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Abstract: Training a model to recognize human actions in videos is computationally intensive. While
modern strategies employ transfer learning methods to make the process more efficient, they still
face challenges regarding flexibility and efficiency. Existing solutions are limited in functionality and
rely heavily on pretrained architectures, which can restrict their applicability to diverse scenarios.
Our work explores knowledge distillation (KD) for enhancing the training of self-supervised video
models in three aspects: improving classification accuracy, accelerating model convergence, and
increasing model flexibility under regular and limited-data scenarios. We tested our method on the
UCF101 dataset using differently balanced proportions: 100%, 50%, 25%, and 2%. We found that
using knowledge distillation to guide the model’s training outperforms traditional training without
affecting the classification accuracy and while reducing the convergence rate of model training in
standard settings and a data-scarce environment. Additionally, knowledge distillation enables cross-
architecture flexibility, allowing model customization for various applications: from resource-limited
to high-performance scenarios.

Keywords: video-based human action recognition; knowledge transfer; knowledge distillation;
self-supervised action recognition

1. Introduction

Video-based human action recognition aims to understand a subject’s behavior, en-
abling core applications like video surveillance [1,2], content moderation [3], patient moni-
toring [4], and interactive gaming experiences [5].

Recognizing human actions poses significant challenges for computers even though it
comes naturally to us humans [6]. State-of-the-art methods rely heavily on deep-learning
approaches, meaning training a model requires significant computational resources [6].
As a result, developing more efficient training approaches for video-based human action
recognition is crucial.

Transferring knowledge from one model to another is a common technique to reduce
computational resource requirements, with transfer learning [7] and fine-tuning [8] being
the most common techniques.

On the one hand, transfer learning [7] involves using a pre-existing model’s architec-
ture and weights as a starting point to train a new model. On the other hand, fine-tuning [8]
adds trainable layers to an existing pretrained model.

While transfer learning [7] and fine-tuning [8] offer improvements like reducing
computational resource requirements, they have some limitations in their flexibility and
efficiency. Since they rely on architectural cues of pretrained models, this makes the training
process task-specific and limits the extracted knowledge of a model [6,9].

Knowledge distillation [10–12] is a widely used technique for creating a smaller version
of a pretrained model that meets specific application needs, and it has recently been explored
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as a knowledge transfer technique. Current research primarily focuses on transferring knowl-
edge in the domain of language models [13,14] and image classification tasks [10,15–17].
Nevertheless, as far as we know, the potential of knowledge distillation as a means of
knowledge transfer, rather than just compression, has not been thoroughly investigated in
video-based human action recognition, which is where our contributions mainly lie.

As a result, our work explores knowledge distillation as a knowledge transfer tech-
nique for boosting the training of self-supervised video models in three aspects: improving
classification accuracy, accelerating model convergence, and increasing model flexibility
under regular and limited-data scenarios.

We tested our method on the UCF101 dataset using differently balanced proportions:
100%, 50%, 25%, and 2%. Our findings suggest that using knowledge distillation as a guide
for model training is more effective than traditional training methods while reducing the
convergence rate of model training in standard settings and a data-scarce environment.
Additionally, knowledge distillation offers cross-architecture flexibility, enabling model cus-
tomization for different applications: from resource-limited to high-performance scenarios.

The rest of the document is organized as follows: Section 2 establishes the theoretical
foundation. Section 3 details our experimental methodology. In Section 4, we analyze
and discuss our findings, focusing on performance implications, efficiency, and scenarios
with limited data. Lastly, Section 5 summarizes our findings, presents our conclusions,
and suggests potential avenues for future research.

2. Related Work

This section has two main objectives. Firstly, in Section 2.1, we aim to clarify the
concept of human action. Secondly, in Section 2.2, we provide an overview of human
action recognition.

2.1. Breaking Down the Concept of Human Action

A human action is a pattern formed by a sequence of gestures that both people and
artificial sensors can recognize; let us imagine a scenario wherein one person greets another
to explain the intuition of a sequence of gestures.

A safe guess is to picture the familiar hand-waving as the representation of greeting,
as Figure 1 suggests. Likewise, when we think of someone running, our attention natu-
rally goes to the movement of his/her legs. Our brains have developed to link specific
meanings or messages with a particular physical action that is commonly called “a human
action” [18,19].

Figure 1. Human actions: When we think of greeting someone, we often picture a hand wave. On the
other hand, when we imagine someone running, we visualize a more dynamic scene with the main
movement happening in their legs.
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2.2. Overview of Human Action Recognition

This section provides the necessary background and context for our research and is
divided into four parts. First, we introduce the field of human action recognition and its
common challenges. Second, we provide an overview of the approaches taken in the field.
Third, we review the current research in this area. Finally, we explain how our work fits the
existing literature.

2.2.1. Video-Based Human Action Recognition Field

Video-based human action recognition is an active field of research with ongoing
developments. Its goal is to develop a model that can extract and understand the encoded
message of human action, as Section 2.1 introduced.

Despite our natural talent to understand human actions, a computer faces different
challenges. These can be divided into five areas [20]: action–class variability, sensor
capabilities, environmental conditions, dataset restrictions, and computational constraints.

When discussing action–class variability, we have two types: intra-class variations,
which refer to differences within specific action classes, and inter-class variations, which
refer to the differences between various action classes [6]. In order to improve the accuracy
of computer vision applications, it is crucial for models to address inter- and intra-class
variations effectively.

On the other hand, despite being the most commonly used sensor for video action
recognition, RGB cameras present challenges such as a restricted field of view and limited
perspective, making it difficult for them to detect human actions accurately. Moreover,
environmental conditions and the quality of the sensor’s images can significantly affect the
model’s classification performance [6,19].

A significant challenge to constructing a high-classification model is the amount and
quality of data used. There are two main approaches; creating datasets from scratch
can ensure fitting the application’s specifications, but this can be resource intensive [21],
and extracting data for some application domains can be difficult due to factors related
to the nature of data, data privacy, or ethical considerations [22]. On the other hand,
utilizing existing datasets may not adequately represent all the variations of target actions
or fulfill the data dimensionality requirements [6]. Additionally, the degradation of publicly
available datasets over time is a concern [6].

Finally, providing adequate computational resources is challenging when constructing
video models for human action recognition [23]. On the one hand, most approaches
use a supervised approach, which demands dealing with high-dimensional data and
complex architectures [10,11,24]. On the other hand, specific applications require a fast
inference response [9], and the model’s complexity may surpass the hardware’s processing
capabilities [6,9].

