcript expression. In this context, both 5′ and 3’ MEF2C ends can
selectively inhibit Ddx5, Ddx17 and Ksrp expression while enhancing Adar1 expression.
On the other hand, HnRNPa1, HnRNPa3 and HnRNPa2b1 are distinctly regulated by MEF2C
3′ and 5’ ends, respectively. While additional studies are required to fully understand the
molecular mechanisms directing MEF2C 3′ and 5’ ends modulation of these RNPs, our
data support the notion that they might be transcriptionally regulated since the MEF2C
5′del construct lacks transcriptional potential (Supplementary Figure S1D) and primarily
downregulates their expression, while the MEF2C 3′del construct displays the opposite
pattern. In sum, our data demonstrate that MEF2C can directly and indirectly regulate
distinct RNPs in cardiomyocytes, with a potential impact on miR-23a-miR-27a-miR-24-2
cluster member expression.

As previously stated, a large body of evidence has been reported on RNPs modulat-
ing microRNA expression [75–80,89–92], yet their role in differential microRNA cluster
expression has only been reported for Adar1 [84–87] and Ksrp [68,93,94]. Several studies
reported miR-27b regulating Ksrp expression in distinct biological settings [95–97], but
no proof has been reported for miR-27b being regulated by Ksrp. miR-27b regulation by
RNPs has only been reported for HnRNPa1 in colorectal cancer [98] and HnRNPa2b1 in
preeclampsia [99]. Importantly, no data have been reported for the involvement of these
RNPs in the regulation of the miR-23a_3p or miR-24, as well as for any of the miR-23a-miR-
27a-miR-24-2 cluster members, except for Ksrp regulating miR-23a_3p [100] and Adar1
regulating pre-miR-27a_3p to mature miR-27a_3p processing in cancer [101].

We provide herein evidence that silencing Krsp selectively upregulates pre-miR-23a
and pre-miR-27a but not pre-miR-24-2 expression. Similarly, silencing HnRNPa1 leads to
pre-miR-27a and pre-miR-24-2 downregulation without affecting pre-miR-23a expression.
For the mature microRNAs, Ksrp and Ddx5 inhibition diminished all mature miR-23a-miR-
27a-miR-24-2 cluster members, while selective inhibition of Ddx17 and HhRNPa1 enhanced
all mature miR-23a-miR-27a-miR-24-2 cluster members. Curiously, HnRNPab1 silencing
selectively upregulates miR-23a_3p but not miR-27a_3p and miR-24_3p, while HnRNPa3
silencing upregulates miR-23a_3p and downregulates miR-27a_3p and miR-24_3p. It is
important, nonetheless, in this context that miR-24 levels might result from the ampli-
fication of the mature miR-24_3p from both pre-miR-24-1 and pre-miR-24-2 precursors,
as previously mentioned. Importantly, MEF2C directly interacts with Ddx17, HnRNPa3
and Ksrp, and MEF2C silencing is essential for proper Ddx17, HnRNPa1, HnRNPa2b1,
HnRNPa3 and Ksrp, also proving proof of the differential role of the MEF2C C-terminal
and N-terminal in this regulation.

Overall, these data demonstrate the complex and pivotal role of distinct RNPs in
regulating miR-23a-miR-27a-miR-24-2 cluster members and support the notion that distinct
RNPs, particularly HnRNPa1 and Ksrp, play a pivotal role in regulating the differential
expression of miR-23a-miR-27a-miR-24-2 cluster members by selectively acting on distinct
pre-miRNAs. Surprisingly, the selective inhibition of mature miR-23a-miR-27a-miR-24-
2 cluster members by RNP silencing is observed only for HnRNPa2b1 and HnRNPa3,
but they do not recapitulate the effects provided by MEF2C silencing, supporting the
notion that combinatorial rather than single MEF2C-driven RNP modulation is occurring.
Furthermore, it is important to highlight in this context that all mature miR-23a-miR-
27a-miR-24-2 cluster members are similarly expressed in both subcellular nuclear and
cytoplasmic compartments as well as several RNPs. Notably, siRNA silencing would only
be affecting those events occurring in the cytoplasm, and therefore, inhibition might only be
partial. The causal relationship between such distinct subcellular compartment localization
deserves further analysis and might provide novel insights into the precise molecular
mechanisms controlling the differential expression of the mature microRNAs of genomic
clustered microRNAs.
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In summary, we provide herein evidence of the complex post-transcriptional regula-
tory mechanism exerted by MEF2C in the regulation of miR-23a-miR-27a-miR-24-2 cluster
members (Figure 5). MEF2C can directly and selectively bind to pre-miR-23a_3p and pre-
miR-27a_3p but not to pre-miR-24-2. Additionally, MEF2C can directly bind to distinct RNP
transcripts, such as Ddx7, HhRNPa3 and Ksrp, while indirectly regulating the expression
of other RNPs, such as Adar1 and HnRNPa2b1. Importantly, such regulation is distinctly
exerted by the MEF2C amino- and carboxy-terminals. Silencing of MEF2C-binding RNP
Ksrp selectively regulates pre-miR-23a and pre-miR-27a expression but not pre-miR-24-2,
supporting the notion of a direct implication of this pathway on the differential expression
of miR-23a-miR-27a-miR-24-2 cluster members, yet a combinatorial action of distinct RNPs
seems to be required to fully achieve the final miR-23a-miR-27a-miR-24-2 cluster member
expression of the mature microRNAs.
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4. Materials and Methods
4.1. MEF2C Pulldown Assays

