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Abstract: The current study aimed to quantify the value of color spaces and channels as a potential
superior replacement for standard grayscale images, as well as the relative performance of open-
source detectors and descriptors for general feature-based image registration purposes, based on a
large benchmark dataset. The public dataset UDIS-D, with 1106 diverse image pairs, was selected. In
total, 21 color spaces or channels including RGB, XYZ, Y′CrCb, HLS, L*a*b* and their corresponding
channels in addition to grayscale, nine feature detectors including AKAZE, BRISK, CSE, FAST, HL,
KAZE, ORB, SIFT, and TBMR, and 11 feature descriptors including AKAZE, BB, BRIEF, BRISK,
DAISY, FREAK, KAZE, LATCH, ORB, SIFT, and VGG were evaluated according to reprojection error
(RE), root mean square error (RMSE), structural similarity index measure (SSIM), registration failure
rate, and feature number, based on 1,950,984 image registrations. No meaningful benefits from color
space or channel were observed, although XYZ, RGB color space and L* color channel were able to
outperform grayscale by a very minor margin. Per the dataset, the best-performing color space or
channel, detector, and descriptor were XYZ/RGB, SIFT/FAST, and AKAZE. The most robust color
space or channel, detector, and descriptor were L*a*b*, TBMR, and VGG. The color channel, detector,
and descriptor with the most initial detector features and final homography features were Z/L*, FAST,
and KAZE. In terms of the best overall unfailing combinations, XYZ/RGB+SIFT/FAST+VGG/SIFT
seemed to provide the highest image registration quality, while Z+FAST+VGG provided the most
image features.

Keywords: comparison; image stitching; OpenCV; Python

1. Introduction

Image registration is the computer vision task of aligning images of a common scene
that differ due to their geometry or photometry conditions. Commonly, image registration
is regarded as a component of a very close if not interchangeable concept, image stitching,
which also involves image blending to create seamless stitched panoramas [1]. The core
objective of image registration is to establish spatial correspondences between different
images, allowing for the fusion of data from various sources or time points. Commonly,
image registration algorithms are categorized into area-based and feature-based methods,
although alternative classifications based on registered image types or image transformation
types exist [2], given the complexity and diversity of different image registration approaches.
Area-based methods rely on comparing and correlating pixel intensity patterns or statistical
properties between corresponding image regions for optimization [3], while feature-based
methods rely on detecting and matching landmarks or keypoints to estimate geometrical
image transformations [4]. As researchers across all disciplines collectively embark on
a new era of artificial intelligence, deep learning techniques have also been successfully
applied to various image registration tasks such as feature extraction, descriptor matching,
homography estimation, etc. [2,5,6].
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Image registration has applications in diverse fields, such as art restoration [7], as-
tronomy [8], geology [9], archaeology [10], oceanography [11], agriculture [12], remote
sensing [13], materials science [11], medicine [14], robotics [15], augmented reality [9],
military [16], etc. Despite the advancements in modern machine learning-based image
registration algorithms, feature-based image registration, the concept of which dates back to
at least the 1980s [17], still remains relevant even in recent literature, owing to its simplicity,
efficiency, and robustness. As a few examples, Ramli et al. [18] proposed CURVE feature
of retinal vessels to align fundus images; Nan et al. [19] utilized SURF and HC features
for brain tissue image registration and analysis; Hou et al. [20] employed HC feature for
panchromatic and multispectral satellite image alignment; Kerkech et al. [21] registered vis-
ible and infrared unmanned aerial vehicle (UAV) images through AKAZE feature for vine
disease detection; Xue et al. [22] combined visible and infrared missile-borne images based
on enhanced SIFT feature to improve target identification and striking; Wang et al. [23]
proposed GOFRO feature to achieve high-precision synthetic aperture radar (SAR) image
registration; and Bush et al. [24] used SIFT feature for bridge defect growth tracking.

Generally, the pipeline of feature-based image registration comprises several standard
steps, while each step allows for variations in implementation. Given a pair of target
and source images to be registered, the location of pixels of interest or keypoints are first
detected based on feature detection algorithms or feature detectors. Example detectors
include AKAZE [25], BRISK [26], CSE [27], FAST [28], HL [29], KAZE [30], MSD [31],
ORB [32], SIFT [33], SURF [34], TBMR [35], etc. Next, the local neighborhoods of the
detected keypoints are characterized based on feature description algorithms or feature
descriptors. Example descriptors include AKAZE [25], BB [36], BEBLID [37], BRIEF [38],
BRISK [26], DAISY [39], FREAK [36], HOG [40], KAZE [30], LATCH [41], LUCID [42],
ORB [32], PCT [43], SIFT [33], SQFD [44], SURF [34], TEBLID [45], VGG [46], etc. Note
certain feature detectors and descriptors can have the same names when they are proposed
in the same studies. Based on the similarities between feature descriptions, which can
be quantified through metrics such as Euclidean distance [42] or Hamming distance [47],
the corresponding keypoints in the two images can be matched through feature descrip-
tion matching algorithms or descriptor matchers. Example matchers include brute-force
(BF) [48], fast library for approximate nearest neighbors (FLANN) [48], k-nearest neighbors
(KNN) [49], etc. Optionally, erroneous or unreliable feature matches can be filtered out
based on cross-checking, which considers a match to be valid only when the two matched
features from the two images both best-match with each other, or Lowe’s ratio test [33],
which checks whether the feature distance of the best match is substantially smaller than
that of the second-best match by a specified ratio threshold. The filtered feature matches are
finally utilized to estimate homography, the transformation relationship between the source
image plane and the target image plane to allow for image registration. Depending on the
desired degree of freedom, or the level of source image warping, common 2D transforma-
tion types include rigid, similarity, affine, projective, etc. [50]. Numerous methods also exist
for homography matrix calculation, such as least squares [51], least median [52], random
sample consensus (RANSAC) [53], progressive sampling consensus (PROSAC) [54], etc.

Given the diversity of available feature detectors and descriptors for image registration,
the question of selecting the most appropriate features inevitably arises. Although a handful
of studies in current literature have investigated this topic, consensus cannot always be
drawn from the study findings, unfortunately, due to the significant disparities in the
experiment designs. Köhler et al. [55] manually annotated 28 evenly-spaced landmarks in a
laparoscopic video with 750 frames as ground truth, comparing ORB, AKAZE, and BRISK
detectors in combination with BEBLID descriptor based on reprojection error (RE) and
structural similarity index measure (SSIM). Among the three detectors, AKAZE achieved
the best mean and mean normalized REs, while BRISK achieved the best mean SSIM.
Based on various public datasets, Tareen and Saleem [56] selected six image pairs of
diverse scenes for feature number and speed evaluation, synthesized five pairs of ground
truth images through resizing and rotating images by known levels for feature accuracy
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evaluation, and compared five features, including SIFT, SURF, KAZE, AKAZE, ORB, and
BRISK, treating each as both detector and descriptor. They discovered that ORB detected
the greatest number of features, while KAZE detected the lowest number; ORB had the
lowest computation cost for feature detection and description, while KAZE had the highest;
and SIFT was the most accurate feature for scale, rotation, and affine image variations
overall. Sharma et al. [4] analyzed 85 detector and descriptor combinations based on three
pairs of images, involving GFTT, SIFT, MSER, FAST, SURF, CSE, BRIEF, DAISY, AGAST,
BRISK, ORB, FREAK, KAZE, AKAZE, and MSD. Their evaluation metrics included peak
signal-to-noise ratio (PSNR), SSIM, feature similarity indexing method (FSIM), and visual
saliency-induced index (VSI). AKAZE detector and AKAZE descriptor was identified as
the best combination that outperformed all the other combinations. Wu et al. [57] compared
SIFT with its variants PCA-SIFT, GSIFT, CSIFT, SURF, and ASIFT under scale and rotation,
blur, illumination, and affine changes based on four pairs of images. They qualitatively
concluded that SIFT and CSIFT performed the best under scale and rotation change; GSIFT
performed the best under blur and illumination changes; and ASIFT performed the best
under affine change. Ihmeida and Wei [49] created two datasets out of the same three
remote sensing image pairs, and analyzed SIFT, SURF, ORB, BRISK, KAZE, and AKAZE as
feature detector and descriptor simultaneously based on inlier match number, computation
cost, and feature inlier ratio. They discovered that SIFT provided the highest accuracy,
while ORB was the fastest algorithm.

