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Abstract: The position of the fetal head during engagement and progression in the birth canal is the
primary cause of dystocic labor and arrest of progression, often due to malposition and malrotation.
The authors performed an investigation on pregnant women in labor, who all underwent vaginal
digital examination by obstetricians and midwives as well as intrapartum ultrasonography to collect
four “geometric parameters”, measured in all the women. All parameters were measured using
artificial intelligence and machine learning algorithms, called AIDA (artificial intelligence dystocia
algorithm), which incorporates a human-in-the-loop approach, that is, to use AI (artificial intelligence)
algorithms that prioritize the physician’s decision and explainable artificial intelligence (XAI). The
AIDA was structured into five classes. After a number of “geometric parameters” were collected, the
data obtained from the AIDA analysis were entered into a red, yellow, or green zone, linked to the
analysis of the progress of labor. Using the AIDA analysis, we were able to identify five reference
classes for patients in labor, each of which had a certain sort of birth outcome. A 100% cesarean
birth prediction was made in two of these five classes. The use of artificial intelligence, through the
evaluation of certain obstetric parameters in specific decision-making algorithms, allows physicians
to systematically understand how the results of the algorithms can be explained. This approach can be
useful in evaluating the progress of labor and predicting the labor outcome, including spontaneous,
whether operative VD (vaginal delivery) should be attempted, or if ICD (intrapartum cesarean
delivery) is preferable or necessary.

Keywords: artificial intelligence; intrapartum ultrasound; dystocia; asynclitism; labor; cesarean
section; vaginal operative delivery; malrotation; malposition

1. Introduction

One of the hardest processes to overcome during labor is the positioning of the fetal
head during engagement and progression in the birth canal. These malpositions and
malrotations are also common causes of dystocic labor and arrest of progression, which

J. Imaging 2024, 10, 107. https://doi.org/10.3390/jimaging10050107 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging10050107
https://doi.org/10.3390/jimaging10050107
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0003-0606-6425
https://orcid.org/0000-0003-2390-4582
https://orcid.org/0000-0002-9862-1619
https://orcid.org/0000-0001-6286-761X
https://orcid.org/0000-0001-8352-7219
https://orcid.org/0000-0001-8426-8490
https://doi.org/10.3390/jimaging10050107
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging10050107?type=check_update&version=1


J. Imaging 2024, 10, 107 2 of 17

necessitates a surgical delivery [1,2]. Traditionally, a vaginal digital examination is used to
assess the fetal head position and engagement. The American College of Obstetricians and
Gynecologists (ACOG) frequently describes the location of the fetal head in the pelvis with
reference to an imagined horizontal plane at the level of the ischial spines [3]. The degree
of fetal engagement and progression is delineated by different planes of the pelvis, which
have values ranging from −5 (5 cm above the ischial spines) to +5 (5 cm below the ischial
spines with the fetal head visible at the introitus). The head is considered engaged when
the leading point of the skull touches the ischial spine plane; this is referred to as station 0.

This classification has been criticized as inaccurate and poorly reproducible, as re-
ported by Dupuis et al. in a study evaluating the reliability of the transvaginal assessment
of fetal head stations using a birth simulator [4]. The clinical ACOG classification may
have a significant impact on the diagnosis of dystocia and delivery outcomes [5]. This may
contribute to the failure of instrumental delivery, which may reach up to 10% [6]. Errors
in the diagnosis of the fetal head station can have major implications during labor and
adverse perinatal outcomes, such as acidemia, fetal traumas, intracranial hemorrhages,
and low Apgar scores after an emergency cesarean section for failed operative vaginal
deliveries. Many researchers have proposed many parameters to evaluate the engagement,
descent, and internal rotation of the fetal head in the birth canal [7]. With the use of arti-
ficial intelligence (AI), we tried to evaluate some geometric parameters measured using
an intrapartum ultrasound to understand whether the type of delivery outcome, ICD or
non-ICD, can be predicted, building a specific algorithm.