For the immunoprecipitation of endogenous MEF2C, protein A-Sepharose beads
(Abcam, Cambridge, UK) were coated with 15 µg of antibody that recognized MEF2C
(#9792-Cell Signalling) or control IgG (Abcam, Cambridge, UK) overnight at 4 ◦C with
rotation. The next day, HL1 cells were lysed with PEB buffer (100 mM KCl, 5 mM MgCl2,
10 mM Hepes, pH 7.0, 0.5% Nonidet P-40, 1 mM DTT, 100 units/mL RiboLOCK and
Complete Protease Inhibitor Cocktail) for 10 min on ice and centrifuged at 10,000× g
for 30 min at 4 ◦C. The supernatants were incubated with previously mentioned protein
A-Sepharose-coated beads with 15 µg of antibody that recognized MEF2C or control IgG
for 2 h at 4 ◦C with rotation, respectively. The corresponding beads were washed with
NT2 buffer (50 mM Tris–HCl [Ph 7.5], 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40) two
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times after spinning down at 5000 g for 2 min at 4 ◦C. Protein complexes were incubated
with 20 units of DNase I (15 min at 37 ◦C). In this step, an aliquot from each reaction
was isolated for Western blot validation. Subsequently, they were further incubated with
0.1% SDS/0.5 mg/mL Proteinase K (30 min at 55 ◦C) with mixing to remove DNA and
proteins, respectively, and centrifuged at 5000× g for 5 min to collect the supernatant.
The RNA isolated from the IP materials (acid phenol-chloroform) was further assessed by
RT-qRT-PCR analysis.

4.2. Nuclear/Cytoplasmic Distribution

Cytoplasmic and nuclear RNA fractions from HL1 cardiomyocytes were isolated with
a Cytoplasmic & Nuclear RNA Purification Kit (Norgen, Belmont, CA, USA) following the
manufacturer’s instructions. After RNA isolation, RT-qPCR analysis for nuclear enriched
Xist2 mRNA marker and cytoplasmic Gapdh mRNA marker were performed to validate
enrichment on each subcellular fraction. RT-qPCR analysis of distinct microRNAs, Xist2
and RNPs was subsequently performed, as detailed in the next sections.

4.3. Generation of MEF2C 3′ Deletion and 5′ Deletion Constructs

The pcDNA MEF2C plasmids were used to generate two distinct constructs, with 3′

and 5′ deletions, respectively [102]. MEF2C 3′ deletion (MEF2C 3′del) was constructed by
deletion of the 3′ fragment ranging from nucleotide 1112 of the MEF2C full-length (PstI
restriction site) to the 3’ end of the mouse MEF2C transcript (NM_001170537.2) (Supplemen-
tary Figure S1B). Thus, this construct deleted the last 288 amino acids of the MEF2C protein
(NP_001164008), thus maintaining the SRF-type DNA-binding and dimerization domain
(1–59 aa), the MADS_MEF2_like domain (2–78 aa) and the HJURP_C domain (110–156 aa).

MEF2C 5′ deletion (MEF2C 5′del) was constructed by deletion of the 5′ fragment span-
ning from nucleotide 1 until nucleotide 1522 of the MEF2C full-length (ScaI restriction site),
i.e., mouse MEF2C transcript (NM_001170537.2) (Supplementary Figure S1B). Thus, this
construct deleted the first 314 amino acids of the MEF2C protein (NP_001164008), thus delet-
ing the SRF-type DNA-binding and dimerization domain (1–59 aa), the MADS_MEF2_like
domain (2–78 aa) and the HJURP_C domain (110–156 aa).

