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Abstract: Accurate and efficient flower identification holds significant importance not only for
the general public—who may use this information for educational, recreational, or conservation
purposes—but also for professionals in fields such as botany, agriculture, and environmental science,
where precise flower recognition can assist in biodiversity assessments, crop management, and
ecological monitoring. In this study, we propose a novel flower recognition method utilizing a
masked autoencoder, which leverages the power of self-supervised learning to enhance the model’s
feature extraction capabilities, resulting in improved classification performance with an accuracy of
99.6% on the Oxford 102 Flowers dataset. Consequently, we have developed a large-scale masked
autoencoder pre-training model specifically tailored for flower identification. This approach allows
the model to learn robust and discriminative features from a vast amount of unlabeled flower
images, thereby enhancing its generalization ability for flower classification tasks. Our method has
been applied successfully to flower target detection, achieving a Mean Average Precision (mAP)
of 71.3%. This result underscores the versatility and effectiveness of our approach across various
flower-related tasks, including both detection and recognition. Simultaneously, we have developed a
straightforward, user-friendly flower recognition and classification software application, which offers
convenient and reliable references for flower education, teaching, dataset annotation, and other uses.

Keywords: flower recognition; transfer learning; vision transformer; masked autoencoders;
pre-training model

1. Introduction

The rich and extensive history of flower culture in China underscores the profound
significance of flowers in Chinese culture, symbolizing beauty, virtue, and the complex
relationship between nature and humanity [1]. Aesthetic and Emotional Value: Flowers
play a pivotal role in enhancing the environment and enriching human emotions, serving as
a source of inspiration and joy in daily life and artistic expression. Many flowers are valued
medicinally, as evidenced by clinical data and medical research, contributing significantly
to the development of natural remedies and healthcare practices. Accurate identification
of flowers is crucial both in plant science, for biodiversity conservation and ecological
studies, and in the flower industry, for commercial cultivation and marketing. Accurate
and efficient flower identification demands deep botanical knowledge and experience,
posing significant challenges for both amateurs and professionals in distinguishing similar
species. The accuracy of human identification based solely on experience and memory often
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exhibits significant deviations, highlighting the need for more reliable and standardized
methods in flower identification.

Automated technology for flower identification is highly accurate, rapid, straightfor-
ward, and user-friendly. Automated technology significantly enhances the efficiency of
flower identification compared to traditional manual methods. These technologies serve as
powerful tools for solving complex problems and boast wide applications across various
fields. Computer vision and deep learning hold significant potential for development in
areas such as face recognition, speech recognition, and image recognition. The advent
of convolutional neural networks (CNNs) has significantly enhanced the efficiency and
accuracy of flower identification in the realm of flower classification and recognition [2].

The models and technologies for flower identification have reached a mature stage,
offering a variety of software solutions in the market that cater to diverse needs and
applications. Despite advancements in flower identification, a significant research gap
remains in the domain of flower target detection and recognition, underscoring the need
for further exploration and development in this area. While CNNs have been instrumental
in advancing image recognition tasks, they exhibit limitations in capturing long-range
dependencies and integrating holistic features of the information, potentially affecting
their performance in specific applications. Addressing the limitations of existing flower
identification methods and enhancing their accuracy through the application of deep
learning technology are critical research objectives for many scholars, aiming to boost
the reliability and effectiveness of these systems. This paper introduces a novel flower
identification method that leverages the capabilities of Masked Autoencoders (MAEs).
This method is specifically engineered to address the challenges of flower classification
and target detection, providing a more accurate and efficient approach to identifying
various flower species. In recent years, there has been an increased focus on enhancing
quality of life and promoting aesthetic appreciation. This shift in priorities underscores
the importance of integrating nature and beauty into everyday life, with flowers playing a
key role in this endeavor. The accurate classification and identification of flower images
provided by this method can significantly benefit non-expert groups such as students and
children, enabling them to understand and recognize different flower species with greater
ease. Additionally, it can streamline the research process for plant experts, reducing the
time and effort required for studying flower varieties and thereby facilitating their efforts
in botanical research and conservation [3].

Currently, the field of flower target detection has received limited attention relative to
other aspects of flower identification, underscoring the need for more focused studies and
advancements in this domain. Practical Benefits: The accurate detection and identification
of flowers, facilitated by advanced technologies, can significantly enhance the development
of automated management and picking technology in the gardening sector. This can lead
to improved efficiency and substantial economic benefits, contributing to the growth and
sustainability of the industry.

The advancement of computer technology has propelled in-depth research in the
field of plant species recognition, as the capabilities of computational tools and algorithms
continue to evolve, enabling more sophisticated analysis and identification techniques.
Despite growing interest, flower recognition and broader plant recognition remain niche
research fields, with limited related literature available. This indicates a need for further
exploration and publication in this area to expand the scope of knowledge. A significant
barrier to the development of this research field is the scarcity of publicly available datasets,
which are also limited in scale. The availability of comprehensive and diverse datasets
is crucial for training and testing recognition models, and this scarcity impedes progress
in the field. The process of collecting and organizing large-scale plant recognition and
detection datasets is time-consuming, arduous, and demands professional expertise in plant
identification. These challenges hinder the construction of robust datasets that can support
the development of accurate and reliable recognition models [4]. There are two primary
categories of methods for flower recognition: those based on manual features, involving
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handcrafted descriptors and traditional machine learning techniques, and those based on
deep learning, leveraging the power of neural networks to automatically learn features
from data. Each approach has its own strengths and limitations, with the choice between
them depending on the specific requirements of the recognition task.

1.1. Flower Recognition Methods Based on Manual Features

This approach employs artificially designed feature operators to extract specific fea-
tures from image data for classification and recognition. These features, typically based
on color, texture, shape, or a combination thereof, are carefully selected to capture the
distinctive characteristics of the flowers. The process of extracting manual features is
crucial in image classification and demands extensive professional knowledge in both the
domain of the subject (e.g., botany) and image processing techniques. The quality of the
extracted features directly impacts the accuracy of the classification and recognition results.
In the context of flower recognition, traditional machine learning methods like support
vector machines (SVM) and K-nearest neighbors (KNN) are commonly employed. SVM
effectively finds the optimal separating hyperplane for different classes, while KNN, a
straightforward yet potent algorithm, classifies objects based on the majority vote of their
neighbors [5].

