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Abstract: Magnetic molecules are prototypical systems to investigate peculiar quantum mechanical
phenomena. As such, simulating their static and dynamical behavior is intrinsically difficult for
a classical computer, due to the exponential increase of required resources with the system size.
Quantum computers solve this issue by providing an inherently quantum platform, suited to describe
these magnetic systems. Here, we show that both the ground state properties and the spin dynamics
of magnetic molecules can be simulated on prototype quantum computers, based on superconducting
qubits. In particular, we study small-size anti-ferromagnetic spin chains and rings, which are ideal
test-beds for these pioneering devices. We use the variational quantum eigensolver algorithm to
determine the ground state wave-function with targeted ansatzes fulfilling the spin symmetries of the
investigated models. The coherent spin dynamics are simulated by computing dynamical correlation
functions, an essential ingredient to extract many experimentally accessible properties, such as the
inelastic neutron cross-section.

Keywords: magnetic molecules; spin dynamics; quantum computer; variational eigensolver

1. Introduction

Molecular nanomagnets (MNMs) are finite-size spin systems that have attracted great
interest, both for their potential technological applications in quantum computing [1–27]
and high-density data storage [28–33] and as model systems to investigate fundamental
quantum mechanical phenomena, such as the tunneling of the magnetization [34–37],
or of the Neel vector [38], frustration [39–42] or decoherence [43]. In particular, one-
dimensional arrays of spins, coupled by anti-ferromagnetic exchange interactions, have
been widely studied to evidence peculiar behaviors [44] and to shed light on finite-size [45]
and parity [39,46] effects. The former distinguishes between chains (characterized by
open boundary conditions) [45,47,48], as opposed to ring-shaped molecular structures,
in which periodic boundary conditions yield new symmetries and a peculiar structures of
the eigenstates [39–42,44,49–51].

The theoretical modeling of MNMs is often challenging, due to the large size of the
Hilbert space, which is difficult to handle by classical computers. Indeed, the dimension of
the Hilbert space (roughly scaling as the number of classical bits of information needed to
store the system wave-function) increases exponentially with the number of spins in the
examined system. For instance, in the case of Mn12, which can be considered the forefather
of MNMs, such a dimension is 108 [29], even by including only spin degrees of freedom.
This makes the exact determination of the ground state wave-function and of its dynamical
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properties very hard for classical computers. To solve this issue, physicists have so far
resorted to different kinds of approximations, which however often require a detailed
knowledge of the investigated system, or at least of the hierarchy between the interactions
at play.

The advent of quantum computers (QCs) [52–54] offers a completely new perspective
on this hurdle. Indeed, an intrinsically quantum device can simulate the static and dynamic
properties of another quantum system, object of our investigation (called target in the
following), using a number of quantum-bits scaling only linearly with the number of units
in the target system [55–57]. This provides an impressive gain compared to the exponential
scaling of resources of a classical device and would allow a brute-force solution of many
quantum problems, currently intractable even by using the best available super-computers,
without needing an in-depth knowledge of the target system. Hence, although current
QCs are still noisy [53], the incessant improvement of their capabilities could make them,
in the near future, the ideal architecture to theoretically describe MNMs. In fact, a steady
growth in the size of prototypical programmable digital quantum devices was achieved
over the last few years with the currently most advanced technological platforms, namely
superconducting circuits [58,59] and trapped ions [52]. In parallel, their performances
as measured, e.g., by the quantum volume metric [60,61], have also been consistently
improving, thus pointing towards promising new avenues of research. Furthermore,
several error mitigation strategies have been recently put forward [62–71], showing great
potential in significantly enhancing the quality of the results for quantum computing
applications in chemistry and physics.

Here, we focus, in particular, on anti-ferromagnetically coupled chains and rings
of spins 1/2, and we show that QCs can be used to efficiently determine the ground
state of these systems, together with related observable quantities, and to investigate the
dynamics. Besides demonstrating interesting physics, these finite-size spin systems are
classically hard to simulate with increasing the system size [72]. Hence, they are also ideal
test-beds of current available quantum chips, such as the IBM Quantum superconducting
processors [59].

In order to find the ground state of the target system, we use the variational quantum
eigensolver (VQE) method [73–75]. This belongs to the family of variational quantum
algorithms [76–78], which collectively represent promising near-term quantum solutions for
a wide range of problems, from optimization [79] to machine learning [80,81]. Although the
VQE was originally introduced [73] and is nowadays widely applied [75,82–84] to treat
quantum chemistry problems, it can easily be extended to deal with many-body [85]
and spin models [75]. The latter, in particular, can be naturally mapped on a qubit-
based hardware.

The specific problem under investigation is made non-trivial by the high degree of
entanglement which is typically associated to the ground states of MNMs. In the following,
we describe the use of tailored quantum circuits leveraging the intrinsic symmetries of
the system, such as the rotational symmetry of the Heisenberg model Hamiltonian [86,87],
to realize effective and scalable computations.