In addition to the inconsistent conclusions on the best-performing feature detectors
and descriptors, several knowledge gaps still exist in current literature regarding the general
feature-based image registration procedure. First, before feature detection, color images
are typically converted into grayscale for computation efficiency [58]. However, the value
of color information contained in various color spaces pertaining to image registration
has never been examined and quantified. Second, image registration quality is being
evaluated using diverse methods in current literature, e.g., subject visual inspection and
rating on parallax error, perspective distortion, viewing ease and comfort, etc. [59–63], as
well as objective indices such as FSIM [4], mutual information (MI) [64], normalized cross
correlation (NCC) [64], PSNR [4], RE [55], root mean square error (RMSE) [65], SSIM [4,55],
stereoscopic stitched image quality assessment (S-SIQA) [66], universal image quality
index (UIQI) [67], VSI [4], etc. Yet, the relationships or agreements between different
evaluation metrics have not been investigated. Third, existing studies usually concentrate
on quantifying image registration accuracy and speed when comparing various image
features; however, feature robustness or reliability in successfully registering multiple
image pairs without failure is a rarely discussed aspect. Finally, an effort comparing
multiple image feature detectors and descriptors based on a large dataset is simply missing
in current computer vision research, as many prior comparative studies tended to rely on
only a few image pairs, potentially leading to biased conclusions.

To address the aforementioned lacunae in the existing knowledge base, the current
study leveraged dedicated open-source dataset and library for image registration, with
consideration given to practicality and replicability for future researchers. In terms of image
registration accuracy, robustness, and feature numbers, the performance of selected color
spaces and the corresponding color channels, feature detectors, and feature descriptors was
quantified and presented in this article. Recommendations on the best overall combinations
of color space or color channel, feature detector, and feature descriptor were also provided
at the end of the study.

2. Materials and Methods
2.1. Dataset

The public dataset UDIS-D [68] was selected for the study due to its accessibility,
substantial size, and image diversity. UDIS-D, proposed by Nie et al., is the first large
real-world benchmark dataset for image registration, and it includes diverse scene con-
ditions such as indoor, outdoor, night, dark, snow, zooming, etc., with different levels of
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image overlap and parallax. In particular, UDIS-D includes two subsets: a training subset
containing 10,440 image pairs and a testing subset containing 1106 image pairs, which all
have a 512 × 512 resolution. Only the testing subset was used in the current study, as it
has a sufficiently large dataset size while preserving the same data diversity as the training
subset (Figure 1).
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2.2. Selected Color Spaces and Channels

Color space refers to a specific organization of colors, which allows for the represen-
tation of colors in a numerically and visually meaningful way. In feature-based image
registration, image color information, most commonly represented by red–green–blue
(RGB) color space, is usually discarded by converting RGB images into grayscale im-
ages for more efficient image feature detection and description. For the current study,
five widely adopted color spaces in computer vision research were chosen to examine the
value of color information under the context of image registration: RGB, XYZ, Y′CrCb,
HLS, and L*a*b* [69]. For each color space, in addition to utilizing all matched features
from all three color channels, the usefulness of individual color channels as potential su-
perior replacements for standard grayscale conversion were also investigated, as color
channels are grayscale images themselves. In total, each pair of the raw images from
the dataset corresponded to 1 grayscale + 5 three-channel color spaces + 5 × 3 single
color channels = 21 versions of color space or channel for feature detection, description,
matching, and filtering during registration (Figure 2). All image color space conversion
operations were completed using the open-source library OpenCV version 4.9.0 without
any additional image processing steps before or after the conversions, the mathematical
expressions of which can be found in [70].

2.3. Selected Detectors and Descriptors

The selection of image feature detectors and descriptors for the study was based on
the following considerations, aimed at facilitating the replication of the study results and
ensuring practical benefits from the study conclusions: the chosen detectors and descrip-
tors should be implemented in open-source libraries; the chosen detector and descriptor
functions should be stable for consecutive executions without raising fatal computer errors;
the chosen detectors and descriptors should be freely available for use without patent
protections; the chosen detector and descriptor functions should require no arguments to
initialize the features; the outputs of the chosen detector functions should be compatible
with the inputs of the chosen descriptor functions. Accordingly, nine feature detectors and
11 feature descriptors were selected (Tables 1 and 2). Out of all the possible detector and
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descriptor function combinations, there were 15 never-compatible ones (Table A1). In total,
9 detectors × 11 descriptors − 15 incompatible combinations = 84 detector and descriptor
combinations were investigated in the study. All image feature detection and description
operations were completed using OpenCV version 4.9.0.
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Table 1. Selected image feature detectors for the study.

Feature Detector Reference OpenCV Initialization Function

AKAZE [25] cv2.AKAZE_create()
BRISK [26] cv2.BRISK_create()

CSE [27] cv2.xfeatures2d.StarDetector_create()
FAST [28] cv2.FastFeatureDetector_create()
HL [29] cv2.xfeatures2d.HarrisLaplaceFeatureDetector_create()

KAZE [30] cv2.KAZE_create()
ORB [32] cv2.ORB_create()
SIFT [33] cv2.SIFT_create()

TBMR [35] cv2.xfeatures2d.TBMR_create()

2.4. Image Registration Procedure

Before registration, each pair of raw images from the dataset was first converted to
grayscale or the specified color space. Depending on whether the current registration in-
volved single grayscale channel, single color channel, or all three color channels, the feature
detection, description, matching, and filtering processes described below were repeated
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either once or three times. On the target image channel, image features were first detected
by the specified feature detector and then described by the specified feature descriptor.
The described image features were matched using BF descriptor matcher and filtered by
cross-checking, as explained in the introduction. The binary descriptors, including AKAZE,
BRISK, and ORB, were matched based on Hamming distance, while the non-binary descrip-
tors, including BB, BRIEF, DAISY, FREAK, KAZE, LATCH, SIFT, and VGG, were matched
based on Euclidean distance. If the current registration involved all three color channels, the
three sets of filtered feature matches were combined as one set. Finally, projective homogra-
phy was estimated based on the filtered feature matches through RANSAC, which could
robustly filter out outlier feature matches that survived through cross-checking but did
not agree with the majority (Figure 3). In total, 1106 raw image pairs × 21 color spaces or
channels × 84 detector and descriptor combinations = 1,950,984 image registrations were
performed in the study. All failed registrations or failed registration code executions were
recorded, which could be due to intermittent detector and descriptor incompatibility, fewer
than four inlier matched features after RANSAC for homography estimation, excessive
registered source image distortion surpassing computer memory capacity from extreme
homography transformation, etc. All image registration operations were completed using
OpenCV version 4.9.0 in a Python 3.11.5 environment with default function argument
values, unless specified otherwise above.