2.2.2. Approach Evolution

Early approaches for human action recognition were based on handcrafted method-
ologies [19,25], which are known for their manual feature engineering.

Nevertheless, owing to their performance and ability to extract video features without
human engineering, deep learning approaches have set a novel standard for human action
recognition [1,26,27].

However, applying deep learning methods to action recognition was not straight-
forward. Early approaches based on traditional CNNs do not outperform handcrafted
methods since human actions are defined into spatial–temporal features and traditional
neural networks. Therefore, exploring how to model temporal information became the re-
search focus, and researchers arrived at a two-stream network with two separate networks
to process the spatial and temporal information separately. The next step in video-based
action recognition was the two-stream inflated 3D ConvNet (I3D) [2] architecture. I3D [2]
demonstrates that 3D convolutional networks can be pretrained. From this point, multiple
video architectures emerged, including R3D [28] and R(2+1)D [29].
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Transferring knowledge from one model to another is a common way to reduce
computational resource requirements [7]. Two commonly used techniques in the literature
are transfer learning and fine-tuning [7,8].

Transfer learning [7] involves using the architecture and weights of a preexisting
model to train a new model, which is particularly effective when the new task is similar to
the original task on which the preexisting model was trained. On the other hand, adding
trainable layers to an existing pretrained model and training only these layers on a new
task is called fine-tuning [8].

While transfer learning [7] and fine-tuning [8] can be beneficial for reducing com-
putational resource requirements and speeding up the training process, they have some
limitations. Due to their reliance on pretrained models’ architectural cues, these techniques
can significantly limit the knowledge extracted from the model, making the training process
highly specific to a particular task [6,9].

2.2.3. Current Research

Current research in video-based learning can be divided into six directions: new
architectures, novel learning paradigms, pretraining and knowledge transfer, exploring
video modalities, and cross and multimodal learning.

Due to the growing popularity of transformers in natural language processing, their
application to human action recognition has emerged [30]. Conversely, deep learning
methods rely extensively on labeled datasets; therefore, there is a need for a more efficient
and less resource-intensive learning paradigm [10,24,31–33]. Some of the novel learning
paradigms include semi-supervised learning [31], weakly supervised learning [32], and self-
supervised learning (SSL) [24,33].

Self-supervised learning leverages unlabeled data by generating a supervision signal
without manual annotation, as inspired by our natural learning processes [33]; one promising
approach in image-based tasks is few-shot learning. It allows for learning with limited data,
reduces computational demands, and generalizes to new action classes [21,34–37].

Transfer learning [7] and fine-tuning [8] have been demonstrated to be beneficial
for improving the performance and convergence of a model. Novel approaches have
emerged, including knowledge distillation (KD) [10–12]. KD is a widely used technique
for creating a smaller version of a pretrained model that meets specific application needs.
However, recently, it has been explored for its potential as a knowledge transfer technique
for image tasks [10]. However, applying knowledge distillation for knowledge transfer for
video-based human action recognition remains unexplored.

Another significant factor is related to video modalities; most works use the RGB modal-
ity, but the application of other modalities could improve the features extracted in specific
scenarios [30]. In general, video modalities can be divided into visual and non-visual modal-
ities [30]. Potential visual modalities includes RGB [38], Skelethon [39–42], depth [43], in-
frared [44], and thermal [45]. On the other hand, emerging nonvisual modalities include
audio [46], acceleration [47], radar [48], and WiFi [49].

Our interaction with the world is multimodal; therefore, developing models that can
leverage the strength of each modality may improve performance, robustness, and privacy.
Two common ways to use different modalities are multi-modal [33,50] and cross-modal [51].

2.2.4. How Our Work Fits in the Literature

We set five current research paths: new architectures, novel learning paradigms,
pretraining and knowledge transfer, exploring video modalities, and cross and multimodal
learning. Our work fits in with the knowledge transfer research path since our primary
focus is to explore novel knowledge transfer methods that do not depend on architectural
cues, which is helpful for ensuring the transferability of knowledge for emerging novel
architectures. Additionally, our work is done in a self-supervised environment and focuses
on testing in low-data settings, which is also considered a current research path. Further,
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we believe that a potential future direction of our work will be in cross-modality learning
scenarios, which is challenging because of the disjunctive feature space of the modalities.

Regarding similar works, current research in knowledge distillation has primarily
focused on transferring knowledge in the domain of language models [13,14] and image
classification tasks [10,15–17]. Yet there have been fewer works in other fields, such as
object detection [52] and segmentation [53], domain generalization [54], and video classifi-
cation. Our work contributes to exploring knowledge distillation in the video-based action
recognition field [55].

Knowledge distillation has been adopted for language models as a response to the
trend of building larger pretrained models efficiently. Qin et al. [13] propose a knowledge
inheritance (KI) framework that combines self-learning and teacher-guided learning to
train large-scale language models using previously pretrained models. Its core idea relies
on the inclusion of auxiliary supervision with a dynamically balancing weight to reduce
the influence of the teacher model in the late stage of the training. Similarly, Chen et al. [14]
propose bert2BERT: a pretrained framework with the core idea of using smaller teachers to
create a larger student model.

Knowledge distillation has also been explored for image classification tasks. Xu et al. [10]
present SSKD, which combines self-supervision and knowledge distillation to enable a
model-agnostic approach that outperforms the state-of-the-art models on the CIFAR100
dataset. Park et al. [15] aim to understand what makes a teacher model friendly to a
student to increase classification performance. Rajasegaran et al. [16] explore a two-stage
learning process to extract better model representations that enable good performance
for few-shot learning tasks. Yang et al. [56] explore using hierarchical self-supervised
knowledge distillation that adds auxiliary classifiers to intermediate feature maps with the
goal of generating diverse self-supervised knowledge that can be transferred to the student
model. Xu et al. [17] suggest collaborative knowledge distillation between the teacher
model and a self-distillation process. Wen et al. [57] introduce the concepts of knowledge
adjustments and dynamic temperature distillation to penalize inadequate supervision and,
therefore, improve student learning. Finally, self-supervised teaching assistants (SSTA) [58]
focus on improving visual transformers using two teacher heads, either supervised or
self-supervised, along with a selection method to mimic the attention distribution.