In addition, we show that QCs can be used to compute the dynamical properties
of MNMs. We focus, in particular, on dynamical spin–spin correlation functions, which
constitute the essential (and classically hard to compute) ingredient of many physically
crucial observables. This is the case, for instance, of the inelastic neutron magnetic cross-
section, which is probably the best experimental technique to probe spin excitations in
MNMs [29,88]. As shown in Ref. [89], dynamical spin correlation functions can be obtained
by a quantum simulation of the target system time evolution, which can already be reliably
computed on small finite-size spin chains. We also discuss here the application of this
approach to spin rings.

In the following, we present simulations using realistic noise models of the VQE
algorithm to determine the ground state of spin chains and rings with a variable number
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of sites (from 4 to 6) and experiments on IBM Quantum hardware to compute dynamical
correlation functions.

2. Determining the Ground State of Heisenberg Chains by VQE

In this work, we focus on MNMs which can be modeled as chains of spin 1/2 systems
linked via pairwise Heisenberg interactions with a uniform strength J and subject to a
uniform external magnetic field B. The target Hamiltonian is therefore expressed as

H = 2J ∑
i

si · si+1 + B
N

∑
i=1

sz
i (1)

with sα
i spin 1/2 operators and open or periodic boundary conditions. As mentioned

in the Introduction, the first problem that we tackle is the reconstruction of the ground state
wavefunction, and observable properties of these systems by implementing variational
methods (VQE) on quantum computing platforms. These techniques are particularly
well suited for the study of spin 1/2 models, which can be directly mapped on quantum
hardware by associating each spin to a single qubit, i.e., the elementary digital unit of
quantum information.

2.1. Variational Quantum Eigensolver

In a VQE calculation, the exact ground state |Ψ0〉 of a target HamiltonianH is approx-
imated, in agreement with the variational theorem of quantum mechanics, by constructing
a parametrized quantum state |ψ(θ)〉 with the aim of minimizing the energy expectation
value 〈H〉θ = 〈ψ(θ)|H|ψ(θ)〉. A quantum register is used to prepare the trial wavefunction
|ψ(θ)〉 through a sequence of unitary operations U(θ) (i.e., gates) and to directly mea-
sure 〈H〉θ . An updated set of parameters θ′ is then obtained with the help of a classical
minimization routine, and is fed back to the quantum circuit, leading to a new energy
estimate. Iterating such quantum-classical procedure until convergence, an optimum point
can eventually be reached, thus achieving |ψ(θopt)〉 ' |Ψ0〉.

The performances of a VQE implementation, both in terms of accuracy and com-
putational cost, crucially depend on the choice of the parametrized trial wavefunction
to be employed. In practice, this is usually reflected in the structure and properties of
the so-called variational ansatz, namely the unitary transformation U(θ) that prepares
|ψ(θ)〉 from some fixed reference state of the quantum register, i.e., it implements the
transformation |ψ(θ)〉 = U(θ)|0〉. This operation must ideally be designed in such a way
that, for a suitable choice of the parameters θ, the exact ground state |Ψ0〉 can either be
represented exactly or, more often, be approximated with sufficiently good precision. It is
worth noticing at this point that, although in principle, any unitary operation, and therefore
any quantum state, can be realized with a sufficiently complex quantum circuit, the number
of parameters and of elementary quantum operations is, in general, exponential with the
number of qubits, i.e., with the size of the problem under study. A well designed variational
ansatz is therefore one which is able to explore only the relevant portions of the Hilbert
space, namely the ones where |Ψ0〉 or its approximations are located, by requiring only (at
most) polynomial resources.

There are essentially two approaches that one can follow to construct a suitable U(θ).
On the one hand, when no specific information or insight about the structure of the problem
is available, an heuristic approach can be adopted. This approach is also particularly well
suited for near-term implementations, where the required unitary gates must be adapted
to the hardware constraints of the processors in terms of, e.g., native elementary operations
or connectivity between qubits. On the other hand, as we will show in the following,
one may adopt specialized solutions tailored for the specific task: in quantum chemistry
applications, this is exemplified by the unitary coupled cluster (UCC) ansatz [82], and in
more general cases, may be represented by symmetry adapted [86,87], optimal control [90]
or Hamiltonian-inspired [91–93] ansatzes.
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In the heuristic case, the variational ansatz is usually constructed in a modular way,
by decomposing U(θ) in a series of layers. Each layer introduces additional parameters and,
in principle, extends the range of states which can be reached. A very convenient choice
is obtained by combining single qubit rotations, whose angles represent the variational
parameters, and two-qubit operations which introduce entanglement. The most general
form of a single-qubit operation acting on the q-th qubit is represented by the matrix

U(q)
3 (θ, φ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(λ+φ) cos(θ/2)

)
. (2)

The entangling blocks are instead constructed as a product of controlled-NOT opera-
tions on different pairs of qubits. Notice that the use of CNOT operations is particularly
appropriate for IBM Quantum processors, where these represent the native entangling gate
that is realized at the hardware level. This is in fact one example of the potential practical
advantages brought by heuristic ansatzes, which can typically reduce the overheads associ-
ated with the implementation of VQE calculations on real devices. These overheads may
be represented by, e.g., the additional circuit depth required to decompose a given unitary
transformation into the native universal set of hardware gates. However, these convenient
features must be balanced with the disadvantages associated with the blindness of the
ansatz to the properties of the target Hamiltonian. This typically results in an increased
number of variational parameters, which can quickly become hard to handle in the classical
optimization step [94,95].