Table 2. Selected image feature descriptors for the study.

Feature Descriptor Reference OpenCV Initialization Function

AKAZE [25] cv2.AKAZE_create()
BB [36] cv2.xfeatures2d.BoostDesc_create()

BRIEF [38] cv2.xfeatures2d.BriefDescriptorExtractor_create()
BRISK [26] cv2.BRISK_create()
DAISY [39] cv2.xfeatures2d.DAISY_create()
FREAK [36] cv2.xfeatures2d.FREAK_create()
KAZE [30] cv2.KAZE_create()

LATCH [41] cv2.xfeatures2d.LATCH_create()
ORB [32] cv2.ORB_create()
SIFT [33] cv2.SIFT_create()
VGG [46] cv2.xfeatures2d.VGG_create()
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2.5. Registration Quality Evaluation

As ground truth registrations do not exist for the UDIS-D dataset, the current study
evaluated the image registration quality based on the similarities between the overlapping
areas of the target and source images, since perfect registrations should result in identical
overlapping areas. While the image registrations were executed on multiple computers
with different hardware specifications, registration speed was not considered as an essential
aspect to evaluate for the study. Before any evaluation metrics could be properly calculated,
preprocessing steps of the registered target and source images were necessary to ensure
unbiased objective registration quality assessment. By default, OpenCV blends source
image edge pixels with black background pixels during image warping to avoid artifacts
and jagged edges, which, however, compromises original source image pixel values. When
extracting target and source image overlapping regions, such edge pixels were specifically
not counted as overlapping pixels. Additionally, OpenCV by default fills empty spaces
with black background pixels in the registered images, which could affect certain metric
calculations, although by a minimal amount. During target and source image overlapping
region extraction, the black borders around the overlapping regions were removed as much
as possible without sacrificing any valid overlapping pixels (Figure 4).
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Three commonly used metrics were selected to objectively quantify the image registra-
tion quality in the study:

• RE = 1
F ∑F

i=1

√
(xi − xi

′)2 + (yi − yi
′)2 Where F is the number of inlier matched fea-

tures after RANSAC homography estimation, (xi, yi) are the coordinates of the ith
feature in registered target image, and (xi

′, yi
′) are the coordinates of the ith feature in

registered source image. RE ranges from 0 to positive infinity.

• RMSE =
√

1
3P ∑W

x=1 ∑H
y=1

(
Rx,y − Rx,y

′)2
+

(
Gx,y − Gx,y

′)2
+

(
Bx,y − Bx,y

′)2 Where P
is the number of pixels in the overlapping area between registered target and source
images excluding black background pixels, W is the overlapping area width, H is the
overlapping area height, (x, y) are the overlapping area pixel coordinates, (Rx,y, Gx,y,
Bx,y) are the R, G, B values at pixel location (x, y) in registered target image, and (Rx,y

′,
Gx,y

′, Bx,y
′) are the R, G, B values at pixel location (x, y) in registered source image.

RMSE ranges from 0 to 255 for typical 24-bit images.
• SSIM = 1

N ∑N
i=1

(2µiµi
′+6.5025)(2σc+58.5225)

(µi
2+µi

′2+6.5025)(σi
2+σi

′2+58.5225)
Where N is the number of image

patches where local SSIM is calculated within a 7 × 7 sliding window, µi is the mean
of the ith patch in registered grayscale target image, µi

′ is the mean of the ith patch in
registered grayscale source image, σc is the covariance of registered grayscale target
and source images, σi is the variance of the ith patch in registered grayscale target
image, and σi

′ is the variance of the ith patch in registered grayscale source image.
SSIM ranges from −1 to 1. All SSIM values were calculated using scikit-image [71]
version 0.20.0 with default function argument values.



J. Imaging 2024, 10, 105 8 of 25

3. Results and Discussion
3.1. Registration Quality Comparison

As shown in the following sections, RE tended to provide extremely large values
when a low-quality registration was performed, unlike RMSE and SSIM, whose values
were distributed within finite ranges. Perfect RE values such as 0 were achieved in the
study; however, they were usually the result of low numbers of inlier feature matches after
RANSAC filtering and hence could be misleading. For example, a homography estimated
based on only four feature matches will achieve a perfect feature reprojection, which,
however, is not necessarily equivalent to a high-quality registration, as the homography
can represent an overfitted image transformation relationship. Additionally, the absence of
large RE values did not necessarily indicate high-quality image registrations either, as the
registrations simply could have failed. RMSE represents the average pixel value difference
between registered target and source images. No perfect RMSE values such as 0 were
achieved, which was anticipated, as the registration process generally would warp source
images and distort their pixel values to some degree. All SSIM values in the study were
larger than 0, indicating that the overlapping areas between the registered target and source
images were always somewhat similar luminance, contrast, or texture-wise. Similar to
RMSE, no perfect SSIM values such as 1 were achieved either. The large value ranges of the
metrics reflected the diversity of registration difficulty within UDIS-D as an appropriate
benchmarking dataset, including both easy registration, which would lead to low RE and
RMSE values and high SSIM values, and difficult registration, which would lead to high
RE and RMSE values and low SSIM values.

3.1.1. Color Space

Figure 5, supplemented by Table A2, shows the boxplots of the three registration
quality metrics achieved by each three-channel color space for all the image registrations,
in comparison to one-channel grayscale (referred to as GS in the following figures). Overall,
no color spaces differentiated themselves from others in a substantial way, regardless of
the evaluation metrics, indicating that the utilization of image features from all three color
channels did not bring obvious registration quality benefits. Based on the median values of
the distributions, grayscale had a lower RE of 1.0005 than any other color spaces, which
was likely due to its lower number of matched features coming from only one channel
instead of all three channels, an RMSE of 8.1125, and an SSIM of 0.7363. For both RMSE and
SSIM, RGB and XYZ consistently outperformed grayscale marginally, with RMSEs of 8.0981
and 8.0936 and SSIMs of 0.7410 and 0.7409, while Y′CrCb, HLS, and L*a*b* consistently
underperformed grayscale marginally, with RMSEs of 8.1190, 8.1360, and 8.1159 and SSIMs
of 0.7349, 0.7287, and 0.7354. Among the five color spaces, HLS seemed to be the least ideal
one, with the largest RE and RMSE and the smallest SSIM.
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Figure 6, supplemented by Table A3, shows the boxplots of the registration quality
relative changes achieved by each color space over grayscale, when their raw image pairs,
feature detectors, and feature descriptors were identical. Generally, based on the median
values of the distributions, no color space was able to improve RE over grayscale, likely for
the reason mentioned above. However, again, RGB and XYZ both were able to improve
RMSE and SSIM over grayscale marginally by 0.05% and 0.1%, indicating an expected
image registration quality benefit when switching from grayscale to RGB or XYZ as input
image channels. Overall Y′CrCb, as well as L*a*b* to a lesser degree, achieved an almost
identical performance to grayscale with 0 or near 0 RE, RMSE, and SSIM relative changes.
HLS again showed a consistently lower performance than grayscale, with median 10.57%
RE increase, 0.09% RMSE increase, and 0.25% SSIM decrease.
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Focusing on the outliers of the distributions in Figure 6, with the right raw image
pair, feature detector, and feature descriptor combinations, all color spaces were able
to either reduce image registration quality of grayscale by up to 9343% to 501,135% for
RE, 103% to 253% for RMSE, and 76% to 95% for SSIM, or improve image registration
quality of grayscale by up to 100% for RE, 37% to 73% for RMSE, and 252% to 1240% for
SSIM. In that sense, no color space, including grayscale, is superior to others at all times,
depending on the input image characteristics. Such large relative change ranges indicated
the necessity of large benchmarking datasets for comparative image registration studies,
as investigations based on only a few pair of outlier images could very likely result in
misleading observations and conclusions.