2. Materials and Methods

The study was conducted in the period between January 2014 and December 2020 by
collecting data from the Department of Obstetrics and Gynecology of the following Italian
Hospitals: “Santa Maria” Hospital, “Vito Fazzi” Hospital, and “Veris Delli Ponti” Hospital.

This retrospective study was approved by the Institutional Review Board (CER 0320).
The study was conducted in accordance with the Declaration of Helsinki, with data
anonymization to prevent the patients from being recognized. We chose to carry out
a retrospective study as we had all the labor delivery parameters useful for computer
analysis and the construction of the data to be inserted into the database, therefore starting
backward, from birth to labor. This study retrospectively analyzed the clinical data of only
full-term nulliparous pregnant women with singleton fetuses with a cephalic presentation
under neuraxial analgesia with intrapartum ultrasonography (IU) in the prolonged second
stage of labor. The prolonged second stage of labor for nulliparous with neuraxial labor
analgesia was defined, according to the ACOG, as more than three hours [8,9]. Patients’
exclusion criteria were fetuses in the breech, transverse, or oblique presentation, twin
pregnancies, abnormal placental implantation, HELLP syndrome, coagulation disorders,
a scarred uterus, non-reassuring FHR, thick meconium, and cephalopelvic disproportion.
The patients agreed for their collected data to be used anonymously for the scientific pur-
poses of building possible analysis software and decision-making algorithms by signing a
specific form in a medical record. In this way, none of the patients could be recognizable
in the collected data. All patients underwent vaginal digital examination by obstetricians
and midwives during labor and delivery, and the evaluation of the visits was reported
not only in the medical record but also inserted into specific databases for analysis. The
age, gestational age, body mass index, neonatal weight, Apgar score at 1 min, Apgar
score at 5 min, cephalic presentation (occiput anterior, posterior, or transverse), maternal
complications, and outcome of delivery (intrapartum cesarean delivery, operative vaginal
delivery, or spontaneous delivery) were anonymized and classified in tables. In addition,
all patients underwent IU, and the following “four geometric parameters” were measured
for all patients at three hours: (1) angle of progression (AoP), (2) asynclitism degree (AD),
(3) fetal head–symphysis distance (HSD), and (4) midline angle (MLA). All four geomet-
ric parameters were researched and evaluated using normal ultrasound transabdominal
probes of 3.5 MHz.
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In daily practice, the physician’s decision to perform an ICD or not is also based on
their experience and evidence. An algorithm, with the acronym AIDA (artificial intelligence
dystocia algorithm), was built by us by foregrounding the following factors: (A) humans in
the loop, that is, to use AI algorithms that prioritize the physician’s decision based on their
experience; (B) explainable artificial intelligence (XAI), using an algorithm that allows the
physician to systematically understand how the results of the algorithms can be explained
and traced back to an explanation and understanding the phenomenon being investigated.

The problem that the AIDA aims to answer is the following: knowing the values of
the four geometric parameters and the delivery outcome, ICD or non-ICD, if it is possible
to predict the delivery outcome for new cases, and how reliable the prediction will be.

To answer this question, the AIDA was built into four steps. The first step uses
Pearson’s correlation, which measures the linear correlation between two sets of data
to verify that the four geometric parameters are uncorrelated or have non-significant
correlations. The second step uses a series of supervised machine algorithms applied to the
four geometric parameters and the physician-determined delivery outcome. The prediction
performance of the algorithms is measured to choose at least three of the best-performing
ones. The third step is to identify the cut-off values of the four geometric parameters
associated with the ICD delivery outcome and those associated with the non-ICD delivery
outcome. Following the calculation of the cut-off values, five AIDA classes are defined,
depending on the number of parameters that are in the ICD zone or the non-ICD zone. The
fourth step is to perform the delivery prediction based on the values of the four geometric
parameters using the three best-performing algorithms identified in step two, with the
relevant AIDA class described in step three allowing the physician to evaluate the clinical
reliability of the prediction, i.e., ICD or non-ICD.