2.2. Heisenberg Spin Chains and Adapted Ansatz

We begin our investigation by considering the case of an MNM taking the shape of a
closed Heisenberg square. We thus specialize the general target Hamitonian in Equation (1)
by assuming periodic boundary conditions.

In this regime, it is easy to show that the following commutation relations hold,
independently from the value of the external field B:

[H, S2] = 0 and [H, Sz] = 0 . (3)

Thus, the usual quantum numbers S and m = −S,−S + 1, . . . , S, associated to the
total spin (~S = ∑i ~si) and to its z projection respectively, can be assigned to the Hamiltonian
eigenstates. As shown, for example, in Figure 1a,c, for increasing values of B/J, several
crossings between energy levels are present in the spectrum ofH. In particular, the ground
state changes around B/J = 2 and after B/J = 4, thus identifying three different regions of
interest, corresponding to S = 0, 1, 2, respectively (and m = −S). For VQE applications, we
will focus only on low- and intermediate-field conditions, since at high values of B, all the
spins align in a trivially factorized ground state of the form |↓↓ . . . ↓〉.

For the heuristic ansatz (HA) approach, we make use of parametrized quantum
circuits UHA(~θ) = ∏L

j=1 Vj(~θj) whose building blocks are of the so called Ry-CNOT form

Ry(θ1
j ) •

Ry(θ2
j ) •

Ry(θ3
j ) •

Ry(θ4
j ) .

Vj(~θj) =

(4)

Here, only nearest neighbours entangling CNOT operations are allowed and Ry(θ) =

e−isyθ = U(q)
3 (θ, 0, 0) is a Pauli rotation around the y axis. Note that, since the target
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Hamiltonian is real symmetric, the ground state wave-function must also be real. Hence,
compared to the general form of Equation (2), we can remove the parameters φ and λ
(which control relative phases) from each U3 and only leave a single variational param-
eter per rotation. Moreover, all qubits are intialized in state |0〉 at the beginning of the
computation, and a final set of parametrized Ry(θ) is also appended at the end of the circuit.

In Figure 1, we report the results achieved by optimizing the set of free parameters
with a numerical simulation performed with the Qiskit statevector_simulator, i.e., by
evaluating the results of quantum circuits directly, via algebraic matrix multiplication
and by using the COBYLA [96] classical minimization routine. An ansatz depth L = 2,
corresponding to 12 independent classical parameters and 6 CNOT operations, allows us to
obtain good results in the intermediate B/J region. At low field, a more complex heuristic
circuit (L = 3, with 16 free parameters and 9 CNOTs) is required to exactly reconstruct the
true ground state. This is a direct consequence of the higher degree of entanglement present
in the ground state when the Heisenberg interaction is the dominant contribution. We see
here that, when working with heuristic ansatzes, the only natural way to enrich the space
of possible trial wavefunctions (e.g., when complex ground states must be approximated)
is to increase the number of layers L. However, this strategy may not be optimal in view of
scaling the problem size, particularly when the classical cost of the optimization problem
associated with VQE implementations is also taken into account. On the one hand, only
relatively shallow circuits may be run in practice in a near term scenario, where all quantum
operations are subject to environment noise and limited fidelity (see also a discussion on
noisy simulations below). On the other hand, the number of classical optimization steps,
and hence of circuit executions required to estimate the variational energy 〈H〉θ , may
become quickly impractical when many classical parameters, intially set at random values,
are present in the ansatz.

A more viable solution arises when the ansatz design is adapted to the properties of
the underlying physical problem. In our case, we recall that the eigenstates of the target
Heisenberg Hamiltonian have well defined values of total spin quantum numbers (S and
m). This allows us to restrict the variational search to the appropriate sector of the Hilbert
space by starting from a state with well defined S and m and using parametrized unitary
operators that preserve these symmetries. A suitable choice is represented by pairwise
Heisenberg interaction terms of the form

Wij(θ) = e−iθsi ·sj . (5)

These are inspired by the real-time quantum evolution induced by the problem
Hamiltonian and essentially correspond to the eSWAP operations proposed in Ref. [87],
that preserve the values of S and m. Each 2-qubit operation Wij(θ) can be decomposed
into a sequence of elementary single-qubit gates combined with 3 CNOTs by using the
identity [57]

• Rx(
θ
2 −

π
2 ) H • H • Rx(

π
2 )

Rz(
θ
2 ) Rz(

−θ
2 ) R†

x(
π
2 )

Wij(θ) =
(6)

where Rα(φ) = e−isαφ denote the usual single-qubit Pauli rotations around the coordinate
axes. A physically motivated ansatz (PMA), based on the Heisenberg Hamiltonian and
preserving spin symmetries UPMA(~θ) = ∏K

k=1 Vk(~θk) can be built by alternating Wij(θ)
operations:

W12(θ
1
k ) W23(θ

2
k )

W34(θ
3
k ) W14(θ

4
k ) .

Vk(~θk) =

(7)
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Notice that, as shown in the circuit above, even and odd bonds, which do not share
common qubits, can be operated in parallel. Moreover, we find that nearest neighbours
connectivity is already sufficient to guarantee the reconstruction of the ground state, while
limiting the amount of free parameters.