3.1.2. Color Channel

Figure 7, supplemented by Table A4, shows the boxplots of the three registration
quality metrics achieved by each individual color channel for all the image registrations, in
comparison to grayscale. Overall, no color channels differentiated themselves from others
in a meaningful positive way, although apparent inferior performances were observed for
certain color channels. Based on RMSE and SSIM, Cr, Cb, H, S, a*, and b* were noticeably
less accurate than the remaining color channels, all of which had similar performances to
each other. In terms of RE median values, Cr, Cb, a*, and b* are much lower than the other
color channels. Their 0 or near 0 first quartile RE values also indicated that they were not
able to provide rich image features. Y′ and L* are the only two channels that outperformed
grayscale based on RMSE and SSIM; however, their median values are almost identical to
grayscales, with 8.1120 and 8.1122 versus 8.1125 for RMSE and 0.7364 and 0.7364 versus
0.7363 for SSIM. Note the calculation of Y′ channel should be the same as grayscale in
theory, yet the function implementations in OpenCV occasionally resulted in minor image
pixel value differences due to internal code base issues, leading to the trivial registration
quality metric distribution differences between them.
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Figure 7. Boxplots of RE, RMSE, and SSIM achieved by each color channel for all image registrations.

Figure 8, supplemented by Table A5, shows the boxplots of the registration quality
relative changes achieved by each color channel over grayscale, when their raw image
pairs, feature detectors, and feature descriptors were identical. Based on the median values
of the distributions, X, Cr, Cb, a*, and b* were able to achieve lower REs than grayscale,
with a 0.43% to 54.24% reduction. L* was the only color channel that attained superior
RMSE and SSIM to grayscale, with a marginal 0.01% improvement for both metrics. Cr, Cb,
H, S, a*, and b* again showed substantially inferior performance to grayscale according to
RMSE and SSIM, with an increase of 2.33% to 16.11% for RMSE and a decrease of 6.77% to
33.28% for SSIM.
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grayscale for all image registrations.

Focusing on the outliers of the distributions in Figure 8, with the right raw image
pair, feature detector, and feature descriptor combinations, similar to the color space
observations, all color channels were able to either reduce image registration quality
of grayscale by up to 2609% to 524,210% for RE, 27% to 297% for RMSE, and 64% to
96% for SSIM, or improve image registration quality of grayscale by up to 89 to 100%
for RE, 16% to 72% for RMSE, and 119% to 1196% for SSIM. Again, no color channel,
including grayscale, is superior to others at all times, depending on the input image
characteristics. Relatively speaking, three-channel color spaces seemed to provide slight
advantages over single-channel color channels in terms of improving the quality of the
outlier grayscale registrations.

3.1.3. Feature Detector

Figure 9, supplemented by Table A6, shows the boxplots of the three registration
quality metrics achieved by each feature detector for all the image registrations. Based on
the median RE values, from the best to the worst, the detectors ranked as AKAZE, SIFT,
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CSE, KAZE, HL, ORB, BRISK, FAST, and TBMR, with REs from 0.88 to 1.12. Based on the
median RMSE and SSIM values, however, which mostly agreed with each other, from the
best to the worst, the detectors ranked as FAST/SIFT, SIFT/FAST, BRISK, KAZE, AKAZE,
HL, TBMR, CSE, and ORB, with RMSEs from 8.14 to 8.55 and SSIMs from 0.63 to 0.74.
SIFT stood out as the most consistent-performing detector across all three metrics, securing
second place in RE and RMSE and first place in SSIM.
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3.1.4. Feature Descriptor

Figure 10, supplemented by Table A7, shows the boxplots of the three registration
quality metrics achieved by each feature descriptor for all the image registrations. The
descriptors did not differentiate themselves from each other as much as the detectors.
Based on the median RE values, from the best to the worst, the descriptors ranked as
AKAZE, KAZE, FREAK, BRISK, ORB, DAISY, BB, BRIEF, VGG, SIFT, and LATCH, with
REs from 0.88 to 1.08. Based on the median RMSE values, from the best to the worst, the
descriptors ranked as AKAZE, DAISY, VGG, BRIEF, SIFT, BB, KAZE, BRISK, LATCH, ORB,
and FREAK, with RMSEs from 8.21 to 8.33. Based on the median SSIM values, from the best
to the worst, the descriptors ranked as AKAZE, KAZE, DAISY, VGG, BRIEF, BB, BRISK,
SIFT, ORB, LATCH, and FREAK, with SSIMs from 0.70 to 0.72. AKAZE consistently stood
out as the best-performing descriptor across all three metrics. However, as shown in the
upcoming section, AKAZE was one of the two descriptors with poor detector compatibility
and hence high registration failure rate. The observed superior performance of AKAZE
could be due to the lower influence from fewer low-performing detectors.
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3.2. Registration Quality Metric Agreement

Figure 11 shows the scatter plots between the three registration quality metrics of all
the image registrations. RMSE and SSIM were poorly correlated with RE, with coefficients
of determination (R2s) of merely 0.0016 and 0.0019, respectively. This once again suggested
the downside of RE as an image registration quality metric, potentially being extremely
large for inaccurate registrations, unlike RMSE and SSIM, whose values fluctuated with
narrow ranges. Additionally, as mentioned before, low REs could be simply the result of low
matched feature numbers and did not guarantee accurate image registrations. RMSE and
SSIM were better correlated, demonstrating a general negative correlation with a 0.4844 R2.
Under the context of the study, which employed the unimodal dataset UDIS-D, RMSE
seemed to be a superior and more reliable metric than SSIM. When RMSEs were low, such
as being near 2, the corresponding SSIMs were also high, such as being near 1. However,
when SSIMs were high, such as being near 1, the corresponding RMSEs distributed over
the entire data range, such as being anywhere in between 2 and 11. In that regard, high-
quality registrations identified through their RMSEs would likely also have high SSIMs,
while high-quality registrations identified through their SSIMs would not necessarily have
low RMSEs. Nevertheless, in terms of multimodal image registrations where image pixel
values differ significantly, such as registrations between magnetic resonance imaging (MRI),
computed tomography (CT), single-photon emission computed tomography (SPECT),
positron emission tomography (PET), and ultrasound (US) images [72–74], or between
optical, infrared, SAR, depth, map, day, and night images [75–77], SSIM might provide
an advantage over RMSE to better quantify the similarity between registered target and
source images.
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3.3. Registration Failure Rate