In their research, Das et al. implemented flower image classification utilizing color
features and spatial domains [6]. Utilizing these features, they captured the unique color pat-
terns and spatial arrangements of the flowers, enhancing the accuracy of their classification
model. Nilsback and Zisserman [7] proposed a visual vocabulary for flower classification
and developed an optimized nearest neighbor classifier. Their method achieved an accu-
racy of 71.76% for 17 flower types, demonstrating the effectiveness of their approach in
distinguishing between different species. The Oxford-17 and Oxford-102 Flowers datasets,
developed by Nilsback and Zisserman, have become widely used benchmarks in flower
image recognition research. These datasets provide a diverse collection of flower images,
enabling researchers to assess and compare the performance of various recognition meth-
ods [8]. In a recent study, Ke Xiao [9] introduced a novel method for flower recognition
that combines morphological and texture features derived from the HSV color model. This
approach aims to capture both the shape and texture characteristics of the flowers, thereby
enhancing the discriminative power of the recognition system.

1.2. Deep Learning-Based Flower Recognition Methods

The rapid improvement in hardware performance, especially in GPUs (Graphics
Processing Units), has significantly contributed to the widespread application of deep
learning across various fields. These advancements have enabled the processing and
analysis of large data volumes at unprecedented speeds, facilitating the development of
more complex and sophisticated neural network architectures. Recently, numerous scholars
have initiated explorations into the application of deep learning technology in the field of
flower recognition [10]. This shift towards deep learning approaches has unlocked new
possibilities for more accurate and efficient identification of flower species. Deep learning
models such as AlexNet, VGGNet, GoogleNet, and ResNet have demonstrated remarkable
success in image recognition challenges, including flower recognition tasks. These models
have established new benchmarks for accuracy and have become foundational architectures
in the field of computer vision [11].

In the context of flower recognition, Liu Shangwang and Gao Xiang [12] proposed a
method utilizing deep model transfer learning for fine-grained image classification. This
approach leverages the knowledge from pre-trained models to achieve more precise classi-
fication of flower species with subtle differences [13]. Wang Shuang [14] employed transfer
learning to extract flower features from the AlexNet network trained on the ImageNet
dataset. By adapting the pre-trained model to the specific task of flower recognition, this
method achieves efficient feature extraction without extensive training from scratch [15].
Qin Min [3] combined attention mechanisms with CNNs and introduced Linear Discrim-
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inant Analysis (LDA) to establish a classification model based on LD-Loss. This model
aims to enhance the network’s discriminative power by focusing on relevant features and
reducing intraclass variability.

Despite advancements in deep learning for flower recognition, a notable gap remains
in research on target detection and recognition of flowers. This area remains relatively
unexplored, presenting opportunities for further investigation and development. Xie
Zhouyi and Hu Yanrong [16] proposed a system utilizing the YOLOv4 architecture for
multi-target flower recognition. This system is designed to simultaneously detect and
classify multiple flowers within an image, showcasing the potential of deep learning for
complex recognition tasks in natural settings.

In 2020, a team from Google introduced the Vision Transformer (ViT) model, which
applies the Transformer architecture to image classification tasks. This groundbreaking
effort was the first to introduce the Transformer architecture [17,18] into the realm of
computer vision. Through a series of experiments, the authors demonstrated that the ViT
model achieves higher accuracy in image classification than existing top CNN architectures
after training on large datasets [19]. Unlike CNNs, the ViT model maintains greater
similarity between representations obtained at shallow and deep layers, enabling it to
leverage the advantages of Transformer architecture to learn deeper feature information on
a global scale.

The introduction of the ViT model has enabled achievements in computer vision that
are comparable to or even surpass those of CNNs, utilizing only Transformer architecture
without convolutional layers. Even with small datasets, the ViT model can still yield strong
experimental results by either loading pre-trained weights or utilizing a hybrid network
structure that combines ResNet and ViT. This versatility demonstrates that the ViT model
can achieve a performance level comparable to the top-performing CNNs while requiring
fewer computing resources during the training process.

Due to its simplicity, effectiveness, and robust scalability, the ViT model is considered
a milestone in the field of computer vision. It has garnered widespread attention and
inspired numerous subsequent studies. For instance, Beal et al. combined the ViT and
Faster RCNN models as the backbone network for feature extraction, achieving impressive
results in classification and localization tasks for targeted regions [20]. Among these
achievements, Alexey Dosovitskiy et al. [19] experimentally verified that the ViT-Large-
I21k model achieved a classification accuracy of 99.60% on the Oxford-102 Flowers dataset,
underscoring the model’s potential for high-accuracy image classification tasks.

1.3. Current Research on MAEs

MAEs have emerged as a powerful technique in deep learning for understanding and
analyzing data, enabling the extraction of effective features to solve complex problems. A
key advantage of MAEs is their capability to train models on unlabeled data, making them
highly adaptable for various downstream tasks. This flexibility is especially valuable in
domains where labeled data are scarce or costly to obtain [21]. In the realm of scalable pre-
training models, He, K. et al. introduced a groundbreaking MAE pre-training model based
on the ViT architecture [22]. This model extends the success of BERT, a prominent language
model, into the visual domain, demonstrating MAEs’ potential to leverage Transformer-
based architectures for visual tasks.

The versatility of MAEs is evident in their applicability to a diverse array of visual tasks
across various fields, including image analysis, video processing, and audio recognition.
This adaptability renders them a valuable tool for researchers and practitioners across
various domains of computer vision and multimedia. A notable advancement in the
application of MAEs is the dense retrieval pre-training model developed by Huawei
Noah’s Ark Lab. This model employs MAEs to achieve high precision in information
retrieval tasks, showcasing the effectiveness of MAEs in enhancing search and retrieval
capabilities. In the field of industrial inspection, Sun Jieguang [2] proposed a two-stage
deep learning surface defect detection network utilizing MAE pre-training. This approach
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underscores the practical utility of MAEs in addressing real-world challenges, such as
identifying defects in manufacturing processes.

Overall, MAEs are distinguished by their broad applicability, simplicity, and versatility,
encompassing various research fields and applications. Their use of Transformer-based
models for pre-training enables them to achieve high-level data representations and learn-
ing capabilities, further solidifying their role as a cornerstone in the advancement of deep
learning and artificial intelligence.