Further research is required in other domains, but the success of knowledge distillation
in language and image classification tasks shows potential usefulness in other fields. The
MobileVos framework [53] aims to achieve real-time object segmentation on resource-
constrained devices by combining KD and contrastive learning. Zhang et al. [52] focus on
object detection using KD to address two fundamental problems: the imbalance between
foreground and background pixels and the lack of consideration of the pixel’s relations.
Domain generalization is explored by Huang et al. [54], where the student is encouraged
to learn image representations using the teacher’s learned text representations. Finally,
Dadashzadeh et al. [55] introduced auxSDX, which adds an auxiliary distillation pretraining
phase for video representations. Our work is fundamentally different from auxSDX [55]
since its core contributions rely on the introduction of a novel self-supervised pretext task
that uses the distilled knowledge from the teacher. In contrast, despite also working on
a self-supervised methodology, we explore a more general and flexible way to include
the guidance of the teacher model by focusing on using the logits to understand how
the probability distributions differ between the models. Another difference is that in
Dadashzadeh et al.’s [55] work, the teacher and student models share the same architectural
settings, which differs from our flexibility goal.

3. Methodology

Our proposal consists of two components: self-supervised learning (SSL) and knowl-
edge distillation (KD), which are discussed in Section 3.1.
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Our work explores the implications of KD as a training guide for a self-supervised
action recognition model, which has not been fully explored in video settings, as shown in
Section 3.4.

3.1. Preliminaries

In this section, we explore two key works that serve as the foundation of our work.
In Section 3.2, we explore self-supervised learning, and in Section we explore knowledge
distillation as a transfer mechanism.

3.2. Self-Supervised Video-Based Model Training

The goal of self-supervised learning (SSL) [33] is to extract representative feature
representations from videos without a manually annotated dataset. SSL [33] has two main
approaches: pretext tasks and contrastive learning.

3.2.1. Pretext Tasks

Pretext tasks [59] define classification tasks that learn low-level features that could be
refined to the target task. Determining the optimal classification task is still an unresolved
problem. However, our study investigates a pretext task that relies on video transformation.

The objective is straightforward: the network’s task is to determine the transformation
applied to the input video clip. As a result, the network gains valuable insights from the
video without requiring explicit training on labeled data.

Formally, let us define fθ(·) as the backbone network to extract spatio–temporal
features, t(·) as the transformation function, vi as video i, xvi as the video clip for video i,
and y as the transformation label.

The first step is to apply the y transformation to video clips xvi using the transfor-
mation function t(xvi , y). Our study explores five types of transformations: unchanged,
rotation, spatial permutation, temporal adjacent shuffling, and temporal shuffling. The ro-
tation transformation randomly rotates a video clip between 90 and 270 degrees. Spatial
permutation rearranges the quadrants of a video clip. The video clip is initially divided
into four equal quadrants and is then randomly shuffled. Temporal adjacent shuffling
randomly reorganizes segments of a video by dividing it into four temporal sections and
swapping two adjacent sections. Finally, temporal shuffling divides the video clip into four
temporal segments and replaces the second segment with the fourth segment.

The backbone network fθ(t(xvi , y)) uses the output of the transformation function to
extract visual and temporal features.

As a usual practice in classification problems, we use cross entropy as the loss function,
as shown in Equation (1).

Lcrossentropy( fθ(t(xvi , y)), y) (1)

3.2.2. Contrastive Learning

Contrastive learning emphasizes differences between video clips by comparing their
similarities in a shared space [24,59].

Let us consider xvi and xvj as video clips from videos i and j. Then, x1
vi

x1
vj

and x2
vi

x2
vj

represent the second clip from videos i and j, respectively.
The network is fed with a pair of video clips, and the goal is to determine if the clips

are from the same distribution. For example, while clips x1
vi

and x2
vi

are considered from
the same distribution, clips x1

vi
and x2

vj
are treated as distinct.

To project the features onto a shared space, we require a projector network denoted as
h(·), where a common approach is to use a two-linear-layer multi-layer perceptron (MLP),
as explained by Tao et al. [59].

Therefore, the features projected from xvi are h( f (xvi )), which is simplified to zvi .

The similarity distance is computed using a dot product, which is represented as D
(

zvi , zvj

)
.
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The goal is to minimize Equation (2), which is composed of two parts that are defined
in Equations (3) and (4).

minimizeLvi = Lv1
i + Lv2

i (2)

where Lv1
i [59] aims to compute the similarity between the feature vectors v1

1 and v2
i using

the dot product as the D distance function, as defined in (3):

Lv1
i = − log

D
(

z1
vi

, z2
vi

)
D
(

z1
vi

, z2
vi

)
+ ∑j ̸=i D

(
z1

vi
, z1

vj

) (3)

Lv2
i is defined in Equation (4) and aims to compute the similarity between the feature

vectors v2
i and the negative sample.

Lv2
i = − log

D
(

z1
vi

, z2
vi

)
D
(

z1
vi

, z2
vi

)
+ ∑j ̸=i D

(
z2

vi
, z2

vj

) (4)

3.2.3. Merging Pretext and Contrastive Learning

Pretext tasks and contrastive learning provide unique insights into understanding visual
data [59]. Pretext tasks emphasize a sample’s innate details, allowing one to understand the
intra-class variations. In contrast, contrastive learning focuses on identifying the differences
between one instance and another, which helps with understanding of inter-class differences.

Pretext–contrastive learning (PCL) combines pretext tasks and contrastive losses to
ensure the network benefits from a local and global understanding of the data, as shown
in Figure 2.

Figure 2. The pretext–contrastive learning (PCL) [59] framework. PCL is a joint framework that
combines the pretext task and contrastive learning methods. Adapted from [59].

Merging both approaches is done by the linear combination shown in Equation (5),
where Lpretext and Lcontrast are computed using Equations (3) and (4), respectively, and
weight α is used to balance the losses between the pretext tasks and contrastive learning [59].

Ltotal = Lpretext + αLcontrastive (5)

3.3. Knowledge Transfer by Knowledge Distillation

A common method to decrease computational resource requirements and reduce de-
pendence on labeled data is transferring knowledge between models [10,12,24]. This work
implements a teacher–student knowledge distillation framework to transfer knowledge
between models with different architectures, as shown in Figure 3.
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Figure 3. Representation of the teacher–student knowledge distillation (KD) framework. The main
process involves computing the Kullback–Leibler (KL) divergence between the softened output
probabilities of both models.