Figure 1. Statevector simulations on four- (a,b) and six- (c,d) spin rings. (a) Ground state energy
VQE results using hardware-heuristic (HA, dark-green points) and physically motivated (PMA,
light-green stars) ansatzes for different values of B/J. PMA requires only one layer (4 parameters),
compared to the 3 or 2 layers needed by HA to converge in the two magnetic-field regions (yielding
16 and 12 parameters, respectively). Each point is the minimal energy solutions of five independents
tests with initial parameters randomly set. Inset: corresponding state fidelity. Both ansatz converge
to exact solutions (black lines calculated numerically) with high precision. (b) Computed energy as
a function of VQE iterations for two different values of B/J belonging to the two distinct regions:
low B/J = 0.4 (blue-tones) and intermediate B/J = 3.2 (red-tones). COBYLA has been used as
classical optimizer. (c,d) As for panel a,b) for a six-spin ring. We used 2 layers (4 parameters) with
different initial state for PMA and 5 (24 parameters) or 4 (20 parameters) layers for HA to achieve
high precision. For HA, ten independent tests were performed.

Since UPMA(~θ) preserves S and m, the choice of the symmetry sector can be done at
the level of the initial state of the qubits. This should, in fact, respect the same symmetries
of the ground state with respect to total spin, while being relatively straightforward to
prepare. In particular, in the presence of anti-ferromagnetic nearest-neighbors interactions,
the ground state at low field minimizes S [44]. Hence, for even-numbered spin 1/2 chains
or rings, this yields an S = 0 ground state. By increasing the magnetic field, the Zeeman
contribution lowers the energy of the S = 1, m = −1 state, which becomes the ground
state after the first crossing. At high field, where the Zeeman contribution to the total
energy dominates, the ground state becomes ferromagnetic |↓↓↓↓〉. As an example, since
the ground state for the Heisenberg square at low B/J has S = 0, m = 0, a possible initial
state is represented by local singlet pairs [87]



Magnetochemistry 2021, 7, 117 7 of 19

|0〉 X H •

|0〉 X

 |01〉−|10〉√
2

|0〉 X H •

|0〉 X .

 |01〉−|10〉√
2

|ψ0〉 =

(8)

The parametrized trial wavefunction then becomes |ψ(~θ)〉 = UPMA(~θ)|ψ0〉. Similarly,
a S = 1, m = −1 initial state of the form

|0〉 X H •

|0〉 X

 |01〉−|10〉√
2

|0〉 X

|0〉 X

 |11〉

|ψ0〉 =

(9)

can be used at intermediate B/J values. Notice that both proposed initial states break the
spatial symmetry associated with the target systems, due to the uniform strength of the
Heisenberg and Zeeman interaction (with periodic boundary conditions). Although such
symmetry is recovered sufficiently well through UPMA(~θ), which is also not translationally
invariant due to the independence of the parameters associated to each 2-qubit bond,
the symmetry breaking effect induced by the initial state may, in general, worsen the
performances of the ansatz, or require a larger number of repetitions K to (approximately)
restore the correct structure. In our case, we observe that the most effective strategy is
to apply the parametrized Wij(θ), first on the bonds which connect the local singlet or
triplet (at higher B/J) states, as this balances the structure of the initial state and enables
a faster recovery of the correct symmetry properties. As an example, the complete trial
wavefunction for K = 1 and S = m = 0 designed according to this expedient can be
expressed as (notice the reversed order of the Wij links compared to Equation (7))

|0〉 X H •
W23(θ

1) W12(θ
2)

|0〉 X

|0〉 X H •
W14(θ

3) W34(θ
4)

|0〉 X

|ψ0〉 UPMA(~θ) .

(10)

As shown in Figure 1, the PMA ansatz achieves very good approximations of the exact
ground state. For both the low and medium B/J region, we use K = 1, resulting in only
4 variational parameters and a total of 12 CNOT gates (which can always be operated in
parallel on pairs of non-overlapping bonds). Notice that, although the circuit complexity
is comparable or slightly higher in terms of the number of quantum gates with respect to
UHA(~θ), the classical optimization converges much faster compared to the heuristic case,
as shown in Figure 1b.

In Figure 1c,d, we extend both the HA and PMA strategies to a larger Heisenberg ring
with N = 6 spins. Here, due to the increased complexity of the system, L = 5(4) layers are
required for the Heuristic Ansatz, resulting in 24(20) classical parameters in the low and
intermediate field regions, respectively. The circuit depth is also significantly increased,
including 15(12) CNOT gates not parallelizable. The Heisenberg-inspired ansatz can also
be generalized in a straightforward way by adding two additional nearest neighbours
Wij(θ) operations per layer compared to the N = 4 case. Similarly, the initial state |ψ0〉 can
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be constructed with a combination of three local singlet pairs (low B/J) or of two singlets
and one S = 1, m = −1 state (after the first level crossing). Ideal performances for the
PMA are obtained with K = 2, namely 8 free parameters and 36 (parallelizable) CNOT
operations. Notice that, consistently with the N = 4 ring, the minimal PMA required to
achieve an exact reconstruction of the ground state has a slightly more complex circuit
compared to the HA providing comparable accuracy, but can be optimized in a significantly
lower number of iterations with respect to the latter. In summary, as we will also see below
in the presence of simulated hardware noise, there exists a trade-off between shallower
heuristic circuits with more parameters and more involved but physically motivated ones,
which must be carefully balanced when assessing the overall computational efficiency and
performance of the VQE applications under study.