1.4. Main Contribution of Our Study

The overarching goal of this research is to advance the field of flower recognition by
developing an autoencoder-based, pre-trained model that demonstrates enhanced precision
in flower target detection and identification. In this study, we introduce an innovative
approach to flower recognition by constructing a MAE pre-trained model, specifically
developed for this purpose. Utilizing the Oxford-102 Flowers dataset, our model is distin-
guished by its adoption of parameters from the ViT, originally trained on the ImageNet-1K
dataset. This strategic choice ensures a robust foundation for feature extraction and superior
representation learning. Our methodology diverges from traditional CNN modifications,
instead utilizing a novel integration of MAEs and the YOLOv5 algorithm for precise flower
target detection.

The principal contributions of our study are twofold:

1. Enhanced Target Detection: Our approach focuses on flower target detection, not only
identifying but also precisely localizing specific flowers within images. This capability
is crucial for applications requiring high precision, such as botanical research and
agricultural monitoring.

2. Methodological Innovation: We propose a combination of self-supervised pre-
training using MAEs with YOLOv5-based detection, fostering a powerful synergy
that enhances the accuracy and efficiency of flower detection.

These advancements represent a significant step forward in the field of flower recog-
nition and establish a new benchmark for future research. Our findings offer valuable
insights and a scalable model that can be adapted by other researchers and practitioners
facing similar challenges in target detection and image recognition.

1.5. Chapter Structure of Our Study

This paper is structured to methodically explore the integration of MAEs and object
detection models in flower recognition, detailing both theoretical foundations and practical
applications. Section 1 reviews related work, dissecting methodologies ranging from
manual feature-based to advanced deep learning-based flower recognition techniques,
and provides an update on current research involving MAEs and outlines our approach,
followed by Section 2, which delves into the materials and methods employed in pre-
training the model. This section discusses the study framework, benchmark datasets,
data preprocessing techniques, the architecture of the pre-trained model including MAE
design and transfer learning, flower image reconstruction, and specific computational
considerations such as the training environment and hyperparameter settings. Section 3
presents experimental results derived from the pre-training model.

Continuing, Section 4 describes the materials and methods used in developing the
object detection model, highlighting data acquisition, processing, and the construction
of the YOLOv5 model, including its design principles, loss function, and improvement
strategies. The experimental setup and analysis are detailed in Section 4.3. Section 5 reports
on the experimental results obtained from the object detection model. In Section 6, we
discuss the implications of our findings, and Section 7 concludes this paper with a summary
of our results and potential directions for future research.
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2. Materials and Methods on the Pre-Training Model
2.1. Study Framework

This study introduces an advanced flower recognition model that employs the MAE
approach to significantly enhance recognition accuracy. Our extensive review of existing
literature revealed a critical need for effective flower image reconstruction to enhance
recognition capabilities. The proposed model is distinguished by its dual-stage training
regimen designed to maximize effectiveness. Initially, we employed the ViT-Large model,
which was pre-trained on the ImageNet-1K dataset. This step leverages the robust feature-
extraction capabilities of the Transformer architecture, establishing a solid foundation for
advanced feature comprehension. Subsequently, in the second stage, sophisticated data
augmentation techniques were applied to the Oxford-102 flower dataset. This strategy is
crucial for enhancing the model’s capacity to effectively generalize across a diverse range
of floral images. The architectural framework of our model has been meticulously designed
to facilitate precise flower image reconstruction and robust classification. It incorporates an
encoder for detailed feature extraction and a decoder for reconstructing the flower images,
ensuring that essential details are preserved. A critical component of the architecture is a
fully connected layer, dedicated specifically to classifying the reconstructed images into
their respective flower categories.

The interplay between the encoder and decoder enables the model to learn and encode
meaningful representations of flower images, which are critical for accurate classification.
Following pre-training, the model was fine-tuned to optimize its classification perfor-
mance, focusing specifically on flower-specific features. Evaluation on the Oxford-102
flower dataset underscored the model’s exceptional capabilities, demonstrating remark-
ably high classification accuracy. This model not only establishes a new benchmark in
flower recognition but also highlights the potential of MAE approaches in complex image
recognition tasks. The model’s robust performance is confirmed across a spectrum of
standard flower recognition tasks, demonstrating its broad applicability and effectiveness
in diverse scenarios.

Figure 1 presents the detailed architecture of our approach, integrating an MAE
specifically tuned for flower recognition. This architecture diagram effectively illustrates the
progression from an initial comprehensive literature review to the strategic construction of
a pre-trained network that leverages the capabilities of MAE, culminating in its application
in advanced YOLOv5-based detection. It underscores the transformative potential of
MAE to enhance recognition accuracy within the field. Further refinement of the model
was achieved through the creation and utilization of a self-curated dataset, enriched by
web crawling and comprehensive data augmentation techniques. This enriched dataset
plays a vital role in advancing the performance of the object detection models, particularly
YOLOv5, by providing a diverse range of image examples that improve the model’s ability
to generalize and detect objects accurately under varied conditions. The integration of
these techniques establishes a solid foundation for the model’s superior performance,
demonstrating its effectiveness and versatility across various flower recognition tasks.

2.2. Benchmark Datasets

Computing power, algorithms, and data are indispensable elements underpinning
the successful implementation of artificial intelligence tasks, including deep learning.
Computing power, largely reliant on hardware such as GPUs and Tensor Processing Units
(TPUs), is crucial for managing the computational demands of complex AI models. The
quality of algorithms, however, is tied to the structure of the network model, which
determines the efficiency and effectiveness of the learning process. The quality of data
is crucial for the success of AI implementations. High-quality, well-labeled, and diverse
datasets are essential for training robust and precise AI models. In the domain of flower
recognition, several datasets are routinely used to evaluate the performance of AI models.
The details of these datasets are summarized in the Table 1:
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Table 1. Detailed Information on Three Flower Image Classification Datasets.

Dataset Provider Number
of Images

Number of
Species Characteristics Data Availability

Five Flower Kaggle 3670 5

Contains 600–800 images
per species: daisies,
dandelions, roses,

sunflowers, and tulips.
Balanced for initial training.

Available at https://www.
kaggle.com/datasets/

kausthubkannan/5-flower-
types-classification-dataset
(accessed on 9 May 2024)

Oxford-17
Flowers

Visual Geometry
Group, University

of Oxford
1360 17

Approximately 80 photos
per species. Useful for

fine-grained recognition
studies in natural settings.