4.4. Plasmid Transfections

HL1 cardiomyocytes (6 × 104 cells per well) were transfected with a plasmid contain-
ing MEF2C open reading frame (ORF) full-length (wt), MEF2C 5′ deletion (MEF2C 5′del),
MEF2C 3′ deletion (MEF2C 3′del) at plasmid concentration 400 ng per well using lipofec-
tamine 2000 (Invitrogen, Waltham, MA, USA) according to the manufacturer’s guidelines
and incubated at 37 ◦C for 24 h, as previously described [100–102].

4.5. siRNA Transfections

HL1 cardiomyocytes (6× 105 cells per well) were transfected with siRNA-MEF2C, siRNA-
Adar1, siRNA-HnRNPa3, siRNA-Ksrp, siRNA-Ddx5, siRNA-Ddx17, siRNA-HnRNPa1
and siRNA-HnRNPa2b1 (Sigma, Aldrich, Munich, Germany), respectively, at a siRNA con-
centration of 40 nM per well using lipofectamine 2000 (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s guidelines and incubated at 37 ◦C for 48 h, as previously
described [98–100]. siRNA sequences are provided in Supplementary Table S1.

4.6. RNA Isolation and Retrotranscription

Total RNA was isolated using the ReliaPrep RNA Cell Miniprep System (Promega,
Madison, WI, USA), and DNase was treated using RNase-Free DNase according to the
manufacturer’s guidelines for 15 min at room temperature. In all cases, at least three
distinct pooled samples were used to perform the corresponding RT-qPCR experiments.
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4.7. RT-qPCR Analyses (mRNA)

First-strand cDNA was synthesized by using 100 ng of total RNA and a reverse
transcription Maxima First Strand cDNA Synthesis Kit for RT-qPCR (Thermo Scientific,
Waltham, MA, USA) according to the manufacturer’s guidelines. Negative controls to as-
sess genomic contamination were performed for each sample, without reverse transcriptase,
which resulted in all cases in no detectable amplification product. Real-time PCR experi-
ments were performed with 2 µL of diluted cDNA, GoTaq qPCR Master Mix (Promega)
and corresponding primer sets. Two internal controls, mouse Gusb and Gapdh mRNAs,
were used in parallel for each run and represented as previously described [103–105].
Amplification conditions were as follows: denaturalization step of 95 ◦C for 10 min, fol-
lowed by 40 cycles of 95 ◦C for 30 s, 60 ◦C for 30 s and 72 ◦C for 30 s, with a final elongation
step of 72 ◦C for 10 min. All primers were designed to span exon–exon boundaries using
the online Primer3 software Primer3input (http://bioinfo.ut.ee/primer3-0.4.0/, accessed
on 12 January 2022). Primer sequences are provided in Supplementary Table S1. Amplifica-
tion bands of pri-miRNA and pre-miRNAs are illustrated in Supplementary Figure S1E,
demonstrating a single transcript for pri-miRNA miR-23a-miR-27a_miR-24-2 and specific
amplifications for each pre-miRNA, i.e., pre-miRNA-23a, pre-miR-27a and pre-miR-24-2,
respectively. No amplifications were observed in PCR control reactions containing only
water as a template. Each PCR reaction was performed at least three times to obtain rep-
resentative averages. The Livak method was used to analyze the relative quantification
RT-qPCR data [106] and normalized in all cases, taking 100% as the wild-type (control)
value, using Gapdh and Gusb as internal control for mRNA expression analyses, as previ-
ously described [103–105].

4.8. qRT-PCR Analyses (microRNA)

For microRNA expression analyses, 20 ng of total RNA was used for retrotranscrip-
tion with a Universal cDNA Synthesis Kit II (Exiqon, Venlo, The Netherlands), and the
resulting cDNA was diluted 1/80, following the manufacturer’s guidelines. Real-time
PCR experiments were performed with 1 µL of cDNA, GoTaq qPCR Master Mix (Promega)
and corresponding primer sets, as described in Supplementary Table S1. All RT-qPCRs
were performed using a CFX384TM thermocycler (Bio-Rad, Hercules, CA, USA) following
the manufacturer’s recommendations. The relative level of expression of each gene was
calculated as described by Livak and Schmittgen [106] using 5S as an internal control for
microRNA expression analyses. Each PCR reaction was performed at least three times to
obtain representative averages.