The teacher–student approach encourages students to redefine their learning direction
based on the teacher model’s knowledge direction. Formally, the student and pretrained
teacher model are defined as fθ(·), with no restrictions on architectures. Both networks
are expected to have a classifier head p(·) that maps the feature vector to the action
class probabilities.

The relationship between the student and teacher models is established through the
Kullback–Leibler (KL) divergence [12]. This measure assesses the dissimilarity between
two probability distributions, enabling the student model to measure how much they
differ and to adjust their weights to minimize the gap, progressively gaining expertise.
A temperature τ must soften the output probabilities used to compare the probability
distributions. Softening increases the differences between action classes, especially in cases
where the teacher model’s output values are close to 0 or 1 [10,12]. As in [10,12], we set the
τ value to four using the log softmax functions available in PyTorch.

KL Divergence is used to calculate the knowledge distillation loss, as shown in Equa-
tion (6)

Lkd = −τ2 ∑
x∼D

C

∑
i=1

pi
t(x; τ) log(pi

s(x; τ)) (6)

The knowledge distillation loss function Lkd is determined by summing the product
of the teacher network’s probabilities pi

t(x; τ) and the logarithm of the student network’s
probabilities pi

s(x; τ) for every video x.
Our goal is to not only create a smaller teacher model but also to improve its perfor-

mance and enable continued student training. Thus, the complete loss function, shown in
Equation (7), is a linear combination of Lkd and Lstudent, where Lstudent is cross entropy and
λ is a balancing weight.

Lstudent = Lstudent + λLkdS (7)

3.4. Experimental Design

This section provides an overview of the experimental design of the study. Section 3.4.1
outlines the research objectives, and Section 3.4.2 details the experimental setup.

3.4.1. Research Objectives

Our primary objective is to investigate the effectiveness and efficiency of knowledge
distillation (KD) for training a video-based model for human action recognition. Therefore,
we structure our experiments into three main areas:
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• Performance implications: We studied how knowledge distillation affects the model’s
performance. We hypothesized that the student model could benefit from the teacher
model’s experience, leading to better accuracy and recognition rates. Our question: Is
training the model with knowledge distillation better than training it from scratch for
classification accuracy?

• Convergence rate efficiency: We aim to assess if KD can speed up the convergence,
which would reduce the training time and resources required. We are interested in
the evolution of performance during the early, middle, and late training stages to
understand how the model progresses by comparing the rate of convergence and
epochs needed to reach accuracy milestones. Our objective is to determine how KD
affects the rate of convergence of model training.

• KD in data-limited situations: Training in low-data environments is challenging. We
aim to understand if KD can leverage distilled knowledge from a teacher model to
provide an advantage in such scenarios. To assess performance in low-data regimes,
we conducted experiments using differently balanced proportions of the dataset. We
check how reducing the data affects model performance and compare these results to
the performance of a model trained from scratch.

3.4.2. Experiment Setup

Our workstation has an Intel® Xeon(R) Silver 4210R CPU and an NVIDIA A6000 GPU.
This GPU handles deep learning workloads and ensures faster training and efficient parallel
processing. We standardized our software development process using Docker image
nvcr.io/nvidia/pytorch:21.04-py3 from NVIDIA’s NGC catalog, which has all the necessary
dependencies optimized for GPU acceleration.

Additionally, we configured the PyTorch backend cuDNN to run in a determinis-
tic mode with a fixed seed value of 0, reducing the neural networks’ randomness and
reinforcing our computational processes’ reproducibility.

3.5. Training Setup

We use three main architectures as backbone networks trained using the hyperpa-
rameters shown in Table 1; for data preprocessing and sequence generation, we used a
video clip length of 10 frames, an interval of 8, and a tuple length of 3, as the PCL [59]
approach suggests.

Table 1. This table overviews the essential training parameters and their corresponding values for
our video-based human action recognition experiments.

Parameter Value

Architecture R3D [28], C3D [10], R(2+1)D [29]
Video Clip Length (frames) 10

Interval 8
Tuple Length 3
Learning Rate 1 × 10−2

Momentum 9 × 10−1

Weight Decay 5 × 10−4

Mini Batch Size 16
Workers 16
Modality res

Weight Contrastive Loss 0.5
MLP Head For Contrast

Augmentation True
Epochs 200

We set the learning rate to 1 × 10−2 and the momentum to 9 × 10−1 to ensure stability
and faster convergence of our model. We applied weight decay of 5 × 10−4 to prevent
overfitting. For parallel data loading, we employed 16 workers with a mini-batch size
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of 16. We used data augmentation techniques to improve the model’s generalization,
including resizing the images to dimensions of 128 × 171 and then randomly cropping
them to a 112 × 112 size. We also applied random color jittering with a probability of 0.8,
which adjusted brightness, contrast, and saturation by 40% and hue by 10%. Grayscale
augmentations with a 20% probability and Gaussian blur with a 50% probability were also
used, with a variable kernel size ranging from 0.1 to 2. We trained the model for 200 epochs
to ensure thorough exploration of its capabilities.

3.5.1. Model Architectures

We experimented with three video architectures—namely, C3D [10], R3D [28],
and R(2+1)D [29]—to serve as backbones for the PCL [59] framework. Testing differ-
ent architectures can reduce bias and increase our understanding of knowledge transfer
effectiveness. Combining architectures with varying complexities helps us to understand
the capabilities in different hardware scenarios, including networks of different sizes.

R3D [28] and R(2+1)D [29] are deep learning models for recognizing human actions in
videos that were inspired by the well-known ResNet architecture, which employs spatial
and temporal residual layers to analyze the spatial and temporal aspects of a video.

The C3D [10] architecture is a 3D convolutional neural network composed of eight
blocks of 3D convolutional layers.

3.5.2. The UCF101 and HMDB51 Datasets

The UCF101 [60] dataset offers a wide range of video sequences that serve as the foun-
dation for assessing the effectiveness of human-action recognition approaches. It comprises
13,320 video clips extracted from YouTube and representing 101 types of human action,
as shown in Figure 4. These actions cover a wide range of activities and are organized into
different categories; human–object interactions refer to activities that require direct con-
tact with objects. Body-motion-centric actions mainly involve specific bodily movements.
Human–human interactions include activities that concern multiple individuals. Musical
instrumental playing involves individuals playing instruments. Finally, sporting actions
are related to athletic purposes. The dataset offers realistic sample diversities, including
different resolutions, lengths, and quality levels.