Available at
https://www.robots.ox.ac.

uk/~vgg/data/flowers/17/
(accessed on 9 May 2024)

Oxford-102
Flowers

Visual Geometry
Group, University

of Oxford
8189 102

Comprehensive collection
depicting a variety of
postures and lighting
conditions to test AI

generalization in diverse
species recognition.

Available at
https://www.robots.ox.ac.

uk/~vgg/data/flowers/102/
(accessed on 9 May 2024)
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2.3. Benchmark Datasets Preprocessing

The impact of data on deep learning tasks cannot be overstated, as data quantity and
quality are critical factors in determining the success of these tasks. Among the various
datasets used for studying fine-grained flower images, the Oxford-102 Flowers dataset is
distinguished as one of the largest and most diverse. It contains 102 species and a total of
8189 color images, offering a rich resource for researchers and practitioners in the field of
computer vision and machine learning. The composition of the dataset is well-structured,
with the training and validation sets each containing 1020 images, equating to 10 images
per class. The test set is more extensive, comprising 6149 images, which facilitates a
comprehensive evaluation of the performance of deep learning models trained on this
dataset. An example image is depicted in Figure 2. Given the varying resolution and size
of images in the dataset, resizing is an essential preprocessing step. This step is necessary
to avoid issues during random cropping and to maintain noticeable feature differences

https://www.kaggle.com/datasets/kausthubkannan/5-flower-types-classification-dataset
https://www.kaggle.com/datasets/kausthubkannan/5-flower-types-classification-dataset
https://www.kaggle.com/datasets/kausthubkannan/5-flower-types-classification-dataset
https://www.kaggle.com/datasets/kausthubkannan/5-flower-types-classification-dataset
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/
https://www.robots.ox.ac.uk/~vgg/data/flowers/17/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
https://www.robots.ox.ac.uk/~vgg/data/flowers/102/
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between samples. Uniform scaling of image size is crucial to ensure fairness in network
comparison. Consequently, the image size is uniformly scaled to 224 × 224, aligned with
sample sizes from various experimental datasets in image recognition. This standardization
facilitates the comparison of different network architectures and their performance in the
task of flower image classification.
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2.4. Structure of the Pre-Train Model
2.4.1. MAE Design

Figure 3 depicts the specialized architecture of the MAE, highlighting its unique
asymmetric encoder–decoder structure tailored for our application in flower image recon-
struction. Unlike traditional autoencoders that often employ symmetrical dimensions for
encoding and decoding, MAEs leverage an asymmetric architecture, where the encoder
is designed to process a greater volume of data than the decoder. In this figure, the input
image is divided into patches and partially masked, illustrating the model’s capacity to
handle incomplete data [18]. The encoder, a larger and more complex network component,
compresses the visible patches into a compact latent representation, capturing the critical
information while disregarding the masked sections. These encoded data are then pro-
cessed by a relatively smaller decoder, tasked with reconstructing the full image, including
the previously masked portions. The result is a reconstructed target image that is then
evaluated against the original for fidelity, demonstrating the MAE’s effectiveness in feature
preservation and image recovery [23]. This asymmetric design is crucial for the MAE’s
efficiency and accuracy in tasks that require robust feature extraction from incomplete
datasets, as exemplified by our flower recognition model.

2.4.2. Transfer Learning

Transfer learning is defined as the process of leveraging knowledge acquired from one
task and applying it to a different, yet related task, after making necessary adjustments.
This methodology encompasses fundamental concepts such as the domain, which includes
the source domain (where the model is initially trained) and the target domain (where
the model is subsequently applied), and the task, which refers to the specific problem
being addressed. A notable challenge with the Oxford-102 Flowers dataset is the risk
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of overfitting due to its limited number of labeled images. Directly training the MAE
pre-training model on this dataset can result in a model that may not effectively generalize
to new data. To mitigate this risk, transfer learning is employed to augment the dataset by
leveraging knowledge from additional datasets, such as ImageNet-1K. Transfer learning is
most effective when the data in the target domain resemble the original dataset.
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From the previous discussion of ViT, it is evident that ViT-Large has multiple ad-
vantages; therefore, we selected it as the base model for our pre-trained model. Figure 4
presents a visual representation of the architecture that utilizes ViT-Large as the founda-
tional pre-trained model for our proposed system [24]. The ViT-Large model is integral to
our framework, providing a high-capacity neural network pre-trained on the ImageNet-1K
dataset, comprising 1000 classes and over a million images. This pre-training endows
the model with a sophisticated understanding of visual representations, which is further
adapted to our specific context of flower classification.
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Within the ViT-Large model, an image is divided into a sequence of patches. These
patches are then flattened and linearly projected to produce a series of embedding vectors.
An additional learnable [class] embedding is appended to the sequence for classifica-
tion purposes. This series, augmented with position embeddings to preserve locational
information, is fed into the transformer encoder.

The transformer encoder comprises alternating layers of multi-headed self-attention
and multilayer perceptrons (MLPs), with normalization layers interspersed between
them [25]. This design allows the model to capture a rich hierarchy of features at various
levels of abstraction. The output of the transformer encoder passes through an MLP head,
which serves as a classifier, utilizing the [class] embedding to generate the final class pre-
dictions. The use of ViT-Large, with its extensive pre-training and high capacity for feature
extraction, signifies a significant evolution from conventional convolutional approaches.

In the depicted process (Figure 5), parameter weights from the ViT-Large model,
initially pre-trained on the extensive ImageNet-1K dataset, are extracted and strategically
transferred to the Oxford-102 Flowers dataset. This transfer involves adapting the model
parameters through an MAE-based pre-training approach, tailored specifically to enhance
its relevance and performance in the floral domain. This adaptation not only preserves
the robust features learned from a diverse set of generic images but also fine-tunes the
model to recognize and classify various flower species with enhanced accuracy. Figure 5
illustrates this transfer and adaptation process, highlighting the flow from initial training
on ImageNet-1K to its application on the specialized floral dataset, thereby significantly
enhancing the model’s discriminatory power in flower recognition tasks.
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2.4.3. Loss Function

In this paper, we have selected the Mean Squared Error (MSE) loss function to op-
timize our model’s performance. The choice of the MSE loss function is motivated by
its smooth and continuous curve, which is differentiable at any point. This property is
particularly advantageous for optimizing model parameters, as it facilitates straightforward
updates using regression algorithms. Furthermore, the MSE loss function exhibits a desir-
able characteristic whereby the gradient decreases proportionally as the error decreases.
This leads to rapid convergence of model parameters toward the minimum value, even
with a fixed learning rate. This behavior benefits both the efficiency and stability of the
training process, as it minimizes the likelihood of oscillations and ensures rapid adjustment
of model parameters to optimal values. The calculation of the MSE loss function is straight-
forward and efficient, as demonstrated in Equation (1). This ease of calculation further
enhances the appeal of the MSE loss function in our study, facilitating a more streamlined
implementation and computation process.