2.1. AIDA’s First Step

In the first step, a traditional statistical analysis method was used. The authors investi-
gated the correlation between these parameters using Pearson’s correlation: Apgar scores
at 1 min, Apgar scores at 5 min, Angle of progression (AoP), Asynclitism degree (AD), fetal
head–symphysis distance (HSD), and midline angle (MLA). Pearson’s coefficient helped
quantify the correlation, providing information about the magnitude of the association, as
well as the direction of the relationship. Pearson’s coefficients range from +1 to −1, where
+1 indicates a perfect positive monotonic relationship between the paired data, −1 indicates
a perfect negative relationship, 0 indicates that no relationship exists; between ±0.00 and
±0.19 indicates a very weak degree, between ±0.20 and ±0.39 indicates a weak degree,
between ±0.40 and ±0.59 indicates a moderate degree, between ±0.60 and ±0.79 indicates
a strong degree, and between ±0.80 and ±1.00 indicates a very strong degree of corre-
lation. The p-value helps assess whether a correlation is statistically significant, and a
p-value < 0.05 * was considered statistically significant, using the asterisk system to denote
significance (* p < 0.05 *, p < 0.01 **, p < 0.001 ***).

2.2. AIDA’s Second Step

In the second step, various machine learning algorithms were utilized, including
random forest, XGBoost, logistic regression, decision tree, SVM (support vector machine),
and MLP (multi-layer perceptron) to classify and predict the following delivery outcomes
using the geometric parameters: intrapartum cesarean delivery (ICD) or non-cesarean
delivery (operative vaginal delivery or spontaneous delivery). To evaluate the performance
of each machine learning algorithm, the ROC (receiver operating characteristic curve),
AUC (area under the ROC curve), accuracy, precision, recall or sensitivity, specificity, F1
score, and confusion matrix [10] were calculated. These metrics allowed for a more detailed
analysis of the performance of the machine learning algorithms. In the confusion matrix,
true positive (TP) represents the number of delivery outcomes that were ICD and classified
as ICD, true negative (TN) represents the number of delivery outcomes that were non-ICD
and classified as non-ICD, false positive (FP) represents the number of delivery outcomes
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that were non-ICD but classified as ICD, and false negative (FN) represents the delivery
outcomes that were ICD but classified as non-ICD. The equation used to evaluate the
accuracy was (TP + FP)/(TP + TN + FP + FN), where the total number of ICD-predicted
ICD (TP) and non-ICD predicted non-ICD is divided by the total number of outcomes in
the dataset (TP + TN + FP + FN); the highest possible value for the precision is 1.0 when the
FP is zero. The equation used to evaluate the precision was (TP)/(TP + FP), where the total
number of ICD-predicted ICD (TP) is divided by the total number of ICD outcomes in the
dataset (TP + FP); the highest possible value for precision is 1.0 when the FP is zero. The
equation used to evaluate recall or sensitivity was (TP)/(TP + FN), where the total number
of ICD-predicted ICD (TP) divided the total number of ICD-predicted ICD (TP + FP); the
highest possible value for recall or sensitivity is 1.0 when the FP is zero. The equation
used to evaluate the specificity was (TN)/(TN + FP), where the total number of non-ICD
predicted non-ICD (TP) is divided by the total number of non-ICD outcomes in the dataset;
the highest possible value for specificity is 1.0 when the FP is zero. The F1 score is the
harmonic mean of the precision and recall. The highest possible value for an F1 score is 1.0,
indicating that either the precision or recall is 1.0, while the lowest possible value is zero
when either the precision or recall is zero.