Figure 4. Overview of the 101 distinct human action categories as presented in the UCF101 dataset [60].
Adapted from [60].
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The HMDB51 [61] dataset is an effective benchmark in video-based human action
recognition. The dataset comprises 6849 video clips systematized into 51 action classes,
as shown in Figure 5. These classes include facial actions and general body movements
and cover human-to-human and human–object interactions. The dataset contains videos
from various sources, resulting in diverse qualities, resolutions, and durations.

Figure 5. Overview of the 51 distinct human action categories presented in the HMDB51 dataset [61].
Adapted from [61].

3.5.3. Experiments

We compared knowledge distillation (KD) models to those trained from scratch in
experiments, as summarized in Table 2.

Table 2. Experimental configurations: This table provides an overview of the experiments employed
in our study. It details several vital aspects, including the chosen method (KD-guided or Scratch),
the student architecture (e.g., R3D, C3D, or R(2+1)D), the dataset (UCF101), the presence of a teacher
architecture (if applicable), and the dataset used for fine-tuning (HMDB51).

Method Student Dataset Teacher Fine-Tune

KD R3D [28] UCF101 C3D [10] HMDB51
KD R3D [28] UCF101 R(2+1)D [29] HMDB51

Scratch R3D [28] UCF101 None HMDB51
KD C3D [10] UCF101 R3D [28] HMDB51
KD C3D [10] UCF101 R(2+1)D [29] HMDB51

Scratch C3D [10] UCF101 None HMDB51
KD R(2+1)D [29] UCF101 C3D [10] HMDB51
KD R(2+1)D [29] UCF101 R3D [28] HMDB51

Scratch R(2+1)D [29] UCF101 None HMDB51

For the R3D [28] student architecture, we trained two KD models: one with C3D [10]
and the other using R(2+1)D as its teacher. Both models were trained on the full UCF101
dataset with a self-supervised methodology and fine-tuned on the HMDB51 dataset. We
also trained an R3D [28] model from scratch.

We repeated this process for the C3D [10] student architecture, training two KD models
guided by R3D [28] and R(2+1)D, respectively, and one model from scratch.
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Lastly, we conducted experiments with R(2+1)D [29] as the student architecture.
For the KD-trained models, we used C3D [10] and R3D [28] as teachers, and one model
was trained from scratch.

We compared the model’s accuracy during different training stages to study whether
knowledge distillation can speed up model training and save computational resources.
The early (0–50 epochs), middle (50–150 epochs), and late (150–200 epochs) stages were
analyzed using the same runs as presented in Table 2.

Finally, to evaluate model effectiveness with limited data, we repeated the experiments
shown in Table 2 but used subsets of 50%, 25%, and 2% of the entire dataset.

We followed a specific methodology to create a subset representing X percent of the
dataset. First, we randomly selected X percent from action class 1, then X percent from
action class 2, and continued this process until we reached action class n. This method
ensured that our subset was congruent with the complete set.

4. Results and Discussion

Section 4.1 assesses the impact of KD on the model’s performance during training,
and Section 4.2 explores its impact on the convergence rate. Finally, we explore the resilience
of the models in low-data scenarios in Section 4.3 and its performance in cross-architecture
settings in Section 4.4.

4.1. Performance Implications

Table 2 shows the accuracy performance using the experimental settings described in
Table 3. We presented the accuracy on the UCF101 [60] dataset and its fine-tuned value for
the HMDB51 [61] dataset.

Table 3. Performance implications based on classification accuracy of using knowledge distillation
(KD) as a guide for training a model versus training it from scratch on the UCF101 and fine-tuned to
the HMDB51.

Method Dataset Student Teacher UCF101 HMDB51

KD UCF101 R3D C3D 0.45 0.61
KD UCF101 R3D R(2+1)D 0.48 0.62
Scratch UCF101 R3D None 0.47 0.60
KD UCF101 C3D R3D 0.55 .61
KD UCF101 C3D R(2+1)D 0.52 0.62
Scratch UCF101 C3D None 0.46 0.60
KD UCF101 R(2+1)D C3D 0.46 0.62
KD UCF101 R(2+1)D R3D 0.48 0.60
Scratch UCF101 R(2+1)D None 0.44 0.62

The best model for training an R3D [28] model was the KD configuration using the
R(2+1)D teacher on the UCF101 and HMDB51 datasets. A similar finding is given while
training a C3D [10] model, where both KD models outperform the scratch model, and the
model with the R(2+1)D [29] teacher improved the performance by almost 8 percent. Finally,
R(2+1)D [29], the student model, presents a dynamic similar to previous architectures in
which both models guided by KD improve the accuracy.

Table 3 shows a pattern that methods boosted using KD tend to outperform training
from scratch regardless of the architecture of their teacher models, suggesting that KD is an
effective way to transfer knowledge from teacher to student models.

The performance increase on the HMDB51 dataset was slight since we employed a fine-
tuning method on this dataset. Despite the low performance, we observe that KD-boosted
models perform better.
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4.2. Convergence Rate Efficiency

Our second goal is to understand our method’s convergence capabilities. While
accuracy is essential, reducing the training time and computational resource requirements
is crucial for some application domains.

To assess the model’s capabilities, we evaluated its accuracy performance on the test
sets of the UCF101 dataset at three different training stages: early (first 50 epochs), mid
(first 150 epochs), and late (usual training process). Our findings are presented in Table 4.

Table 4. Convergence rate efficiency: this table shows the classification accuracy during different
stages of training.

Method Student Dataset Teacher Early Stage Mid Stage Late Stage

KD R3D UCF101 C3D 0.44 0.45 0.45
KD R3D UCF101 R(2+1)D 0.48 0.48 0.48
Scratch R3D UCF101 None 0.44 0.47 0.47
KD C3D UCF101 R3D 0.51 0.55 0.55
KD C3D UCF101 R(2+1)D 0.52 0.52 0.52
Scratch C3D UCF101 None 0.44 0.46 0.46
KD R(2+1)D UCF101 C3D 0.43 0.46 0.46
KD R(2+1)D UCF101 R3D 0.48 0.48 0.48
Scratch R(2+1)D UCF101 None 0.41 0.44 0.44

Table 4 compares the accuracy performance between a model’s evaluation and test
sets at the early, middle, and late stages of training. We conducted this analysis on the
C3D [10] model and found that its performance on the validation set was similar to that of
the scratch one. However, when we compared the models on the test set, we observed a
significant difference between them, indicating that using the KD-guided models results
in better generalization of unseen data. Additionally, the performance of both C3D KD-
guided models in the early stage outperformed by more than 7 percent of the model trained
from scratch in the complete settings, suggesting that KD-guided models significantly
reduce the computational resources required to train a model. During the middle stage of
training, models show stability and a constant increase in their performance. During the
late stage, all models display a similar dynamic, with KD-guided models achieving the
best performance.