Figure 12 shows the registration failure rates of the investigated color channels and
spaces, feature detectors, and feature descriptors respectively for all the image registrations.
Cr, Cb, a*, and b* were the four color channels with very high failure rates, ranging
from 66% to 82%. Figure 2 demonstrates a clear example showing their lack of image
contrast relative to the other color channels and spaces, which could cause low numbers of
detectable features. H and S also had noticeably high failure rates of 6% and 4%. From the
best to the worst, the rest color channels and spaces ranked as L*a*b*, Y′CrCb, HLS, RGB,
XYZ, grayscale, R, Z, L*, G, L, Y′, Y, X, and B, with failure rates varying from 2% to 3%.
Interestingly, even though by a marginal difference, the five color spaces were more robust
than any single image channels, including grayscale. From the best to the worst, the feature
detectors ranked as TBMR, FAST, SIFT, ORB, BRISK, HL, CSE, KAZE, and AKAZE. Aside
from TBMR, which had an unusually low failure rate of 2%, the failure rates of the rest
detectors ranged from 14% to 23%. In terms of feature descriptor, AKAZR and KAZE were
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the two with abnormally high failure rates of 57% and 54%, mostly due to their frequent
incompatibility with most feature detectors. From the best to the worst, the rest descriptors
ranked as VGG, BB, SIFT, DAISY, LATCH, ORB, BRIEF, BRISK, and FREAK, with failure
rates ranging from 14% to 16%.
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3.4. Feature Number
3.4.1. Color Channel

Figure 13, supplemented by Table A8, shows the distributions of the initial feature
numbers in the target and source images detected by the feature detectors, as well as the
inlier matched feature numbers in the target or source images after RANSAC used for
homography estimation, achieved by each color channel for all the image registrations.
Based on the distribution median values, as expected, Cr, Cb, a*, and b* had very low
numbers of initial detectable features and final inlier features, with 24 to 31 detector features
and 6 to 7 homography features. H and S also had considerably lower features than the most
color channels, with 390 and 575 detector features and 10 and 53 homography features.
From the most to the least, the rest of the color channels ranked as Z, L*, R, G, Y, Y′,
grayscale, L, B, and X, with 399 to 449 detector features, and L*, G/Y/Y′/grayscale, Z/R, L,
X, and B, with 144 to 162 homography features. As the best performing color channel in
terms of registration quality, L* also ranked at the top in terms of feature numbers with
the second-most initial detectable features and the most final inlier features. On the other
hand, Cr, Cb, H, S, a*, and b* not only attained the lowest registration quality, but also had
the lowest detector and homography features. This observation indicated the potential
positive association between image feature number and image registration quality. In that
sense, artificial intelligence-based image contrast enhancement and resolution upscaling
might be a future research direction for improving image registration accuracy.

3.4.2. Feature Detector

Figure 14, supplemented by Table A9, shows the distributions of the initial feature
numbers in the target and source images detected by the feature detectors, as well as the
inlier matched feature numbers in the target or source images after RANSAC used for
homography estimation, achieved by each feature detector for all the image registrations.
Substantial feature number differences were observed for the detectors. Based on the
distribution median values, the detector rankings for the initial and final feature numbers
mostly agreed with each other, being FAST, BRISK, SIFT/KAZE, KAZE/SIFT, AKAZE, HL,
ORB, TBMR/CSE, and CSE/TBMR, from the most to the least. The initial detector feature
numbers ranged from 3988 to 244, while the final homography feature numbers ranged
from 600 to 33. FAST, as the one of the two best-performing detectors based on RMSE
and SSIM, provided significantly more features than the remaining detectors, surpassing
the second-place detector, BRISK, by 80% and 83% in terms of initial detector and final
homography features. Again, the potential association between image feature number and
image registration quality was observed. Aside from image registration, image features
also have applications in object recognition [78], object detection [79], image retrieval [80],
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3D reconstruction [81], etc., which all might benefit from the large image feature numbers
identified by detectors such as FAST, allowing for richer representations of objects and
more potential feature correspondences.
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3.4.3. Feature Descriptor

Figure 15, supplemented by Table A10, shows the distributions of the inlier matched
feature numbers in the target or source images after RANSAC used for homography
estimation, achieved by each feature descriptor for all the image registrations. No significant
feature number differences between the descriptors were observed unlike the detectors,
indicating feature detector was potentially a bigger factor than feature descriptor in regard
to influencing the numbers of final inlier homography features. Based on the distribution
median values, from the most to the least, the descriptors ranked as KAZE, AKAZE, DAISY,
VGG, SIFT, BRIEF, LATCH, BB, ORB, BRISK, and FREAK, with homography feature
numbers ranging from 87 to 215.

3.5. Best Color Space or Channel, Detector, and Descriptor Combination

Due to the large number of combinations, the selection of the best color space or
color channel, feature detector, and feature descriptor combinations was based on one
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prerequisite: the selected combinations shall never fail for any image registrations. Out
of the 21 color spaces or channels × 84 detector and descriptor combinations = 1764 total
combinations, each of which performed 1106 registrations, 302 or 17% of them successfully
registered all the images in the dataset without failure. Figure 16 shows the composition pie
charts of the 302 unfailing combinations in terms of color space or channel, feature detector,
and feature descriptor. Among the 21 investigated color spaces or channels, Cr, Cb, H, a*
and b* always failed at least once when registering the entire dataset, regardless of their
paired detectors and descriptors. Interestingly, HLS had the highest proportion of unfailing
combinations than any other color spaces or channels. Among the nine investigated feature
detectors, only CSE was not able to register all the dataset images without failure. On the
other hand, with the right color spaces or channels and detectors, all 11 investigated feature
descriptors were able to achieve successful registrations for all the dataset images.
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In terms of average values over the entire dataset, for the 302 unfailing combinations,
their REs ranged from 0.86 to 1.60, their RMSEs ranged from 7.80 to 8.30, and their SSIMs
ranged from 0.63 to 0.75. The top 10 combinations for each metric below can be found in
Table A11. As the combinations with consecutive placing according to any of the three
registration quality metrics often had very small differences, the following color space or
channel, detector, and descriptor combination recommendations were strictly based on and
confined by the UDIS-D dataset:
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• Lowest RE combinations For color space, XYZ+KAZE+BRISK ranked at 2nd place,
with an RE of 0.86, an RMSE of 7.85 at 102nd place, and an SSIM of 0.73 at 102nd place.
For color channel, L+KAZE+BRISK ranked at 1st place, with an RE of 0.86, an RMSE
of 7.88 at 166th place, and an SSIM of 0.73 at 153rd place.

• Lowest RMSE combinations For color space, RGB+SIFT+VGG ranked at 1st place,
with an RMSE of 7.80, an RE of 0.90 at 21st place, and an SSIM of 0.74 at 4th place. For
color channel, Y′+FAST+VGG, which should be equivalent to grayscale+FAST+VGG,
ranked at 7th place, with an RMSE of 7.81, an RE of 1.15 at 181st place, and an SSIM of
0.74 at 6th place.

• Highest SSIM combinations For color space, XYZ+SIFT+SIFT ranked at 1st place, with
an SSIM of 0.75, an RE of 0.90 at 18th place, and an RMSE of 7.80 at 2nd place. For
color channel, G+FAST+VGG ranked at 5th place, with an SSIM of 0.74, an RE of
1.15 at 184th place, and an RMSE of 7.81 at 12th place.

• Most detector feature combinations For color channel, Z+FAST+VGG ranked at 39th
place, with a detector feature number of 11,642, and a homography feature number of
1960 at 21st place.

• Most homography feature combinations For color channel, Z+FAST+VGG ranked at
21st place, with a homography feature number of 1960, and a detector feature number
of 11,642 at 39th place, as mentioned above.