Effect of Noise

After assessing the performances of the VQE algorithm in the ideal scenario where
no errors affect the execution of the quantum circuits, a crucial question concerns the
robustness of these solutions to hardware noise. This is particularly relevant in the near
term perspective, where small to medium-sized noisy quantum processors will become
available. The most important errors expected on present day real devices and included in
our simulations are the following:

• finite relaxation (T1) and coherence (T2) times of the physical qubits, which typically
lead to amplitude and phase damping effects;

• single- and 2-qubit gate errors (the latter being usually much higher), acting during the
implementation of each quantum operation, due to both imperfections of the coherent
qubit manipulation and additional incoherent effects (e.g., depolarizing Pauli noise);

• readout errors, associated with imperfect measurements and erroneous assignment of
the outcome, which can be modeled, for example, as bit flip channels.

It is worth pointing out explicitly that all the above noise processes lead to an overall
non-unitary dynamics of the quantum states under study, thus requiring a density matrix
formalism for an adequate description (see Materials and Methods, Section 5). In practice,
noise influences the VQE execution by affecting the precise estimation of the required
observables, most importantly, the variational energy 〈H〉θ which serves as cost function
for the classical optimization. As a result, on top of lowering the overall accuracy for the
reconstruction of the ground state properties (even in the case of exact preparation of the
ground state wavefuction), noise can in principle affect the solution of the minimization
problem itself, e.g., by significantly increasing the number of iterations required for conver-
gence. In fact, although variational and adaptive approaches, such as the VQE algorithm,
may show some resilience to moderate levels of hardware errors [97], it has also been
theoretically demonstrated that noise-induced barren plateaus [98] arise in general for deep
variational ansatzes.

In Figure 2, we report the solution of the 4-spin Heisenberg square in the presence of typ-
ical levels of hardware noise. These are simulated via the Qiskit qasm_simulator [99], mak-
ing use of the NoiseModel.from_backend function (see Materials and Methods, Section 5).
The noise parameters are derived from the calibration data of the ibmq_kolkata 27-qubit
quantum processor, for which a quantum volume of 128 is reported. For simplicity, we
construct a uniform noise model by using average parameters across the qubit register
(T1∼135 µs, T2∼125 µs, single-qubit gate error ∼2.5× 10−4, 2-qubit gate error ∼8× 10−3,
readout error ∼10−2). In all noisy simulations, we use the SPSA classical optimizer [100],
which, due to its stochastic nature, is particularly effective in presence of fluctuations and
errors affecting the evaluation of the variational energy. Moreover, we increase the stability
and accuracy of all energy evaluations and observations made on the noisy quantum
circuits by applying the measurement error mitigation protocol provided in the Qiskit
Ignis framework [99]. This is based on a calibration matrix, which is first constructed via
preparation and measurement experiments on computational basis states and later used as
a filter on noisy measurement outcomes [66].
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As can be seen, although some quantitative inaccuracies arise (together with an
increase in the number of optimization iterations for convergence, Figure 2c), the energy
profiles, the fidelity and ground state observables are well recovered by both ansatzes.
We consider, in particular, the expectation values of the magnetization M = ∑i sz

i , of the
total spin S2 and of local one- and two-body spin operators sz

i and sz
i sz

i+1. Results are
shown in panels (b) and (d). The average fidelity to the exact solution, computed from
the simulated density matrices before measurement, is around 0.9. Both HA and PMA
reconstruct the correct expectation value of different global (b) and local (d) observables,
thus demonstrating that the correct symmetries of the target model (i.e., rotational and
translational invariance) are recovered. It is worth noting that PMA, thanks to the much
smaller number of optimization parameters, converges much faster than HA, taking one
order of magnitude less iterations (see panel c).

Figure 2. N = 4 spin ring noisy simulations, with a custom noise model derived from IBM Quantum
chips with Quantum Volume 128. The VQE configuration in terms of maximum number of itera-
tions and number of layers of the ansatzes reflects the configuration used for noiseless statevector
calculations of Figure 1. (a) Ground state energy VQE results using heuristic (HA, dark-green) and
Heisenberg (PMA, light-green) ansatzes for different values of B/J. Inset: related ground-state fi-
delity. (b) Observables computed on the ground state computed by VQE: longitudinal magnetization
M = ∑i sz

i and total spin S2 expectation value. Both ansatzes perform similarly in presence of noise.
(c) Ground state energy convergence as a function of VQE iterations for two different values of B/J,
belonging to the two distinct regions: low B/J = 0.1 (blue-tones) and intermediate B/J = 2.7 (red-
tones). SPSA has been used as classical optimizer. The horizontal lines indicate the exact solutions.
Remarkably, PMA needs almost one order of magnitude less iterations to converge. (d) Expectation
value of local spin observables sz

i and sz
i sz

i+1. The black dots indicate the exact solution. Radar plots
highlight that both ansatzes reconstruct the correct translational invariance of the target model.