MSE =
∑n

i=1( f (xi)− yi)
2

n
(1)

In this equation, n represents the total number of observations. The function f (xi) is
the predicted value outputted by the model for the i-th observation, where xi denotes the
input features of the i-th observation. The variable yi refers to the actual observed value
corresponding to xi. The term ( f (xi)− yi)

2 computes the squared difference between the
predicted value and the actual value for each observation, quantifying the prediction error
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for each point. The summation of these squared differences is then averaged over all n ob-
servations to yield the MSE, which provides a measure of the model’s overall performance.

2.5. Flower Image Reconstruction

The MAE pre-training model plays a crucial role in reducing pixel redundancy in
original flower images, thereby enhancing the efficiency of the learning process. A key
aspect of this model is the generation of a crucial self-supervised task: reconstructing flower
images, which aids in learning meaningful data representations. The random masking
process is a vital component of the model’s operation. It involves dividing each input
flower image into 196 image blocks, each measuring 16 × 16 pixels. A subset of these
blocks, typically approximately 75%, is randomly masked, leaving only 49 visible image
blocks. This process ensures that the model focuses on learning from a smaller subset of
data, thereby minimizing computational overhead. The encoder in the model is specifically
designed to process only the remaining visible image blocks after masking. Selective
processing further contributes to minimizing computational overhead.

Figure 6 provides a schematic representation of the autoencoder framework employed
for flower image reconstruction. Beginning with the input image, patches are extracted
and flattened before being projected linearly to form patch embeddings. A subset of these
embeddings, termed ‘tokens’, is then masked, simulating a scenario where the model must
predict missing information, thereby fostering robust feature extraction.
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In the encoder stage, the visible embeddings undergo multiple transformations
through a series of 24 transformer encoder layers, capturing complex patterns and de-
pendencies. This comprehensive encoding process ensures that the information retained
from the unmasked tokens is both rich and informative. The decoder module, comprising
eight transformer encoder layers, is responsible for reconstructing the image. It processes
both the encoded and masked embeddings, attempting to restore the original image at the
pixel level. This process emphasizes the recovery of fine details and overall structure from
the limited visible data.

A MSE loss is then calculated, measuring the difference between the reconstructed im-
age blocks and the original, unaltered image. This loss quantifies the model’s performance
in terms of its ability to accurately reconstruct the image, providing a basis for optimizing
the model’s parameters. The model’s ability to accurately reconstruct images with missing
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patches is critical for its application in precise flower target detection. By refining the model
against this loss, it becomes adept at capturing the essential features of flower images.

2.6. Training Environment

For the experiment, the Oxford-102 Flowers dataset was selected owing to its diversity
and relevance in flower recognition tasks. To ensure consistency and comparability, all
images in the dataset were resized to 224 × 224 pixels. This resolution is a common choice
in image recognition experiments and facilitates efficient image processing by the model.
The model training was conducted using Python 3.8, a programming language widely
used in data science and machine learning. The PyTorch deep learning framework was
chosen for its flexibility, user-friendliness, and support for dynamic computation graphs,
which makes it suitable for developing and training complex models such as the one used
in this experiment. To leverage GPU computational power, the experiment utilized CUDA
version 11, a parallel computing platform and programming model developed by NVIDIA.
Additionally, timm version 0.3.2, a library of pre-trained models for PyTorch, was used to
ease the implementation and experimentation with various model architectures.

The hardware configuration and parameters used during model training play a critical
role in reproducing the experiment and understanding its computational requirements.
These details are provided in Table 2, including information such as the type of GPU used,
batch size, learning rate, and other relevant parameters affecting the training process and
the model’s performance.

Table 2. Model Training Configuration and Parameters.

Configuration Name Configuration Parameters

Operating System Ubuntu
Programming Language Python 3.8

Memory 140 G
Graphics Card Model 4 × A40

Deep Learning Framework Pytorch

2.7. Hyperparameter Settings

The learning rate is a crucial parameter in the training process, as it determines the
step size update in each iteration. It directly impacts the model’s convergence state, with a
higher learning rate potentially resulting in faster convergence but also increasing the risk
of overshooting the optimal solution. Conversely, a lower learning rate may lead to slower
convergence but enhanced stability [26].

The batch size, defined as the number of samples selected for training at one time,
is another crucial parameter. It is typically chosen to be a power of 2 for computational
efficiency. The batch size influences the model’s generalization performance, with a larger
batch size providing a more precise estimate of the gradient but potentially resulting in
poorer generalization.

In the context of training, one epoch is defined as the process of training the model
once with all the samples in the training set. The number of epochs determines the total
number of times the training set is utilized during the training process.

In the final settings of this study, after several adjustments, the batch size was set to
256, and the initial learning rate was set to 0.001. These settings were chosen based on
empirical evidence and the specific requirements of the task.

Furthermore, a learning rate decay strategy was implemented to dynamically adjust
the learning rate based on the model’s performance. The learning rate was reduced by
a factor of 0.1 whenever the loss function did not show a significant decrease, assisting
in fine-tuning the model’s convergence. The model was trained for a total of 500 epochs,
providing sufficient opportunity for the model to learn and adapt to the training data. The
hyperparameter configuration is presented in Table 3.
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Table 3. Hyperparameter Settings of Pre-Train model.

Configuration Name Configuration Parameters

Initial Learning Rate 0.001
Batch size 256

Epochs 500
Optimizer RMSprop

2.8. Evaluation Metrics

The loss function serves as a crucial metric in deep learning, evaluating the degree
of discrepancy between predicted and actual values. It acts as an indicator of the model’s
accuracy, where a lower loss value signifies enhanced model robustness. In the context of
the MAE pre-trained model, the primary task involves reconstructing the complete image
using masked samples. We utilize Equation (1) as the loss function.