The R3D [28] architecture presents a dynamic similar to that of C3D. On the one hand,
KD-guided models performed better than the model from scratch in almost every stage,
and the one using R(2+1)D [29] as the teacher outperformed the fully trained scratch model
in an early stage of training. In the middle and late stages, all models presented a stable
increase, and in the late stage, the scratch model closed the gap with its KD counterpart.

Finally, the R(2+1)D [29] model behaves similarly to previous architectures. The KD
models with C3D [10] and R3D [28] teachers achieved early stage performances of 43 and
48 in contrast to the scratch model’s 41, meaning the KD models outperformed the model
trained from scratch in the early stages.

The consistency in the KD model’s superior early stage performance highlights the
method’s robustness for boosting the generalization capabilities of the approach.

4.3. Robustness in Low-Data Scenarios

This section explores the robustness of models when trained in low-data scenarios
using the settings from Section 3. Training deep learning models in low-data settings can
be challenging due to the strong correlation between data dimensionality and model per-
formance. In Sections 4.3.1–4.3.3, we review knowledge distillation performance using the
R3D, R(2+1)D, and C3D architectures with 2, 25, and 50 percent of the original training set.
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4.3.1. Performance Analysis Using Two Percent of the Training Set

Table 5 shows the performance during the initial, middle, and late training of a
C3D model under a two-percent subset of the dataset. Similar to its performance using
the complete dataset, the KD-guided models showed better accuracy in the early stage
compared to the scratch model, indicating that the feature representations learned from the
teacher model improve the generalization of unseen data. In the middle and late stages of
the training, all models showed signs of convergence and possible overfitting due to the
low amount of data used.

Table 5. Convergence rate efficiency: this table shows the classification accuracy using 2 percent of
the dataset during different stages of training.

Method Student Dataset Teacher Early Stage Mid Stage Late Stage

KD R3D UCF101 C3D 0.42 0.43 0.44
KD R3D UCF101 R(2+1)D 0.29 0.38 0.39
Scratch R3D UCF101 None 0.25 0.34 0.34
KD C3D UCF101 R3D 0.26 0.44 0.44
KD C3D UCF101 R(2+1)D 0.25 0.40 0.40
Scratch C3D UCF101 None 0.24 0.33 0.36
KD R(2+1)D UCF101 C3D 0.29 0.39 0.39
KD R(2+1)D UCF101 R3D 0.28 0.36 0.36
Scratch R(2+1)D UCF101 None 0.24 0.38 0.38

Table 5 displays the performance of the C3D [10] model. In the early stage, the R(2+1)D-
guided model performed similarly to the scratch model, while the C3D-guided model
outperformed the scratch model. As the training progressed, both KD models outperformed
the scratch model. Eventually, all models reached the limit of their classification accuracy,
indicating that there is little room for improvement due to the limitations of the data used.

Finally, the performance of the R(2+1) shown in Table 5 confirms the behavior of the
previous architectures. In the early stage of training, both KD models tend to outperform
the scratch model; the performance of the scratch model slightly increases in the middle
stage. Similarly, at the end of the training stage, the scratch model performs at the level of
the KD-guided models, suggesting possible overfitting to the dataset.

4.3.2. Performance Analysis Using 25 Percent of the Training Set

This section explores the implications of using a proportion of 25% of the training set,
as shown in Table 6. For the C3D architecture, similar to our experiments using two percent,
KD-guided models achieved better performance than the scratch model, especially the
R(2+1)D-guided model, which showed a significant increase in classification accuracy.
Training for a longer time provides a slight improvement to accuracy for all models, while
knowledge distillation models. Training the models for the complete 200 epochs does not
improve the classification performance, suggesting overfitting to the dataset.

Table 6. Convergence rate efficiency: this table shows the accuracy performance using 25 percent of
the dataset during different stages of training.

Method Student Dataset Teacher Early Stage Mid Stage Late Stage

KD R3D UCF101 C3D 0.46 0.46 0.46
KD R3D UCF101 R(2+1)D 0.43 0.45 0.47
Scratch R3D UCF101 None 0.41 0.45 0.45
KD C3D UCF101 R3D 0.50 0.54 0.54
KD C3D UCF101 R(2+1)D 0.53 0.56 0.56
Scratch C3D UCF101 None 0.48 0.49 0.51
KD R(2+1)D UCF101 C3D 0.42 0.45 0.46
KD R(2+1)D UCF101 R3D 0.45 0.46 0.46
Scratch R(2+1)D UCF101 None 0.40 0.45 0.47
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In the case of the R3D model, the R(2+1)D-guided and the scratch models showed simi-
lar performance, while the C3D-guided model outperformed both models by a large margin.
In the middle and late stages, all models achieved a plateau in classification accuracy.

For the last model, R(2+1)D [29], the KD-guided models benefit from the guidance
and outperform the scratch model in the early stage of training; this is congruent with the
performance of the other architectures and its performance using a minimal proportion of
the dataset.

4.3.3. Performance Analysis Using 50 Percent of the Training Set

This section examines the implications of applying the KD to 50% of the dataset. All
tested architectures, shown in Table 7, are consistent with our previous experiments; the
KD-guided model outperforms scratch models in the early stage of the training, and during
the late stage of the training, KD-guided models overfit and the scratch model closes the
performance gap, suggesting that KD-models better learn representative visual features in
an early stage, reducing the computational resource requirements.

Table 7. Convergence rate efficiency: this table shows the accuracy performance using 50 percent of
the dataset during different stages of training.