A similar set of results is shown in Figure 3 for the N = 6 ring: here, the degradation
of performances in terms of fidelity and energy values suggests that the complexity of
the required circuits (for both the HA and PMA cases) is closer to the limits of current
technology. Nevertheless, it is immediately clear that the PMA still requires a significantly
smaller number of iterations to converge to a similar accuracy, given the much smaller
number of optimization parameters. Of course, the reduction in the number of parameters
of the ansatz is often associated to more complex quantum circuits required to build the
(highly entangled) trial state. In a near term perspective, where only noisy quantum
processors are available, this makes PMA advantageous if the noise level is not too high.
In fact, similar limitations in terms of sensitivity to noise (affecting also circuit trainability)
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may apply to other well known application-motivated ansatzes which require polynomial-
depth quantum circuits, such as some instances of the Quantum Alternating Operator
Ansatz (QAOA, commonly employed for combinatorial optimization problems) or the
unitary coupled cluster (UCC) ansatz for quantum chemistry (see e.g., [98]). In addition,
while (consistently with the N = 4 case) the HA provides slightly better estimates for the
system energy, the total magnetization and the total spin of the ground state wavefunction
are much better reproduced by the PMA. This highlights the benefit of imposing native
symmetry constraints in the ansatz even when these are not preserved, in general, by the
effect of noise. In fact, symmetry-based error mitigation techniques could be specifically
designed to further improve the performances [63,65,70,101]. The symmetry breaking
effect induced by hardware noise is evident in the intermediate field region by comparing
the shape of the radar charts in Figure 3d obtained using HA and PMA ansatzes: only the
latter preserves the star-shape shown by the exact results (black dots).

Figure 3. N = 6 spin ring noisy simulations, with a custom noise model derived by IBM Quantum
chips with Quantum Volume 128, analogous to the N = 4 case reported in Figure 2. Ground state
energy VQE results with corresponding fidelity (a), observables (b,d) and energy convergence (c).
Results are generally worse compared to Figure 2, due to the increased complexity of the target
model, but the PMA better reconstructs the ground state, with the correct symmetry (see observables
in panels (b,d)).

Overall, the noisy simulations indicate that, for the systems sizes of interest, the ex-
ecution of VQE on quantum processors is still quite demanding in terms of the number
of measurements and circuit depths. In addition, the simulations reported above were
performed assuming at least circular connectivity between the qubits. When using real
hardware, one has to face the limited (often linear, nearest-neighbor) connectivity of the
chip, which requires one to introduce additional SWAP operations to implement two-qubit
operations between distant qubits, thus significantly increasing the circuit depth. Never-
theless, state-of-the-art devices are quickly approaching the required levels of accuracy,
making these calculations possible in the near future. In addition to the readout error
mitigation strategy adopted in this study and the symmetry-based tools mentioned above,
other techniques could also be applied to enhance the quality of the results, and may be-
come a critical resource to enable real hardware experiments. Examples include zero-noise
extrapolation methods [64] and systematic procedures designed to increase the effective
overlap of (generally mixed) variational quantum states with the true Hamiltonian ground
state [67]. All these protocols could ultimately give access to more faithful reconstructions
of all ground state observable properties, like energy and magnetization.
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2.3. Finite-Size and Parity Effects

Having demonstrated the improvement obtained by using PMA versus HA, we now
use the PMA to study the effect on local observables of changing the topology of the spin
structure. In particular, we compare expectation values of local spin operators, 〈sz

i 〉, on the
ground state of open vs close and odd vs. even-numbered rings, computed by VQE. These
quantities give access to finite-size and parity effects, already evidenced in experiments on
molecular nanomagnets [45].

Results obtained by VQE simulations are reported in Figure 4, with symbols of dif-
ferent colors corresponding to a different number of sites and closed/open topology,
compared with exact values (indicated by dashed lines). Closed rings display transla-
tional invariance symmetry, yielding uniform values of 〈sz

i 〉 ∀i. At low field, the ground
state is known to be S = 0, leading to 〈sz

i 〉 = 0, while at intermediate field M = −1,
and hence 〈sz

i 〉 = −1/N. These values are perfectly reproduced at low field (panel a),
while at intermediate field (b), the effect of noise and of the finite number of shots used to
evaluate energy in VQE iterations slightly remove the symmetry of the N = 6 case, which
is nevertheless still substantially preserved.

Figure 4. Finite size and parity effects. Expectation value of local spin operators 〈sz
i 〉 computed on

the ground state obtained from noisy VQE simulations at low (a) and intermediate magnetic field
(b) for a different number of sites (N) and topology (open vs closed chains). Dashed lines indicate
exact solutions, generally in good agreement with simulations.