3. Experimental Results on the Pre-Training Model

As shown in Figure 7, after 500 training rounds, the network’s convergence is carefully
analyzed. The curve flattens after 300 rounds, indicating that the pre-trained model’s
learning ability has nearly reached its optimum. This convergence suggests that the
network’s image reconstruction capability is approaching its optimum, demonstrating
the effectiveness of the training process. In Figure 8, we present a visual illustration of
the processing steps employed by the MAE in our proposed flower recognition model.
The sequence commences with the original image of a flower. This image is transformed
to obscure specific portions, resulting in a ‘masked’ version. Subsequently, our model
endeavors to reconstruct the occluded regions, using learned representations to predict the
missing pixels.

Horticulturae 2024, 10, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 7. Decrease in 𝑀𝑆𝐸 loss of the pre-trained model with training epochs. 

 
Figure 8. Visualization of flower image reconstruction. 

After training the MAE on the original Oxford 102 Flowers dataset, this chapter de-
scribes the removal of the decoder component, retaining only the encoder for flower fea-
ture extraction. Subsequently, a simple fully connected layer follows the encoder to clas-
sify flower images, demonstrating the encoder’s robust feature extraction capabilities. To 
this end, techniques such as random cropping, random flipping, and grayscale transfor-
mations were applied to augment the original Oxford 102 Flowers dataset. The weights of 
the encoder were frozen, and only 50 training epochs were conducted on the fully con-
nected layers. Setting the learning rate to 0.0001 and batch size to 256, Figure 9 illustrates 
the change curves for the classification loss function (left) and accuracy (right) for flower 
images. It was observed that after 35 training epochs, both the learning rate and accuracy 
converged. 

  
Figure 9. Changes in loss function value and classification accuracy with training rounds. 

Figure 7. Decrease in MSE loss of the pre-trained model with training epochs.

After training the MAE on the original Oxford 102 Flowers dataset, this chapter
describes the removal of the decoder component, retaining only the encoder for flower
feature extraction. Subsequently, a simple fully connected layer follows the encoder to
classify flower images, demonstrating the encoder’s robust feature extraction capabili-
ties. To this end, techniques such as random cropping, random flipping, and grayscale
transformations were applied to augment the original Oxford 102 Flowers dataset. The
weights of the encoder were frozen, and only 50 training epochs were conducted on the
fully connected layers. Setting the learning rate to 0.0001 and batch size to 256, Figure 9
illustrates the change curves for the classification loss function (left) and accuracy (right)
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for flower images. It was observed that after 35 training epochs, both the learning rate and
accuracy converged.
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Meanwhile, we calculated accuracy at 1 (acc @ 1), accuracy at 3 (acc @ 3), and accuracy
at 5 (acc @ 5) for the flower classification model; the training results are presented in
Figure 10. Among these, accuracy at 1 (acc @ 1) refers to the accuracy of the first prediction
in each batch, indicating the model’s ability to correctly identify the primary category.
Accuracy at 3 (acc @ 3) and accuracy at 5 (acc @ 5) denote the model’s accuracy for the top
three and top five predictions in each batch, respectively. These metrics are particularly
useful for evaluating the accuracy of classification models with numerous categories, such
as this dataset, which contains 102 categories.

It is important to note that all images in the dataset were used in the pre-training
without corresponding labels, thereby avoiding any issues of high accuracy due to label
leakage in the supplementary classification experiments. To demonstrate the superiority of
the pre-trained flower classification model based on the MAE, this section compares it with
traditional manual feature-based, CNN-based, and ViT model-based methods using the
publicly available Oxford 102 Flowers dataset, as detailed in Table 4.

Table 4. Comparison of Classification Accuracy with Other Models.

Method Accuracy

Automated flower classification over a large number of classes [27] 72.80%
Image segmentation for large-scale subcategory flower recognition [28] 80.70%

ResNet101 [29] 95.95%
VGG-16 [30] 80.91%

ViT-L-I1k-MAE (our) 99.60%

From the first and second rows of the table, it is evident that traditional flower classi-
fication methods based on manual features exhibit relatively low accuracy. The primary
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reason is that historically, computer technology was not sufficiently advanced, and manu-
ally designed features, based on experience, were error-prone, failing to effectively address
the issues of inter-class similarity and intraclass differences among flowers [3]. From the
third and fourth rows, it is clear that flower recognition methods based on CNNs represent
significant advancements over manual feature methods. Notably, our model, ViT-L-I1k-
MAE, has achieved an impressive 99.60% accuracy, underscoring the substantial benefits of
pre-trained models for feature extraction.
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To broaden the model’s applications, the pre-trained MAE is adapted for flower
object detection tasks. This adaptation involves integrating the encoder component of
the MAE into the YOLOv5 backbone network, thus creating a specialized flower object
detection model. This modification enables the model to utilize its learned representations
to detect floral objects in images, emphasizing the versatility and transferability of the
MAE approach.

4. Materials and Methods on Object Detection Model
4.1. Data Acquisition and Processing

Current research in flower image recognition focuses primarily on classification be-
cause of the limited availability of public datasets for flower object detection. In this section,
using the Selenium tool in Python, we use web crawling technology to collect flower images
from Baidu (https://image.baidu.com/ accessed on 9 May 2024), where the image source
region is limited to China, to create a custom private dataset for this study.

Ultimately, we obtained 13 classes of flower images characterized by high inter-class
similarity and significant intra-class variation. These classes include Lysimachia foemina,
Arctium lappa, Allium macrostemon, Allium tuberosum, Taraxacum, Gynura aurantiaca, Tagetes,
Cichorium intybus, Hibiscus cannabinus, Achillea millefolium, Bellis perennis, Apium graveolens,
and Gardenia jasminoides. Each class consists of images depicting various colors and growth
stages, totaling 4566 images. An example is shown in Figure 11.

Utilizing the LabelImg tool, flower images were annotated in YOLO format, resulting
in .txt files. To prevent overfitting due to the small dataset size, each flower image was
augmented with random flips and random crops, yielding a total of 10,513 images for data
augmentation. Subsequently, the dataset was divided into training, validation, and testing
sets at an 8:1:1 ratio.

https://image.baidu.com/
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4.2. Object Detection Model Construction
4.2.1. YOLOv5 Model Principles

YOLOv5 improves on YOLOv4 by enhancing the Backbone, Neck, Head, and output
layers, thus further boosting the algorithm’s performance. In this section, the MAE pre-
trained model is integrated with and optimized using the YOLOv5 model. The flower
object detection model based on MAEs has been developed. The structure of YOLOv5 is
shown in Figure 12:

• Input

YOLOv5 utilizes Mosaic data augmentation to enlarge the dataset. Additionally,
it integrates anchor box size calculation into the model training process, automatically
determining the optimal anchor framework. Moreover, it uniformly resizes images to a
standard size using adaptive scaling, minimizing redundant information and enhancing
network inference speed.