2.3. AIDA’s Third Step

In the third step, a decision tree (DT) was employed to identify the values of the four
geometric parameters associated with the delivery outcomes of ICD and those associated
with the delivery outcomes of non-ICD. Among the machine learning algorithms, the
decision tree is the most easily understood and suitable for classifying something. The
decision tree was applied to each pair of geometric parameters: AoP-AD, HSD-AD, MLA-
AD, HSD-AoP, AoP-MLA, and HSD-MLA. For each geometric parameter, the cut-off value
or range between the delivery outcomes of ICD and non-ICD was calculated. In our
database, each value of the four geometric parameters was color-coded for visual and
intellectual simplicity: green was used if the decision tree result classified it as belonging to
the non-ICD delivery outcome, and red was used if the delivery outcome was classified
as belonging to the ICD delivery outcome. The values of the four geometric parameters
falling within a cut-off range were colored yellow.

The dataset was partitioned into five AIDA classes as follows: (a) AIDA class 0 included
all patients who had all four green parameters; (b) AIDA class 1 included all patients who
had one red or yellow parameter and three green parameters; (c) AIDA class 2 included all
patients who had two red or yellow parameters and two green parameters; (d) AIDA class
3 included all patients who had three red or yellow parameters and one green parameter;
(e) AIDA class 4 included all patients who had all four red or yellow parameters.

2.4. AIDA’s Fourth Step

In the fourth step, various machine learning algorithms were employed to predict
the delivery outcome. In more detail, 70–30 separation was used, with 70% of the data
allocated for training (95 patients), and the remaining 30% of the data (40 patients) was
used for testing and validation. Each patient’s data record contained not only the delivery
outcome but also the ID used to detect the patient’s AIDA class. The performance of each
machine learning algorithm, as defined in the second level, was evaluated for all 40 patients
and for each AIDA class individually.”

The software used for AI analysis was AlterixDesigner with AlterixAI, V 2023.2.1.89,
and IBM SPSS Statistics V 29.0.2.0 (20). In AlterixAI, the “create samples” tool was used to
obtain five different 70–30 separation samples by setting the random seed parameter. This
parameter, an integer value between 1 and 1000, determined which sample an individual
row of data was placed in for the estimation (70%) and validation (30%) samples. The
default value of 1 was the recommended choice, while additional values of 0, 250, 500, and
750 were also tested. Multi-layer perceptron (MLP), a neural network with one hidden layer,
was included in IBM SPSS, while all other algorithms were implemented in AlterixDesigner.
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3. Results

The authors examined a total of 135 patients involved in the study, with the following
demographics: (a) age (years): mean 31.62 and standard deviation: 5.28; (b) gestational
age (weeks): mean: 40.16 and standard deviation: 1.02; (c) gestational age (days): mean:
283.09 and standard deviation: 7.15; (d) BMI: mean: 27.52 and standard deviation: 2.95;
(e) neonatal weight (grams): mean: 3926.68 and standard deviation: 309.66; (f) Apgar score
(1 min): mean: 6.65 and standard deviation: 1.22; (g) Apgar score (5 min): mean 8.74 and
standard deviation: 1.12.

The descriptive statistics for all four geometric parameters of the 135 patients in-
volved in the study were as follows (minimum/maximum/mean/standard deviation):
(1) head–symphysis distance (HSD) (mm): min: 10, max: 51, mean: 21.47, standard devi-
ation: 9.265; (2) asynclitism degree (AD): (mm): min: 4, max: 95, mean: 60.18, standard
deviation: 18.866; (3) midline angle (MLA) (◦): min: 26, max: 90, mean: 62.59, standard
deviation: 14.986; (4) angle of progression (AoP) (◦): min: 72, max: 192, mean: 122.75,
standard deviation: 27.454.

3.1. Findings from the AIDA’s First Step: Pearson’s Correlations

Pearson’s correlation between the Apgar scores at 1 min and 5 min showed a very
strong and statistically significant correlation between them (PC = 0.8, p-value < 0.001). This
aspect also demonstrated the genesis of the two quantities, which are the consequence of
the same evaluation carried out 5 min apart from each other and, therefore, are necessarily
linked to each other.