4. Conclusions

The following conclusions were made strictly based on the UDIS-D dataset and only
applicable to the investigated color spaces and channels, feature detectors, and feature
descriptors, without considering the incompatible detector and descriptor combinations.

From an atomistic point of view, two color spaces, XYZ and RGB, as well as one color
channel, L*, provided very minor image registration quality improvement over grayscale.
SIFT, and potentially FAST, were the best-performing detectors. AKAZE was the best-
performing descriptor. L*a*b* was the most robust color space, and grayscale was the
most robust color channel. TBMR was the most robust detector. VGG was the most
robust descriptor. Z channel allowed the most initial detector features, while L* channel
allowed the most final homography features. FAST detector provided the most detector and
homography features, while KAZE descriptor provided the most homography features.

From a holistic point of view, color space XYZ and RGB, detector SIFT and FAST, and
descriptor VGG and SIFT seemed to optimize RMSE and SSIM the most. The KAZE detector
and BRISK descriptor combination seemed to provide special benefits for optimizing
RE. The Z channel, FAST detector, and VGG descriptor combination allowed for the
detection of the most initial detector features as well as the preservation of the most final
homography features.

5. Feature Acronym

The extended forms of the image feature detectors and descriptors mentioned in this
article include:

• AGAST: adaptive and generic accelerated segment test
• AKAZE: accelerated-KAZE
• ASIFT: affine-SIFT
• BB: BinBoost
• BEBLID: boosted efficient binary local image descriptor
• BRIEF: binary robust independent elementary features
• BRISK: binary robust invariant scalable keypoints
• CSE: center surround extremas
• CSIFT: colored SIFT
• CURVE: local feature of retinal vessels
• FAST: features from accelerated segment test
• FREAK: fast retina keypoint
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• GFTT: good features to track
• GOFRO: Gabor odd filter ratio-based operator
• GSIFT: global context SIFT
• HC: Harris corner
• HL: Harris–Laplace
• HOG: histograms of oriented gradient
• LATCH: learned arrangements of three patch codes
• LUCID: locally uniform comparison image descriptor
• MSD: maximal self-dissimilarities
• MSER: maximally stable extremal regions
• ORB: oriented FAST and rotated BRIEF
• PCA-SIFT: principal components analysis-SIFT
• PCT: position–color–texture
• SIFT: scale invariant feature transform
• SQFD: signature quadratic form distance
• SURF: speeded up robust features
• TBMR: tree-based Morse regions
• TEBLID: triplet-based efficient binary local image descriptor
• VGG: Visual Geometry Group
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Appendix A

This section provides detailed information not shown in the main article.

Table A1. Incompatible OpenCV image feature detectors and descriptors.

Feature Detector Feature Descriptor

BRISK AKAZE
BRISK KAZE

CSE AKAZE
CSE KAZE

FAST AKAZE
FAST KAZE
HL AKAZE
HL KAZE

ORB AKAZE
ORB KAZE
SIFT AKAZE
SIFT KAZE
SIFT ORB

TBMR AKAZE
TBMR KAZE
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Table A2. Image registration quality metric distributions of the investigated color spaces.

Color Space
RE RMSE SSIM

Min Q1 Median Q3 Max Min Q1 Median Q3 Max Min Q1 Median Q3 Max

GS 0 0.8024 1.0005 1.2121 124.2114 2.6329 7.1536 8.1125 8.9581 11.2000 0.0679 0.5946 0.7363 0.8472 0.9767

RGB 5.80 × 10−14 0.8328 1.0282 1.2357 757.4403 2.6369 7.1372 8.0981 8.9335 11.2248 0.0721 0.5993 0.7410 0.8500 0.9905

XYZ 2.99 × 10−14 0.8229 1.0196 1.2288 389.9551 2.6332 7.1390 8.0936 8.9411 10.9971 0.0374 0.5994 0.7409 0.8500 0.9910

Y′CrCb 2.94 × 10−14 0.8055 1.0081 1.2200 97.7295 2.6329 7.1598 8.1190 8.9635 11.2000 0.0679 0.5932 0.7349 0.8466 0.9707

HLS 3.08 × 10−14 0.9268 1.1179 1.3088 500.9235 2.6434 7.1856 8.1360 8.9832 10.9812 0.0428 0.5878 0.7287 0.8392 0.9948

L*a*b* 2.89 × 10−14 0.8104 1.0132 1.2254 443.2364 2.6271 7.1579 8.1195 8.9659 11.0763 0.0387 0.5935 0.7354 0.8465 0.9814

Table A3. Image registration quality relative change distribution of the investigated color spaces over grayscale.

Color Space
RE RMSE SSIM

Min Q1 Median Q3 Max Min Q1 Median Q3 Max Min Q1 Median Q3 Max

RGB −1 −0.0312 0.0197 0.0822 5011.3504 −0.6645 −0.0098 −0.0005 0.0071 1.3114 −0.8751 −0.0189 0.0010 0.0268 11.5030

XYZ −1 −0.0360 0.0135 0.0714 2071.0455 −0.7286 −0.0096 −0.0005 0.0069 1.4980 −0.9434 −0.0181 0.0010 0.0262 12.3977

Y′CrCb −1 −7.25 × 10−7 7.01 × 10−8 2.84 × 10−6 93.4272 −0.3746 −5.14 × 10−11 0 5.28 × 10−11 1.0278 −0.7606 −5.84 × 10−10 0 5.64 × 10−10 2.5220

HLS −1 0.0209 0.1057 0.2198 1610.0101 −0.6761 −0.0083 0.0009 0.0134 1.6110 −0.8839 −0.0359 −0.0025 0.0218 10.6199

L*a*b* −1 −0.0451 0.0106 0.0717 648.5143 −0.6329 −0.0085 1.14 × 10−5 0.0087 2.5251 −0.9523 −0.0235 −2.36 × 10−5 0.0234 8.9460

Table A4. Image registration quality metric distributions of the investigated color channels.

Color Channel
RE RMSE SSIM

Min Q1 Median Q3 Max Min Q1 Median Q3 Max Min Q1 Median Q3 Max

GS 0 0.8024 1.0005 1.2121 124.2114 2.6329 7.1536 8.1125 8.9581 11.2000 0.0679 0.5946 0.7363 0.8472 0.9767

R 0 0.8142 1.0112 1.2181 466.5051 2.6300 7.1577 8.1187 8.9625 11.4128 0.0391 0.5939 0.7350 0.8467 0.9808

G 0 0.8059 1.0024 1.2144 339.3203 2.6346 7.1558 8.1172 8.9629 10.9353 0.0473 0.5935 0.7355 0.8461 0.9873

B 0 0.8184 1.0176 1.2218 264.9574 2.6259 7.1747 8.1271 8.9807 11.2438 0.0549 0.5916 0.7330 0.8439 0.9781

X 0 0.7970 0.9966 1.2076 230.0495 2.6380 7.1618 8.1233 8.9696 11.2540 0.0392 0.5930 0.7348 0.8461 0.9771

Y 0 0.8024 1.0022 1.2126 158.1726 2.6340 7.1537 8.1154 8.9556 11.1215 0.0810 0.5948 0.7357 0.8469 0.9922

Z 0 0.8229 1.0217 1.2262 238.1934 2.6443 7.1611 8.1156 8.9599 11.0945 0.0377 0.5948 0.7354 0.8462 0.9824

Y′ 0 0.8024 1.0009 1.2122 124.2114 2.6329 7.1533 8.1120 8.9572 11.2000 0.0679 0.5948 0.7364 0.8473 0.9767
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Table A4. Cont.