Method Student Dataset Teacher Early Stage Mid Stage Late Stage

KD R3D UCF101 C3D 0.42 0.44 0.45
KD R3D UCF101 R(2+1)D 0.40 0.42 0.42
Scratch R3D UCF101 None 0.35 0.39 0.39
KD C3D UCF101 R3D 0.55 0.56 0.56
KD C3D UCF101 R(2+1)D 0.54 0.54 0.54
Scratch C3D UCF101 None 0.48 0.53 0.54
KD R(2+1)D UCF101 C3D 0.43 0.45 0.45
KD R(2+1)D UCF101 R3D 0.41 0.44 0.45
Scratch R(2+1)D UCF101 None 0.41 0.44 0.44

4.4. Cross-Architecture Comparison

We aim to determine the transferability of KD-guided models across different architec-
tures. In Sections 3 and 4.3, we explored the performance of KD-guided models in standard
and low-data settings. The experimental designs, shown in Table 2, examine multiple
settings using different teacher architectures to train the student model.

Our insights showed that most of the tested model configurations outperformed
scratch models by having significant generalization capabilities that enabled the achieve-
ment of high classification performance in the early stage of the training and, as a conse-
quence, reduced computational resource requirements. Therefore, KD transfers knowledge
between various architectures, emphasizing the method’s flexibility and adaptability. More-
over, when challenged with limited-data scenarios, our KD approach consistently delivered
robust improvement to the training process independent of the architecture used.

5. Conclusions and Future Work

Our main objective in this work was to study the implication of using KD-guided
models to train self-supervised video-based human action recognition based on three main
aspects: its performance, its convergence rate, and its robustness in low-data scenarios.

We conducted comprehensive experiments comparing KD-guided and scratch models
and focusing on three distinct architectures: R3D, C3D, and R(2+1)D. Our key insights were
that KD-guided models outperform the scratch model while increasing its generalization
capabilities on unseen data. Additionally, models guided by KD achieved faster conver-
gence rates, with a few epochs generating higher classification accuracy than a scratch
model achieved in four times more epochs, thereby conserving computational resources.

Finally, we experimented with smaller proportions of the dataset to test KD’s abil-
ity to work with limited data. Despite facing some overfitting, the KD-guided models



J. Imaging 2024, 10, 85 16 of 18

showed consistently higher generalization in the early stage of the training compared to
the scratch model.

All experiments were conducted using a cross-architectural setting, which highlights
the versatility of KD-guided methods as a knowledge transfer technique and enables the
training of custom models that meet specific application constraints, whether the goal is to
develop leaner models for resource-constrained devices or more powerful models.

There are several directions for future research, including exploring new datasets and
application domains, exploring novel techniques for feature assessment, and developing
novel methods to compare the knowledge of the models and their application to transfer
other facilities of methods and modalities.
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23. Alayrac, J.B.; Recasens, A.; Schneider, R.; Arandjelović, R.; Ramapuram, J.; De Fauw, J.; Smaira, L.; Dieleman, S.; Zisserman, A.
Self-supervised multimodal versatile networks. Adv. Neural Inf. Process. Syst. 2020, 33, 25–37.

24. Jing, L.; Tian, Y. Self-supervised visual feature learning with deep neural networks: A survey. In IEEE Transactions on Pattern
Analysis and Machine Intelligence; IEEE: Paris, France, 2020.

25. Zhang, S.; Wei, Z.; Nie, J.; Huang, L.; Wang, S.; Li, Z. A review on human activity recognition using vision-based method.
J. Healthc. Eng. 2017, 2017. [CrossRef] [PubMed]

26. Martinez, M.; Rybok, L.; Stiefelhagen, R. Action recognition in bed using BAMs for assisted living and elderly care. In Proceedings
of the 2015 14th IAPR International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 18–22 May 2015; IEEE:
Toulouse, France, 2015; pp. 329–332.

27. Badue, C.; Guidolini, R.; Carneiro, R.V.; Azevedo, P.; Cardoso, V.B.; Forechi, A.; Jesus, L.; Berriel, R.; Paixao, T.M.; Mutz, F.; et al.
Self-driving cars: A survey. Expert Syst. Appl. 2021, 165, 113816. [CrossRef]

28. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features With 3D Convolutional Networks. In
Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015.

29. Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; Paluri, M. A closer look at spatiotemporal convolutions for action recognition.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition,Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6450–6459.

30. Ulhaq, A.; Akhtar, N.; Pogrebna, G.; Mian, A. Vision Transformers for Action Recognition: A Survey. arXiv 2022, arXiv:2209.05700.
31. Zhu, X.; Goldberg, A.B. Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 2009, 3, 1–130.
32. Zhou, Z.H. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 2018, 5, 44–53. [CrossRef]
33. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A survey on contrastive self-supervised learning. Technologies

2020, 9, 2. [CrossRef]
34. Xing, J.; Wang, M.; Mu, B.; Liu, Y. Revisiting the Spatial and Temporal Modeling for Few-shot Action Recognition. arXiv 2023,

arXiv:2301.07944.
35. Gowda, S.N.; Sevilla-Lara, L.; Kim, K.; Keller, F.; Rohrbach, M. A new split for evaluating true zero-shot action recognition. In

Proceedings of the Pattern Recognition: 43rd DAGM German Conference, DAGM GCPR 2021, Bonn, Germany, 28 September–1
October 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 191–205.

36. Li, S.; Liu, H.; Qian, R.; Li, Y.; See, J.; Fei, M.; Yu, X.; Lin, W. TA2N: Two-stage action alignment network for few-shot action
recognition. Proc. Proc. Aaai Conf. Artif. Intell. 2022, 36, 1404–1411. [CrossRef]

37. Cao, K.; Ji, J.; Cao, Z.; Chang, C.Y.; Niebles, J.C. Few-shot video classification via temporal alignment. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10618–10627.

38. Zhen, L.; Hu, P.; Peng, X.; Goh, R.S.M.; Zhou, J.T. Deep multimodal transfer learning for cross-modal retrieval. IEEE Trans. Neural
Networks Learn. Syst. 2020, 33, 798–810. [CrossRef] [PubMed]

39. Duan, H.; Wang, J.; Chen, K.; Lin, D. Pyskl: Towards good practices for skeleton action recognition. In Proceedings of the 30th
ACM International Conference on Multimedia, Lisboa, Portugal, 10–14 October 20222; pp. 7351–7354.

40. Duan, H.; Zhao, Y.; Chen, K.; Lin, D.; Dai, B. Revisiting skeleton-based action recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2969–2978.