The correlations between the four geometric parameters were: (a) AoP-AD, weak
and statistically significant (PC = 0.36, p-value < 0.001), (b) AoP-HSD, very weak and
non-statistically significant (PC = −0.12), (c) AoP-MLA, weak and statistically significant
(PC = −0.27, p-value < 0.001), (d) HSD-AD, very weak and statistically significant (PC = 0.18,
p-value < 0.05), (e) AD-MLA, very weak and non-statistically significant (PC = 0.14), and
(f) HSD-MLA, moderate and statistically significant (PC = 0.36, p-value < 0.001).

The correlation between the Apgar scores at 1 min and the geometric parameters was
statistically significant and very weak with AoP (PC = 0.19, p-value < 0.001), weak with
AD (PC = −0.2, p-value < 0.05) and MLA (PC = −0.31, p-value < 0.001), and very weak and
non-statistically significant with HSD (PC = −0.12).

The correlation between the Apgar scores at 5 min and the geometric parameters
were statistically significant and very weak with AoP (PC = 0.18, p-value < 0.05) and AD
(PC = −0.19, p-value < 0.05), weak with MLA (PC = −0.24, p-value < 0.01), and small and
non-statistically significant with HSD (PC = −0.12).

All these data are reported in Table 1.

Table 1. Pearson’s correlations for all 135 patients involved in the study.

Pearson’s Correlation PC p Note

Apgar score at 1 min Apgar score at 5 min 0.8 Very strong 8.42 × 10−32 ***

Angle of progression Asynclitism degree 0.36 Weak 0.00002 ***

Head–symphysis distance Asynclitism degree 0.18 Very weak 0.03 *

Midline angle Asynclitism degree 0.14 Very weak 0.09

Angle of progression Head–symphysis distance −0.12 Very weak 0.14

Angle of progression Midline angle −0.27 Weak 0.001 ***

Head–symphysis distance Midline angle 0.55 Moderate 8 × 10−12 ***

Apgar score at 1 min Angle of progression 0.19 Very weak 0.02 *

Apgar score at 1 min Head–symphysis distance −0.12 Very weak 0.16

Apgar score at 1 min Midline angle −0.31 Weak 0.0002 ***
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Table 1. Cont.

Pearson’s Correlation PC p Note

Apgar score at 1 min Asynclitism degree −0.2 Weak 0.02 *

Apgar score at 5 min Angle of progression 0.18 Very weak 0.03 *

Apgar score at 5 min Head–symphysis distance −0.15 Very weak 0.07

Apgar score at 5 min Midline angle −0.24 Weak 0.004 **

Apgar score at 5 min Asynclitism degree −0.19 Very weak 0.02 *

* p < 0.05; ** p < 0.01; *** p < 0.001.

The outcomes of delivery were the following: 56 intrapartum cesarean deliveries
(ICDs), 22 intrapartum cesarean deliveries after failure (ICDs after failure), 31 operative
vaginal deliveries (OVDs), and 26 spontaneous deliveries (Figure 1), highlighting the
moderate degree of Pearson’s correlation between the MLA and HSD due to a visible
discrete correlation for spontaneous deliveries, a poor degree of correlation for all 78 ICDs,
and also a large region of the plane in which there were only ICDs.
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the study.

3.2. Findings from the AIDA’s Second Step: Machine Learning Analysis

The best performer was MLP, with the following outcomes: accuracy: 0.97, AUC: 0.993,
and precision: 0.9625, followed by random forest, with the following outcomes: accuracy:
0.933, AUC: 0.97, and precision: 0.9615, and SVM, with the following outcomes: accuracy:
0.933, AUC: 0.98, and precision: 0.9157. The results for XGBoost (accuracy: 0.896, AUC:
0.96, precision: 0.9358), logistic regression (accuracy: 0.844, AUC: 0.92, precision: 0.8718),
and decision tree (accuracy: 0.837, AUC: 0.84, precision: 0.8462) were less exciting. Other
performance parameters for each algorithm are shown in Table 2.
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Table 2. The performance of six machine learning algorithms in the delivery outcome classification of
our dataset.