• Backbone

The Backbone network is responsible for extracting features from the input images
using CNNs.

• Neck

During the feature extraction process from images, some local information may be lost.
The Neck network combines feature maps from different levels of the network to capture
richer feature information from the image, which is then fed into the Head layer.

• Head

The Head layer conducts the final regression prediction, enhancing classification
and localization.
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4.2.2. YOLOv5 Loss Function

The localization loss employs the Complete Intersection over Union (CIoU) loss to
determine the error between the predicted box and the true box. CIoU considers the
overlap area, center point distance, and aspect ratio, enhancing the comprehensiveness of
box regression. The IoU and CIoU loss formulas are as follows [31]:

IoU =
|A ∩ B|
|A

⋃
B| (2)

Here, |A ∩ B| represents the area of intersection between the bounding boxes A and B,
and |A

⋃
B| denotes the area of their union.

LossCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αυ (3)

In this formulation:
ρ2(b, bgt) measures the squared Euclidean distance between the central points of

the predicted bounding box b and the ground truth bounding box bgt, providing a scale-
invariant metric of central point differences.

c represents the diagonal length of the smallest enclosing box covering both b and bgt,
used to normalize the central point distance.

α is a weighting factor that scales the importance of the consistency term υ, which
quantifies the aspect ratio consistency between the predicted and ground truth bounding
boxes. This term is particularly important in object detection to maintain the proportional
dimensions of the bounding boxes.

4.2.3. YOLOv5 Improvement Strategy

In this section, the encoder obtained from the MAE pre-trained model replaces the
Backbone component of YOLOv5 for feature extraction from flower images. Figure 13
illustrates the integration of the MAE and YOLOv5 in our proposed model, enhancing
feature extraction in flower image detection. In this innovative approach, the backbone
of YOLOv5, traditionally responsible for initial feature extraction, is substituted with the
encoder from a pre-trained MAE. This encoder, pre-conditioned on a flower-specific dataset,
harnesses the powerful representational capabilities of the ViT-Large architecture. The
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extracted features are then propagated through the Neck, comprising a series of processing
layers designed to spatially refine these features before prediction. Subsequently, the refined
features enter the Head of the model, which utilizes Non-Maximum Suppression (NMS)
to discern the most probable bounding boxes from an array of candidates, outputting a
matrix with dimensions 7 × 7 × 23. This matrix includes class probabilities, bounding box
coordinates, and objectness scores. Adjustments to the position offsets within the candidate
boxes are made to enhance the precision of the final object detection.
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4.3. Experiment and Analysis
4.3.1. Experimental Environment

The experiments in this chapter were conducted on the Ubuntu operating system, uti-
lizing the PyTorch deep learning framework, CUDA version 11, and timm (PyTorch Image
Models) version 0.3.2, and were programmed in Python 3.8. The hardware configuration
used was the same as that in Table 2 of Section 2.

4.3.2. Hyperparameter Settings

In this chapter’s research on flower image classification using the MAE pre-trained
model, the batch size was set to 32, and the initial learning rate was set to 0.001. The model
was trained for 300 epochs. The hyperparameter configuration is presented in Table 5.

Table 5. Hyperparameter Settings of Object Detection Model.

Configuration Name Configuration Parameter

Learning rate 0.001
Batch size 32

Epochs 300
Optimizer RMSprop

4.3.3. Evaluation Metrics

(1) Precision: It is the proportion of correctly predicted positive instances among the
instances predicted as positive. It is calculated as:

precision =
TP

TP + FP
(4)

where TP (True Positives) are the correctly predicted positive instances, and FP (False
Positives) are the instances incorrectly predicted as positive.
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(2) Recall: It is the proportion of correctly predicted positive instances among all actual
positive instances. It is calculated as:

recall =
TP

TP + FN
(5)

where FN (False Negatives) are the actual positive instances that were incorrectly
predicted as negative.

(3) Mean Average Precision (mAP): It is the average of AP (Average Precision) and is a
primary evaluation metric for object detection algorithms. A higher mAP indicates
better detection performance of the object detection model on the given dataset. It is
calculated as follows:

mAP =
∑k

i=1 APi

K
(6)

where k represents the number of classes. When k = 1, mAP = AP. When k > 1, mAP
is the mean of AP. AP is the area under the precision-recall curve interpolated to have
smooth curves. The threshold is generally set to 0.5, meaning that predicted boxes
with an IoU greater than 0.5 are considered valid, denoted as mAP@0.5.

AP = ∑n−1
i=1 (ri+1 − ri)pinterp(ri+1) (7)

In this equation:
ri and ri+1 represent the recall values at the i-th and (i + 1)-th thresholds, respectively.

These values are part of the sorted list of all recall values obtained by varying the decision
threshold on the detection confidence.

pinterp is the interpolated precision at recall level ri+1. This interpolation ensures that
the precision is adjusted to reflect the maximum precision observed for all recall levels
greater than or equal to ri+1, which helps to handle the variations in precision at different
recall thresholds.

The term (ri+1 − ri) calculates the increment in recall from one threshold to the next,
and the product of this increment with the interpolated precision gives the contribution of
each segment to the overall AP.

5. Experiment Results on Object Detection Model

The training results of the flower detection and recognition model based on the MAE
are shown in Figure 14.
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Precision and recall are commonly used to evaluate a model’s performance. The area
under the P–R curve represents the average precision (AP), with a larger area indicating
better model performance. After experimenting with the flower object detection method
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based on the MAE on a self-built flower dataset, the P–R curve shown in Figure 15 was
obtained, with an average mAP@0.5 of 71.3% for all classes.
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The flower object detection method proposed in this paper, which improves YOLOv5
using MAEs, was compared with YOLOv5s and YOLOv4, with the results shown in Table 6.

Table 6. Comparison of Object Detection mAP and Precision.