Color Channel
RE RMSE SSIM

Min Q1 Median Q3 Max Min Q1 Median Q3 Max Min Q1 Median Q3 Max

Cr 0 0 0.5328 0.9075 479.0374 4.3705 8.5232 9.5965 10.1616 10.9218 0.0668 0.3479 0.4656 0.6348 0.9979

Cb 0 0.0301 0.6558 0.9893 383.1054 3.7606 8.3612 9.4740 10.1213 11.1037 0.0386 0.3359 0.4576 0.6306 0.9931

H 0 0.7259 1.1107 1.4043 1791.3949 1.4912 8.4892 9.4695 10.0998 11.1104 0.0274 0.3612 0.4878 0.6279 0.9954

L 0 0.8073 1.0051 1.2138 232.3559 2.6425 7.1604 8.1183 8.9682 11.3127 0.0325 0.5932 0.7343 0.8460 0.9796

S 0 0.9138 1.1271 1.3139 532.2115 2.6888 7.5192 8.4918 9.3998 11.0361 0.0282 0.4880 0.6414 0.7797 0.9942

L* 0 0.8072 1.0061 1.2169 443.2365 2.6271 7.1543 8.1122 8.9584 11.0763 0.0387 0.5954 0.7364 0.8471 0.9814

a* 0 0 0.4561 0.8876 2497.2551 3.4712 8.7800 9.8045 10.1946 10.9912 0.0619 0.3376 0.4480 0.6051 0.9903

b* 0 0 0.6189 0.9804 341.4606 3.2459 8.3756 9.5108 10.1313 11.1813 0.0601 0.3340 0.4592 0.6334 0.9984

Table A5. Image registration quality relative change distribution of the investigated color channels over grayscale.

Color Channel
RE RMSE SSIM

Min Q1 Median Q3 Max Min Q1 Median Q3 Max Min Q1 Median Q3 Max

R −1 −0.0477 0.0111 0.0741 852.7151 −0.6608 −0.0085 0.0001 0.0092 1.7467 −0.9391 −0.0249 −0.0002 0.0232 10.1168

G −1 −0.0511 0.0044 0.0615 332.1132 −0.6492 −0.0082 0.0001 0.0088 1.9223 −0.9366 −0.0235 −0.0002 0.0225 8.2042

B −1 −0.0481 0.0172 0.0902 542.3107 −0.6152 −0.0080 0.0006 0.0110 2.3887 −0.9221 −0.0293 −0.0012 0.0219 11.5289

X −1 −0.0579 −0.0043 0.0518 824.0254 −0.6296 −0.0078 0.0002 0.0088 1.9988 −0.9427 −0.0240 −0.0003 0.0214 10.4170

Y −1 −0.0513 0.0009 0.0550 195.2386 −0.6662 −0.0081 1.82 × 10−5 0.0082 1.9427 −0.9080 −0.0220 −2.12 × 10−5 0.0219 11.9081

Z −1 −0.0427 0.0213 0.0909 762.2179 −0.7218 −0.0087 0.0002 0.0097 2.1930 −0.9498 −0.0257 −0.0003 0.0242 9.6052

Y′ −0.8925 0 0 0 26.0947 −0.2221 −2.21 × 10−11 0 2.15 × 10−11 0.2683 −0.6383 −2.34 × 10−10 0 2.43 × 10−10 1.1874

Cr −1 −1 −0.4585 −0.1018 561.2052 −0.1556 0.0625 0.1431 0.2829 1.7261 −0.8972 −0.4754 −0.3029 −0.1478 2.6270

Cb −1 −0.9578 −0.3282 0.0032 516.4805 −0.2510 0.0458 0.1165 0.2286 2.9749 −0.9438 −0.4785 −0.2917 −0.1189 3.3976

H −1 −0.2999 0.0795 0.5094 5242.1047 −0.8390 0.0531 0.1252 0.2327 2.4010 −0.9596 −0.4415 −0.2810 −0.1412 8.3001

L −1 −0.0514 0.0060 0.0661 355.8259 −0.6256 −0.0082 0.0002 0.0094 2.2343 −0.9485 −0.0249 −0.0004 0.0221 11.9563

S −1 −0.0491 0.1300 0.3220 2169.3907 −0.6589 0.0016 0.0233 0.0741 2.1806 −0.9463 −0.1875 −0.0677 −0.0081 10.6029

L* −1 −0.0505 0.0054 0.0632 648.5143 −0.6329 −0.0086 −5.09 × 10−5 0.0084 2.0023 −0.9523 −0.0227 6.33 × 10−5 0.0236 8.9460

a* −1 −1 −0.5424 −0.1581 2143.7176 −0.2017 0.0740 0.1611 0.3009 2.6181 −0.9073 −0.4924 −0.3328 −0.1660 1.9590

b* −1 −1 −0.3608 −0.0089 381.0833 −0.2206 0.0491 0.1218 0.2401 2.5251 −0.9027 −0.4818 −0.2973 −0.1231 3.7708
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Table A6. Image registration quality metric distributions of the investigated feature detectors.

Feature Detector
RE RMSE SSIM

Min Q1 Median Q3 Max Min Q1 Median Q3 Max Min Q1 Median Q3 Max

AKAZE 0 0.6568 0.8834 1.1340 524.5237 2.4982 7.1991 8.2058 9.1134 11.2540 0.0377 0.5728 0.7238 0.8419 0.9910

BRISK 0 0.8745 1.0778 1.3006 778.7086 1.7508 7.1897 8.1602 9.0154 11.0945 0.0436 0.5830 0.7298 0.8442 0.9922

CSE 0 0.7422 0.9207 1.1453 339.3203 2.6642 7.4287 8.4110 9.2794 11.2248 0.0282 0.5245 0.6651 0.7958 0.9814

FAST 0 0.9257 1.1112 1.3154 383.1054 2.6259 7.1557 8.1359 9.0392 11.0833 0.0389 0.5887 0.7400 0.8538 0.9954

HL 0 0.8584 1.0380 1.2472 428.2064 1.4912 7.2412 8.2302 9.1089 11.2796 0.0274 0.5648 0.7156 0.8343 0.9863

KAZE 0 0.6833 0.9225 1.1704 1791.3949 2.1254 7.1924 8.1953 9.1002 10.9844 0.0374 0.5686 0.7266 0.8451 0.9846

ORB 0 0.9023 1.0559 1.2350 2497.2551 2.6346 7.5405 8.5499 9.4351 11.4128 0.0390 0.4660 0.6298 0.7846 0.9948

SIFT 0 0.6747 0.8905 1.1284 627.4206 1.5188 7.1476 8.1495 9.0884 11.1104 0.0293 0.5832 0.7409 0.8518 0.9984

TBMR 0 0.8976 1.1194 1.3020 251.3074 2.6418 7.3862 8.3409 9.2696 11.1813 0.0325 0.5351 0.6823 0.8109 0.9866

Table A7. Image registration quality metric distributions of the investigated feature descriptors.