Algorithm Accuracy AUC PPV NPV Recall Specificity F1 Score TP FP FN TN

MLP 0.970 0.993 0.9625 0.9818 0.9872 0.9474 0.9747 77 3 1 54

Random
forest 0.933 0.97 0.9615 0.8947 0.9259 0.9444 0.9433 75 3 6 51

SVM 0.933 0.98 0.9157 0.9615 0.9744 0.8772 0.9441 76 7 2 50

XGBoost 0.896 0.96 0.9358 0.8421 0.8902 0.9057 0.9125 73 5 9 48

Logistic
regression 0.844 0.92 0.8718 0.8070 0.8608 0.8214 0.8662 68 10 11 46

Decision tree 0.837 0.84 0.8462 0.8246 0.8684 0.7966 0.8571 66 12 10 47

The feature importance of the four geometric parameters, the variables in the machine
learning algorithms, revealed a different hierarchy for each algorithm: (a) MLP, considered
in order of importance, was AoP, HSD, MLA, and AD; (b) random forest, considered
in order of importance, was MLA, HSD, AD, and AoP; (c) SVM, considered in order of
importance, was HSD, AD, MLA, and AoP; (d) XGBoost, considered in order of importance,
was HSD, AD, MLA, and AoP was not shown; (e) logistic regression, considered in order
of importance, was HSD, MLA, AoP, and AD; (f) decision tree, considered in order of
importance, was MLA, AoP, AD, and HSD. The ROC curve for each algorithm are shown
in Figure 2.
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3.3. Findings from the AIDA’s Third Step: AIDA Classes

The results of the decision tree (DT) algorithm applied to each pair of geometric
parameters, shown in Table 3, returned the following cut-off values: (a) pair AoP and
AD, ICD for AoP >= 144.5◦ or AoP < 101.5◦ and ICD for AD >= 67; (b) pair HSD and AD,
ICD for HSD >= 19.5 and ICD for AD >= 70.5; (c) pair MLA and AD, ICD for AD >= 65.5;
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(d) pair HSD and AoP, ICD for HSD >= 19.5; (e) pair AoP and MLA, ICD for MLA >= 60.5;
(f) pair HSD and MLA, ICD for HSD >= 19.5 and ICD for MLA >= 62.

Table 3. Cut-off values for ICD and non-ICD for each geometric parameter.

AoP
(◦)

AD
(mm)

HSD
(mm)

MLA
(◦)

AoP–AD
<101.5

>=67
>=144.5

HSD–AD >=70.5 >=19.5

MLA–AD >=65.5

HSD–AoP >=19.5

AoP–MLA >=60.5

HSD–MLA >=62.0

For the angle of progression, we obtained two cut-off values, indicating the presence of
ICD for both AoP < 101.5◦ and AoP >= 144.5◦. This means that in our dataset, the delivery
outcome was ICD for the values of AoP from 72 (min value) to <101.5◦, ICD for the values
of AoP from 144.5◦ to 192◦ (max value), and non-ICD for the values of AoP from 101.5◦ to
144.5◦. In our dataset, we color-coded each AoP value <101.5◦ and those >=144.5◦ in red,
and those between 101.5◦ and 144.5◦ in green.

For the fetal head–symphysis distance, we obtained a cut-off value indicating the
presence of ICD if HSD >= 19.5. This means that in our dataset, the delivery outcome
was ICD for the values of HSD between 19.5 and 51 (max value) and non-ICD for the
values of HSD between 10 (min value) and 19.5. In our dataset, we color-coded each HSD
value >= 19.5 in red and those between 10 and 19.5 in green.