Method mAP@0.5 Precision Training Time Inference Time (ms)

Yolov5s 69.8% 86.7% 3 h 15 m 3.1
Yolov4 67.4% 90.3% 3 h 54 m 6.8

Our 71.3% 91% 4 h 37 m 5.2

The proposed model demonstrates significant advancements in flower detection
and recognition over existing models. Our method shows an increase in mAP@0.5 of
1.5 percentage points compared to YOLOv5s and 4.1 percentage points compared to
YOLOv4. Additionally, our approach improves precision by 4.3 percentage points com-
pared to YOLOv5s and 0.7 percentage points compared to YOLOv4.

Notably, although the proposed model requires a longer training time compared to
both YOLOv5s and YOLOv4, this is offset by its efficiency during inference. The infer-
ence time of the proposed model is reduced by approximately 23% compared to YOLOv4,
although it is slightly higher than that of YOLOv5s. This demonstrates a balanced improve-
ment in both accuracy and operational efficiency, which is critical for real-time applications.
The increased training time is attributed to the more complex MAE-based feature extraction
network, which nevertheless results in higher precision and faster inference times than the
earlier YOLOv4 model.

As shown in Figure 16, the use of a MAE-enhanced feature extraction framework
within the YOLO architecture leverages more sophisticated pre-trained embeddings to
provide improved detection capabilities, particularly in categorizing diverse and complex
flower species. Subsequently, the recognition and detection results of this method were
visualized using PyQt5 with Python 3.8 and OpenCV drawing techniques.
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6. Discussion

Figure 14 illustrates a multi-faceted evaluation of the object detection model across
several metrics over 300 epochs. In the top row, the ‘Bounding Box’, ‘Objectness’, and
‘Classification’ loss curves reveal an overall descending trend, which indicates a progressive
refinement in the model’s ability to accurately predict bounding boxes, discern objects
from background noise, and correctly classify detected objects. Notably, the ‘Bounding
Box’ and ‘Classification’ losses demonstrate a steady decline, while the ‘Objectness’ loss
relatively plateaus, which suggests that the model quickly learns to differentiate objects
from the background, with further improvements primarily in bounding box regression
and classification accuracy.
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The bottom row offers further insights. The ‘val Box’, ‘val Objectness’, and ‘val Classi-
fication’ losses initially decrease, with a noticeable uptick in ‘val Box’ and ‘val Objectness’
around the 150th epoch. This may indicate a point of overfitting, where the model begins
to learn noise from the training data, thereby reducing its generalization capability to the
validation set. Upon evaluating performance metrics, the ‘mAP@0.5’ and ‘mAP@0.5:0.95’
exhibit an ascending trend that plateaus, indicating the model’s increasing and then stable
proficiency in accurately detecting objects with a high degree of overlap (greater than 50%)
with truth bounding boxes. The difference in saturation levels between ‘mAP@0.5’ and
‘mAP@0.5:0.95’ suggests that while the model performs well at the more lenient threshold
of 0.5 IoU, there is a performance drop-off at stricter thresholds, highlighting a potential
area for further model refinement.

Lastly, ‘Precision’ and ‘Recall’ curves ascend towards a plateau, demonstrating the
model’s improved ability to correctly identify positive samples and its success rate in not
missing actual positives. However, the slight dip at the end of the curves suggests an
increase in the number of FN. This condition indicates that the model may be overfitting
due to factors such as imbalanced datasets and background noise. Overall, Figure 13
suggests a robust model with room for enhancement, particularly in handling overfitting
and improving detection at stricter IoU thresholds. Future work should consider exploring
advanced regularization methods and more extensive datasets to mitigate overfitting and
enhance model accuracy.

7. Conclusions

With the rapid advancement of deep learning and computer vision technologies, im-
age recognition and detection have attracted extensive study from numerous scholars. In
the field of flower recognition, the enhancement of efficiency and accuracy in flower identi-
fication has been a task of enduring research significance. Fine-grained image recognition
techniques, particularly those based on CNNs, have matured significantly, with extracted
features demonstrating strong expressiveness and achieving notable results in fine-grained
image recognition. However, due to the excessive granularity of key points in these images,
traditional CNNs struggle to extract all key point information. Given the shortcomings of
CNN-based fine-grained image recognition methods, this paper explores the application
of the ViT to fine-grained flower image recognition. However, the application of ViT to
flower images encounters challenges such as small flower datasets and high computational
resource consumption. To address these challenges, this paper conducts research on the
task of flower image recognition, with the main research work summarized as follows: con-
struction of a pre-trained model based on MAEs. This study employs the self-supervised
learning capabilities of MAEs to construct a pre-trained model on the Oxford-102 flowers
dataset. Specifically, ViT-Large serves as the encoder, and an 8-layer Transformer structure
functions as the decoder, enabling the ViT model to acquire more robust features during
pre-training on small, unlabeled datasets, and facilitating seamless transition to flower
recognition-related tasks upon decoder removal.

Flower Object Detection Leveraging MAE Pre-training. Addressing the scarcity of
research in flower object detection and the suboptimal detection accuracy of the YOLOv5
model within this domain, this study transfers the pre-trained model to specific flower
object detection tasks. The application of pre-training significantly enhances model training
efficiency and mitigates issues arising from dataset imbalances. For flower feature extrac-
tion, the model substitutes the YOLOv5 backbone network with the encoder obtained from
MAE-based pre-training. Ultimately, it achieves a mAP of 71.3%, enabling higher-precision
flower object detection at reduced computational costs.

The flower recognition method proposed in this paper, which utilizes MAEs, demon-
strates outstanding performance in flower object detection. However, there remain issues
that require further improvement and resolution: The flower dataset used for designing the
pre-trained model utilizing MAEs and implementing the flower image classification task
was constructed by the University of Oxford laboratory and primarily includes common
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flower species in the UK, which differ from those in China. Additionally, when implement-
ing flower target detection, the self-built flower dataset contains only 13 species, which
are relatively limited in number. If more native flower species in China were utilized, it
would be feasible to construct a flower recognition model better suited for the Chinese
populace, thereby promoting the development of botanical research in China. The MAE
pre-trained model employs ViT as the baseline, and the extensive number of parameters in
ViT could restrict the deployment of the model to mobile platforms such as smartphones.
Therefore, determining how to eliminate redundant parameters or streamline the model
while maintaining network accuracy and precision remains a future research challenge.
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