41. Yan, S.; Xiong, Y.; Lin, D. Spatial temporal graph convolutional networks for skeleton-based action recognition. In Proceedings of
the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Voulme 32.

http://dx.doi.org/10.1007/s10489-022-03486-4
http://dx.doi.org/10.1109/TCSVT.2013.2270402
http://dx.doi.org/10.1007/s10462-020-09904-8
http://dx.doi.org/10.3390/mca28020061
http://dx.doi.org/10.1155/2017/3090343
http://www.ncbi.nlm.nih.gov/pubmed/29065585
http://dx.doi.org/10.1016/j.eswa.2020.113816
http://dx.doi.org/10.1093/nsr/nwx106
http://dx.doi.org/10.3390/technologies9010002
http://dx.doi.org/10.1609/aaai.v36i2.20029
http://dx.doi.org/10.1109/TNNLS.2020.3029181
http://www.ncbi.nlm.nih.gov/pubmed/33090960


J. Imaging 2024, 10, 85 18 of 18

42. Chen, Y.; Zhang, Z.; Yuan, C.; Li, B.; Deng, Y.; Hu, W. Channel-wise topology refinement graph convolution for skeleton-based
action recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17
October 2021; pp. 13359–13368.

43. Sun, Z.; Ke, Q.; Rahmani, H.; Bennamoun, M.; Wang, G.; Liu, J. Human action recognition from various data modalities: A review.
In IEEE Transactions on Pattern Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 2022.

44. Akula, A.; Shah, A.K.; Ghosh, R. Deep learning approach for human action recognition in infrared images. Cogn. Syst. Res. 2018,
50, 146–154. [CrossRef]

45. Batchuluun, G.; Nguyen, D.T.; Pham, T.D.; Park, C.; Park, K.R. Action recognition from thermal videos. IEEE Access 2019,
7, 103893–103917. [CrossRef]

46. Gao, R.; Oh, T.H.; Grauman, K.; Torresani, L. Listen to look: Action recognition by previewing audio. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10457–10467.

47. Haider, F.; Salim, F.A.; Postma, D.B.; Van Delden, R.; Reidsma, D.; van Beijnum, B.J.; Luz, S. A super-bagging method for
volleyball action recognition using wearable sensors. Multimodal Technol. Interact. 2020, 4, 33. [CrossRef]

48. Yang, S.; Le Kernec, J.; Fioranelli, F. Action Recognition Using Indoor Radar Systems; The University of Glasgow: Glasgow, UK, 2019.
49. Guo, J.; Shi, M.; Zhu, X.; Huang, W.; He, Y.; Zhang, W.; Tang, Z. Improving human action recognition by jointly exploiting video

and WiFi clues. Neurocomputing 2021, 458, 14–23. [CrossRef]
50. Schiappa, M.C.; Rawat, Y.S.; Shah, M. Self-supervised learning for videos: A survey. ACM Comput. Surv. 2022, 55, 1–37.

[CrossRef]
51. Thoker, F.M.; Gall, J. Cross-modal knowledge distillation for action recognition. In Proceedings of the 2019 IEEE International

Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 6–10.
52. Zhang, L.; Ma, K. Structured knowledge distillation for accurate and efficient object detection. In IEEE Transactions on Pattern

Analysis and Machine Intelligence; IEEE: Piscataway, NJ, USA, 2023.
53. Miles, R.; Yucel, M.K.; Manganelli, B.; Saà-Garriga, A. Mobilevos: Real-time video object segmentation contrastive learning meets

knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver,
BC, Canada, 17–24 June 2023; pp. 10480–10490.

54. Huang, Z.; Zhou, A.; Ling, Z.; Cai, M.; Wang, H.; Lee, Y.J. A Sentence Speaks a Thousand Images: Domain Generalization through
Distilling CLIP with Language Guidance. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris,
France, 1–6 October 2023; pp. 11685–11695.

55. Dadashzadeh, A.; Whone, A.; Mirmehdi, M. Auxiliary learning for self-supervised video representation via similarity-based
knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans,
LA, USA, 19–20 June 2022; pp. 4231–4240.

56. Yang, C.; An, Z.; Cai, L.; Xu, Y. Hierarchical self-supervised augmented knowledge distillation. arXiv 2021, arXiv:2107.13715.
57. Wen, T.; Lai, S.; Qian, X. Preparing lessons: Improve knowledge distillation with better supervision. Neurocomputing 2021,

454, 25–33. [CrossRef]
58. Wu, H.; Gao, Y.; Zhang, Y.; Lin, S.; Xie, Y.; Sun, X.; Li, K. Self-supervised models are good teaching assistants for vision

transformers. In Proceedings of the International Conference on Machine Learning. PMLR, Baltimore, MD, USA, 17–23 July 2022;
pp. 24031–24042.

59. Tao, L.; Wang, X.; Yamasaki, T. Selfsupervised video representation using pretext-contrastive learning. arXiv 2020, arXiv:2010.15464.
60. Soomro, K.; Zamir, A.R.; Shah, M. UCF101: A dataset of 101 human actions classes from videos in the wild. arXiv 2012,

arXiv:1212.0402.
61. Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; Serre, T. HMDB: A large video database for human motion recognition. In

Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; IEEE: Piscataway,
NJ, USA, 2011; pp. 2556–2563.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cogsys.2018.04.002
http://dx.doi.org/10.1109/ACCESS.2019.2931804
http://dx.doi.org/10.3390/mti4020033
http://dx.doi.org/10.1016/j.neucom.2020.11.074
http://dx.doi.org/10.1145/3577925
http://dx.doi.org/10.1016/j.neucom.2021.04.102

	Introduction
	Related Work
	Breaking Down the Concept of Human Action
	Overview of Human Action Recognition
	Video-Based Human Action Recognition Field 
	Approach Evolution
	Current Research
	How Our Work Fits in the Literature


	Methodology
	Preliminaries
	Self-Supervised Video-Based Model Training
	Pretext Tasks
	Contrastive Learning
	Merging Pretext and Contrastive Learning

	Knowledge Transfer by Knowledge Distillation
	Experimental Design
	Research Objectives
	Experiment Setup

	Training Setup
	Model Architectures
	The UCF101 and HMDB51 Datasets
	Experiments


	Results and Discussion
	Performance Implications
	Convergence Rate Efficiency
	Robustness in Low-Data Scenarios
	Performance Analysis Using Two Percent of the Training Set
	Performance Analysis Using 25 Percent of the Training Set
	Performance Analysis Using 50 Percent of the Training Set

	Cross-Architecture Comparison

	Conclusions and Future Work
	References