For the midline angle, we obtained two cut-off values, indicating the presence of
ICD if MLA > 62◦ (DT between HSD and MLA) and MLA > 60.5◦ (DT between AoP and
MLA). This means that in our dataset, the delivery outcome was ICD for the values of
MLA between 62◦ and 90◦ (max value in our dataset) and non-ICD for values of MLA
between 26◦ (min value in our dataset) and 60.5◦. In our dataset, we color-coded each MLA
value >= 62◦ in red and those between 26◦ and 60.5◦ in green. The values from 60.5◦ to 62◦

were considered a range of cut-off values and were colored yellow.
For the asynclitism degree, we obtained three cut-off values, indicating the presence of

ICD if AD > 65.5 mm (DT between MLA and AD), AD > 67 mm (DT between AoP and AD),
and AD > 70.5 mm (DT between HSD and AD). This means that in our dataset, the delivery
outcome was ICD for the values of AD from 70.5 mm to 95 mm (max value in our dataset)
and non-ICD for the values of AD from 4 mm (min value in our dataset) to 65.5 mm. In our
dataset, we color-coded each AD value >= 70.5 mm in red and those between 4 mm and
65.5 mm in green. The values from 65.5 mm to 70.5 mm were considered a range of cut-off
values and were colored yellow.

A total of 135 patients involved in the study were classified into the defined five
AIDA classes depending on the contribution of every geometric parameter to the delivery
outcome: red (ICD), green (non-ICD), or yellow (high probability of ICD): (a) AIDA class 4,
with all four parameters in the red or yellow zone. In our dataset, the delivery outcome
was twenty ICDs and three ICDs after failure; (b) AIDA class 3, with three parameters in
the red or yellow zone and one parameter in the green zone. In our dataset, the delivery
outcome was twenty-six ICDs, nine ICDs after failure, and three operative VDs; (c) AIDA
class 2, with two parameters in the red or yellow zone and two parameters in the green
zone. In our dataset, the delivery outcome was nine ICDs, seven ICDs after failure, and
four operative VDs; (d) AIDA class 1, with one parameter in the red or yellow zone and
three parameters in the green zone. In our dataset, the delivery outcome was one ICD,
three ICDs after failure, six operative VDs, and four spontaneous deliveries: (e) AIDA class
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0, with zero parameters in the red or yellow zone and four parameters in the green zone. In
our dataset, the delivery outcome was zero ICDs, zero ICDs after failure, eighteen operative
VDs, and twenty-two spontaneous deliveries.

3.4. Findings from the AIDA’s Fourth Step: Reliability of the Predictions

Five different random samples were generated using the 70–30 percentage split and
the random seed, an integer value between 1 and 1000. Altering this seed changed the
assignment of individual rows of data to each sample. The five different values used for
the random seed were 1, 0, 250, 500, and 750. The five 95-record samples were used to
make the predictions on the respective 40 records and were used for the three following
algorithms: RF, SVM, and MLP. The performance is reported in Table 4.

Table 4. The performance of three machine learning algorithms, RF, SVM, and MLP, for each sample
with the corresponding seed identifier number.

Random Seed Algorithm AUC Accuracy PPV NPV Recall Specificity F1 Score TP FP FN TN