Open chains are instead symmetrical with respect to the central site (if odd-numbered)
or bond (if even). At low field [Figure 4a], even chains still display an S = 0 ground state
and uniform 〈sz

i 〉 = 0, while the odd N = 5 chain is characterized by an alternating pattern
of positive and negative 〈sz

i 〉, satisfying 〈M〉 = 〈∑i sz
i 〉 = −1/2. Both cases perfectly match

our noisy VQE simulations. At intermediate field [Figure 4b], the mirror symmetry of
〈sz

i 〉 is apparent in our simulations, again in very good agreement with expected results,
for both even- and odd-numbered open chains. In general, VQE simulations reproduce
the expected behavior well, with results only slightly worsened by increasing N. This
demonstrates that the PMA inspired by the Heisenberg Hamiltonian is able to correctly
predict the structure and the symmetries of the system ground state.
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3. Dynamical Correlation Functions

Having outlined a general strategy to find the system ground state using VQE, we now
move to compute dynamical properties. A quantity of fundamental interest in this context
is represented by dynamical spin-spin correlation functions, which are key ingredients for
computing several observables, such as the magnetic inelastic neutron cross-section [89].
They are defined as follows:

Cαβ
ij (t) = 〈sα

i (t)s
β
j 〉0 = ∑

p
〈0|sα

i |p〉〈p|s
β
j |0〉e

−iEpt, (11)

where |p〉 are eigenstates of the system with energy Ep. Their direct calculation constitutes
a hard task for a classical computer. Here, we apply the scheme introduced in Refs. [57,89]
for open spin chains to the case of a closed ring and we compute Cαβ

ij (t) using a quantum
circuit of the form

a H • X • X Umeas

〈sx
a 〉+ i〈sy

a〉 ∝ Cαβ
ij (t)

i

U(t)

α

j β

k

l

(12)

where we consider an ancilla qubit a, in addition to the N qubits used to simulate the
dynamics of the target system. To compute Cαβ

ij correlation functions, the ancilla is initially

prepared in a (|0〉 + |1〉)/
√

2 superposition via a Hadamard gate, then it is entangled
with qubit j of the target system by a controlled-β gate in which qubit j is the target.
In the following step, we perform a quantum simulation on the target qubits, i.e., we
implement a sequence of gates reproducing the time evolution operator U(t) = e−iHt.
Finally, a controlled-α gate between a (control) and i (target), conditioned by the ancilla
being in 0, precedes the measurement of sx or sy, which are used to obtain the real and

imaginary parts of Cαβ
ij , respectively. Measurement in a basis different from σz is achieved

by implementing a proper rotation before the standard basis measurement, i.e., a H gate to
measure 〈sx〉 and a Rx(π/2) rotation to measure 〈sy〉.

The unitary operator U(t) describing the system time evolution can in general be
obtained by decomposing U(t) = e−iHt into the product of elementary one- and two-
qubit gates that we are able to implement on the hardware. Differently from the VQE
calculations considered in the previous sections, this represents a direct implementation
of a non-variational digital quantum simulation protocol [57]. We consider, for instance,
a N = 4 closed Heisenberg ring in the large-field region, where the Zeeman overcomes the
exchange interaction. Here, the ground state is known to be |↓↓↓↓〉 and the time evolution
operator can be decomposed as follows:

Rz(Bt)
W12(2Jt) W23(2Jt)

Rz(Bt)

Rz(Bt)
W34(2Jt) W14(2Jt)

Rz(Bt) .

U(t) =

(13)
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Notice the close analogy with the PMA, which features the same building-blocks. It is
worth reminding that, although this is not required in the particular case presented here,
computing the time evolution operator U(t) would require, in general, the Suzuki–Trotter
decomposition [57]. On a side note, even though we adopted in this work a digital approach
for the simulation of quantum dynamics, we recall that variational methods have also been
proposed for carrying out the same task. As an example, this can be done by leveraging
the so called Dirac-Frenkel, McLachlan or time-dependent variational principles [102,103].
These methods could become a useful resource to scale up the size of the treatable systems
in the near term.

As shown in Ref. [89], correlations functions computed on the real hardware are
usually subject to phase and scale errors, compared to theoretical values. Independently
from their origin, these errors can be mitigated by taking into account general properties of
the examined observables. In particular, we exploit the fact that Cαα

ii (0) must be real to fix
the phase between real and imaginary parts of Cαα

ii (t) and the sum rule Cxx
ii (0) + Cyy

ii (0) +
Czz

ii (0) = si(si + 1) = 3/4 (or, equivalently for the isotropic Heisenberg model under study,
Cαα

ii (0) = 1/4) in order to fix the scale factor. We then apply the same phase and scale (PaS)
correction at all times. In the case of cross-correlations (C12), we use average phase and
scale values obtained from the analysis of C11 and C22.

Raw experimental results obtained from implementing the circuit (12) on the ibmq_bog
ota IBM Quantum processor are shown in Figure 5 (light colors), for both real and imagi-
nary parts, compared with exact values (continuous lines). After applying the PaS correc-
tion (dark colors), the agreement with experiments on the real quantum hardware using
5 qubits is very good. Notice, in particular, how the error mitigation strategy helps to
recover the correct amplitude and phase of the oscillations for C12 cross-correlations.