Feature Descriptor
RE RMSE SSIM

Min Q1 Median Q3 Max Min Q1 Median Q3 Max Min Q1 Median Q3 Max

AKAZE 0 0.6475 0.8802 1.1424 157.9498 2.6432 7.2020 8.2082 9.1180 11.0190 0.0567 0.5720 0.7232 0.8409 0.9712

BB 0 0.8129 1.0296 1.2451 757.4403 2.4982 7.2662 8.2538 9.1667 11.1215 0.0377 0.5520 0.7080 0.8333 0.9979

BRIEF 0 0.8244 1.0338 1.2487 389.1299 1.5188 7.2679 8.2460 9.1433 11.2540 0.0282 0.5576 0.7087 0.8327 0.9826

BRISK 0 0.7288 0.9284 1.1320 466.5051 1.7044 7.2612 8.2753 9.2346 11.0102 0.0374 0.5487 0.7077 0.8344 0.9954

DAISY 0 0.8032 1.0292 1.2534 421.1894 1.4912 7.2452 8.2260 9.1080 11.1505 0.0601 0.5615 0.7151 0.8369 0.9863

FREAK 0 0.7080 0.9016 1.1169 1791.3949 2.2251 7.3115 8.3258 9.2896 11.4128 0.0274 0.5344 0.6951 0.8270 0.9945

KAZE 0 0.6428 0.8981 1.1690 130.8570 2.6395 7.2435 8.2682 9.2238 10.8529 0.0795 0.5449 0.7155 0.8415 0.9771

LATCH 0 0.8625 1.0818 1.2958 783.5445 2.6259 7.3006 8.2769 9.1702 11.1286 0.0293 0.5462 0.6985 0.8272 0.9979

ORB 0 0.8233 1.0219 1.2167 2497.2551 1.7508 7.2953 8.2827 9.2057 11.2796 0.0325 0.5489 0.7027 0.8283 0.9948

SIFT 0 0.8459 1.0662 1.2871 627.4206 1.6517 7.2750 8.2512 9.1394 11.2248 0.0390 0.5529 0.7065 0.8324 0.9984

VGG 0 0.8326 1.0447 1.2584 479.0374 2.1254 7.2579 8.2365 9.1280 11.1104 0.0421 0.5581 0.7125 0.8351 0.9984
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Table A8. Distributions of initial detector feature numbers and final homography feature numbers of
the investigated color channels.

Color Channel
Detector Feature Number Homography Feature Number

Min Q1 Median Q3 Max Min Q1 Median Q3 Max

GS 4 420 735 1715 16,556 4 54 157 436 10,460

R 5 424 746 1728.75 16,611 4 53 155 432 10,670

G 5 425 740 1727 16,565 4 54 157 436 10,586

B 4 413 721 1669 16,575 4 49 144 400 10,191

X 4 399 695.5 1619 16,254 4 52 151 412 10,417

Y 4 422 737.5 1717.75 16,597 4 54 157 437 10,638

Z 4 449 778 1833.75 17,013 4 53 155 442 10,610

Y′ 5 420 735.5 1715 16,556 4 54 157 437 10,460

Cr 4 11 24 51 260 4 4 6 11 86

Cb 4 13 31 79 512 4 5 7 15 236

H 4 167 390 667 4224 4 6 10 27 447

L 4 415 724.5 1695 16,481 4 52.25 152 423 10,324

S 4 337 575 1487 14,673 4 15 53 167 9701

L* 5 441 768.5 1799 17,047 4 56 162 457 10,474

a* 4 11 25 58 224 4 4 6 9 84

b* 4 12 29 80 453 4 4 7 14 237

Table A9. Distributions of initial detector feature numbers and final homography feature numbers of
the investigated feature detectors.

Feature Detector
Detector Feature Number Homography Feature Number

Min Q1 Median Q3 Max Min Q1 Median Q3 Max

AKAZE 4 269 707 1063 2947 4 31 145 360 2021

BRISK 4 733 2219 4006 13746 4 58 328 877 6866

CSE 4 107 244 386 1073 4 13 52 124 771

FAST 4 893 3987.5 7341 17,047 4 69 600 1756 10,670

HL 4 256 618 1059 3488 4 26 97 227 1514

KAZE 4 341 964 1395 3394 4 36 177 448 2529

ORB 4 496 500 500 501 4 21 62 125 376

SIFT 4 389 1375 2613 6576 4 25 171 467 2588

TBMR 4 98 351 621 1310 4 9 33 98 551

Table A10. Distributions of final homography feature numbers of the investigated feature descriptors.

Feature Descriptor
Homography Feature Number

Min Q1 Median Q3 Max

AKAZE 4 44 191 429 4860

BB 4 32 133 440 29,264

BRIEF 4 37 140 437 25,130

BRISK 4 25 111 373 25,094
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Table A10. Cont.

Feature Descriptor
Homography Feature Number

Min Q1 Median Q3 Max

DAISY 4 43 161 505 29,265

FREAK 4 20 87 338 21,257

KAZE 4 38 215 525 5596

LATCH 4 34 135 407 26,330

ORB 4 30 127 380 25,698

SIFT 4 37 145 481 31,523

VGG 4 40 155 499 31,604

Table A11. Top 10 color space or channel, feature detector, and feature descriptor combinations in
terms of average RE, RMSE, SSIM, detector feature number, and homography feature number over
the entire dataset.

Place
RE RMSE SSIM Detector Feature Number Homography Feature Number

Combination Value Combination Value Combination Value Combination Value Combination Value

1st L+KAZE+BRISK 0.8626 RGB+SIFT+VGG 7.8020 XYZ+SIFT+SIFT 0.7467 Z+FAST+VGG 11,641.89 Z+FAST+VGG 1960.12

2nd XYZ+KAZE+BRISK 0.8631 XYZ+SIFT+SIFT 7.8038 XYZ+SIFT+VGG 0.7453 Z+FAST+BB 11,641.89 L*+FAST+VGG 1925.72

3rd RGB+SIFT+BRISK 0.8635 XYZ+SIFT+VGG 7.8056 RGB+SIFT+SIFT 0.7446 Z+FAST+BRISK 11,641.89 G+FAST+VGG 1885.80

4th X+KAZE+FREAK 0.8639 RGB+FAST+VGG 7.8059 RGB+SIFT+VGG 0.7440 L*+FAST+VGG 11,175.85 Y+FAST+VGG 1884.00

5th Y′CrCb+KAZE+BRISK 0.8660 RGB+FAST+DAISY 7.8078 G+FAST+VGG 0.7439 L*+FAST+DAISY 11,175.85 R+FAST+VGG 1875.15

6th Y′+KAZE+BRISK 0.8702 Y′CrCb+FAST+VGG 7.8092 Y′+FAST+VGG 0.7436 L*+FAST+BRISK 11,175.85 Y′+FAST+VGG 1868.76

7th Y+KAZE+BRISK 0.8704 Y′+FAST+VGG 7.8106 B+SIFT+SIFT 0.7435 L*+FAST+SIFT 11,175.85 GS+FAST+VGG 1867.36

8th GS+KAZE+BRISK 0.8713 GS+FAST+VGG 7.8109 GS+FAST+VGG 0.7435 B+FAST+VGG 11,018.69 L*+FAST+SIFT 1855.61

9th R+SIFT+BRISK 0.8725 R+FAST+VGG 7.8126 RGB+FAST+VGG 0.7434 B+FAST+DAISY 11,018.69 B+FAST+VGG 1848.31

10th RGB+SIFT+BB 0.8744 Z+FAST+VGG 7.8127 Y+FAST+VGG 0.7433 B+FAST+BRISK 11,018.69 X+FAST+VGG 1826.52
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