4.9. Western Blot

Western blot was performed using 30 µg of total protein. The primary antibodies
Mef2c (sc-13268; Santa Cruz Biotechnology, Dallas, TX, USA) and Tubulin (sc-8035; Santa
Cruz Biotechnology, Dallas, TX, USA) were used at a concentration of 1:100 and 1:5000,
respectively, and incubated overnight at 4 ◦C and the secondary antibody-HRP conjugate
(#170-6516, Biorad, Hercules, CA, USA) at 1/5000 for 2 h at room temperature. Blocking was
carried out with 5% milk and washed with PBST according to the antibody manufacturer’s
recommendations.

4.10. Luciferase Assay

Promotor distal sequence (L) was amplified from mouse genomic DNA with specific
primers bearing HindIII/BamHI restriction sites and cloned into a pGLuc-Basic vector
(New England Biolabs, Ipswich, MA, USA). 3T3 fibroblasts (ATCC, Manassas, VA, USA)
were co-transfected with 100 ng of the L-pGluc vector, 300 ng of pcLux vector control
for internal normalization and 400 ng from Mef2c FL, Mef2c 3′ or Mef2c 5′, respectively.
Luciferase activity was measured 24 h after transfection by using the Pierce Gaussia Luciferase
Flash Assay Kit (Thermo Fisher Scientific, Rockford, IL, USA) and normalized to pcLux vector
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control by using the Pierce Cypridina Luciferase Flash Assay Kit (Thermo Fisher Scientific,
Rockford, IL, USA). In all assays, transfections were carried out in triplicate.

4.11. Statistical Analyses

For statistical analyses of datasets, unpaired Student’s t-tests were used. Significance
levels or p values are stated in each corresponding figure legend. p < 0.05 was considered
statistically significant.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ncrna10030032/s1. Supplementary Figure S1. Panel (A). Western
blot analysis demonstrating Mef2c pulldown assay as compared to IgG-negative control. Panel (B).
Schematic representation of the MEF2C constructs, i.e., MEF2C FL, MEF2C 3′del and MEF2C 5′del.
Note that within the MEF2C 3′del construct, the sequences from a Pst1 site to the 3′ of the MEF2C
gene are deleted, preserving the Srf, MADS-MEF2 and HJURP_C domains. On the other hand, within
the MEF2C 5′del construct, the sequences from the 5′ of the MEF2C gene to the ScaI site are deleted,
therefore eliminating the Srf, MADS-MEF2 and HJURP_C domains. Panel (C). RT-qPCR analyses of
Mef2c expression in HL1 atrial cardiomyocytes after transfection with the distinct MEF2C constructs
and MEF2C siRNA. Observe that similar expression levels are obtained after transfection with MEF2C
FL, MEF2C 5′del and MEF2C 3′del while MEF2C siRNA significantly diminished its expression.
Panel (D). MEF2C protein expression levels in HL1 atrial cardiomyocytes after transfection with the
distinct MEF2C constructs and MEF2C siRNA as revealed by Western blot. Panel (E). Transactivation
analyses of the L fragment of the miR-23a-miR-27a-miR-24-2 locus with MEF2C FL, MEF2C 5′del and
MEF2C 3′ constructs. Observe that MEF2C FL and MEF2C 3′ constructs can transactivate this fragment
while MEF2C 5′del cannot transactivate it, as reported by luciferase assays. Supplementary Figure S2.
Panel (A). RT-PCR analyses of pri-miRNA and pre-miRNA amplification products as revealed in gel
electrophoresis. pre-miR-23a, pre-miR-27a and pre-miR-24-2 amplification resulted in products below
100 bp, as expected, while pri-miRNA amplification resulted in an approximately 350 bp band, as
expected. Panel (B). Sanger sequencing of the pre-miR-23a, pre-miR-27a and pre-miR-24-2 amplicons
and their corresponding analyses of sequence homology (blast). Supplementary Figure S3. Schematic
representation of the miR-23a-miR-27a-mir-24-2 locus with its genomic sequence, upon which the
pre-miRNA precursor sequences are highlighted (pre-miR-23a in yellow, pre-miR-27a in green and
pre-miR-24-2 in pink). Primer sequences for pri-miRNA amplification are highlighted in blue, spanning
from pre-miR-23a to pre-miR-24-2 sequence. Primers for pre-miRNA amplification are underlined.
Supplementary Table S1. List of primer and siRNA sequences.
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