0.2

0.0

0.2

xx 11

(a)
Real

exact
exp (raw)

exp (PaS) (d)
Imaginary

exact
exp (raw)
exp (PaS)

0.2

0.0

0.2

xx 22

(b) (e)

0 1 2 3 4 5 6
t

0.1

0.0

0.1

xx 21

(c)

0 1 2 3 4 5 6
t

(f)

Figure 5. Real (a–c) and Imaginary (d–f) parts of the dynamical correlation functions Cxx
ij for

i = j = 1, 2 (top panels) and i = 2, j = 1 (bottom) on a N = 4 closed Heisenberg ring, in the
large-field region. Phase and scale correction, as in Ref. [89], has been applied to the raw results
computed on the ibmq_bogota IBM Quantum processor, obtaining a very good agreement with
exact results.

4. Discussion and Conclusions

In summary, we have shown how quantum computers can be used to efficiently
simulate the static and dynamical properties of finite-size spin systems, such as molecular
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nanomagnets. We have demonstrated this by performing simulations, including a realistic
model of noisy on typical devices, and experiments on real noisy quantum processors.

In particular, we have used the hybrid (quantum-classical) variational quantum eigen-
solver algorithm to find the ground state of Heisenberg spin chains and rings of variable
length. For a successful determination of ground state observables on near-term noisy
devices, we have highlighted the importance of restricting both the variational search and
the circuit size by exploiting the spin symmetries of the investigated systems.

We have then computed dynamical spin-spin correlation functions on a closed Heisen-
berg square, extending the approach introduced in Ref. [89]. In this respect, we have demon-
strated that dynamical properties can be reliably obtained by applying error-mitigation
strategies (based on general properties of the computed observables) to the raw output data.

The scheme followed in this work can be extended to investigate anisotropic systems,
characterized for instance by anisotropic or anti-symmetric exchange couplings, which
could yield anti-crossings between |S, m〉 states in the energy-level diagram. Far from
these crossings, S and m are still practically conserved, while in the vicinity of the anti-
crossings (where anisotropic terms of the target Hamiltonian are expected to mix different
S multiplets), one should generate a superposition of S states to create a variational ansatz
or to investigate the dynamics.

Further improvements in the capabilities of quantum hardware will enable us, in
the near future, to increase the complexity of simulations. For instance, although we
have focused here on spin 1/2 systems, qubit-based architectures can also be used to
simulate spin systems consisting of interacting si > 1/2 ions [20,104,105], by using more
than one qubit to encode each spin. In addition, more complex molecular spin structures,
with increased connectivity between the spins, could be investigated, e.g., in a regime
of competing spin-spin interactions [39]. Finally, the quantum simulation of dynamical
properties could be appended to VQE in order to compute the system evolution starting
from non-trivial ground states.

All these perspective applications will require a larger number of qubits and larger
circuit depth. Hence, error mitigation strategies will still be required to improve the quality
of the results on noisy devices. In the case of Heisenberg chains, one could, for instance,
exploit other symmetries besides the total spin, such as those related to intermediate spin
quantum numbers.

5. Materials and Methods
Simulations

All numerical simulations and circuit executions on IBM Quantum superconducting
processors were performed using the Qiskit python library [99]. For noiseless simulations,
the statevector_simulator backend was employed, thus solving for the exact output
states and observables via linear algebraic manipulations. Noisy simulations were instead
executed with the qasm_simulator backend, which includes the effect of statistical sam-
pling on the observed results, mimicking the real measurement process. In all calculations,
each circuit was repeated nshot = 8192 times to reconstruct output averages. The hardware
noise was modelled with the NoiseModel.from_backend method [99], which can make
use of calibration data from real IBM Quantum devices, implementing thermal relaxation
and decoherence effects based on the real physical parameters (T1, T2, frequency and tem-
perature) found on the processor. Gate errors are associated also with local depolarizing
channels, whose strength is tuned in such a way that, when combined with thermal noise
and taking into account the gate durations, the effective total noise matches the hardware
gate infidelities reported in the calibration data. Moreover, readout errors are included with
local bit flip channels. We also notice that fidelity tests were performed, in the case of noisy
simulations, by operating the qasm_simulator in density matrix mode, thus extracting the
simulated noise-affected quantum state (before measurement) to be compared, e.g., with
ideal ground states obtained from exact diagonalization.
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Two different optimization algorithms have been used: COBYLA (Constrained Opti-
mization By Linear Approximation) for noiseless simulations with statevector_simulator
backend and SPSA (Simultaneous Perturbation Stochastic Approximation algorithm) for
noisy simulations. The latter (which is a stochastic gradient-free optimizer) works better
in the presence of noise [106]. Executions on real quantum hardware were performed on
IBM Quantum devices, made available online for remote access via quantum-computing.
ibm.com. These processors are based on superconducting technology, with fixed-frequency
transmon qubits, connected to superconducting resonator waveguides for control and
readout via microwave pulses [59,107]. The native 2-qubit entangling CNOT operation is
obtained via microwave-activated cross resonance interactions [108], mediated by dedi-
cated waveguides connecting neighbouring qubits in linear chains or (portions of) heavy
hexagonal lattices.

To accelerate the simulation study and to perform all the calculations, we developed
and relied on a general framework to exploit all the Qiskit functionalities. This framework
can be used in many different formats and for different use cases. Starting from a general
configuration file in which all the required variables and parameters are set, we were able to
leverage on several HPC resources in parallel to perform calculations and post processing
of data. The developed framework can be found at https://automatic-computation-
framework.readthedocs.io/en/latest/.
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