Seed 1

RF 0.9920 0.9500 1.0000 0.8824 0.9200 1.0000 0.9583 23 0 2 15

SVM 0.9920 0.9500 1.0000 0.8824 0.9200 1.0000 0.9583 23 0 2 15

MLP 0.9920 0.9500 1.0000 0.8824 0.9200 1.0000 0.9583 23 0 2 15

Seed 0

RF 0.9733 0.9500 0.9259 1.0000 1.0000 0.8667 0.9615 25 2 0 13

SVM 0.9493 0.9000 0.8621 1.0000 1.0000 0.7333 0.9259 25 4 0 11

MLP 0.9733 0.9500 0.9259 1.0000 1.0000 0.8667 0.9615 25 2 0 13

Seed 250

RF 0.9115 0.7750 0.6522 0.9412 0.9375 0.6667 0.7692 15 8 1 16

SVM 0.9089 0.7500 0.6250 0.9375 0.9375 0.6250 0.7500 15 9 1 15

MLP 0.9115 0.7750 0.6522 0.9412 0.9375 0.6667 0.7692 15 8 1 16

Seed 500

RF 0.9275 0.8250 0.7407 1.0000 1.0000 0.6500 0.8511 20 7 0 13

SVM 0.9200 0.8250 0.7407 1.0000 1.0000 0.6500 0.8511 20 7 0 13

MLP 0.9275 0.8250 0.7407 1.0000 1.0000 0.6500 0.8511 20 7 0 13

Seed 750

RF 0.9886 0.8750 0.7222 1.0000 1.0000 0.8148 0.8387 13 5 0 22

SVM 0.9858 0.8500 0.6842 1.0000 1.0000 0.7778 0.8125 13 6 0 21

MLP 0.9886 0.8750 0.7222 1.0000 1.0000 0.8148 0.8387 13 5 0 22

Two algorithms, RF and MLP, were the same confusion matrix and performance in
each of the five samples, ranging from the maximum in seed1 (accuracy: 0.95, AUC: 0.992,
precision: 1.0, specificity: 1.0, recall: 0.92, F1 score: 0.9583) and the minimum in seed250
(accuracy: 0.7750, AUC: 0.9115, precision: 0.6522, specificity: 0.6667, recall: 0.9375, F1
score = 0.7692). The SVM in seed1 had the same confusion matrix and performance of the
other two algorithms, with a minimum in seed250 (accuracy: 0.7500, AUC: 0.9089, precision:
0.6250, specificity: 0.6250, recall: 0.9375, F1 score: 0.7500). The different performance of the
algorithms confirms different record content between the samples that are in the estimation
and those in the validation samples. The five different 70–30 separation samples were
composed of five groups of 40 predictions, a total of 200 predictions, of which 111 were from
distinct patients and 89 repetitions, as some patients were selected multiple times using the
seeds tool. All of the 200 forecasts were then grouped according to the AIDA class.

The confusion matrix and corresponding metrics of the three machine learning algo-
rithms in the delivery outcome prediction for every AIDA class, where a positive value
represents an ICD delivery outcome and a negative value denotes non-ICD, are reported in
Table 5, which are as follows:
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(a) AIDA class 0, which includes all patients who had all four green parameters. The
better performers were both RF and MLP, as the accuracy was 1.0, the NPV was 1.0,
and the specificity was 1.0;

(b) AIDA class 4, which includes all patients who had all four red or yellow parameters.
The better performers were both RF and SVM, as the accuracy was 1.0, the PPV was
1.0, the recall was 1.0, and the F1 score was 1;

(c) AIDA class 3, which includes all patients who had three red or yellow parameters and
one green parameter. The better performer was RF, as the accuracy was 0.92, the PPV
was 0.9167, the NPV was 1.0, the recall was 1.0, the specificity was 0.3333, and the F1
score was 0.9565;

(d) AIDA class 2, which includes all patients who had two red or yellow parameters and
two green parameters. The better performer was RF, as the accuracy was 0.6111, the
PPV was 0.6176, the NPV was 0.5, the recall was 0.9545, the specificity was 0.0714,
and the F1 score was 0.75;

(e) AIDA class 1, which includes all patients who had one red or yellow parameter and
three green parameters. The better performer was MLP, as the accuracy was 0.6667,
the PPV was 0.2, the NPV was 0.9, the recall was 0.5, the specificity was 0.6923, and
the F1 score was 0.2857.

Table 5. Confusion matrix and performance of RF, SVM, and MLP in the delivery outcome prediction
on all 200 predictions grouped according to AIDA class.

AIDA Class Algorithm Accuracy PPV NPV Recall Specificity F1 Score TP FP FN TN

Class 0

RF 1 NA 1 NA 1 NA 0 0 0 68

SVM 0.9853 0.00 1 NA 0.9853 NA 0 1 0 67

MLP 1 NA 1 NA 1 NA 0 0 0 68

Class 1

RF 0.5333 0.00 0.80 0.00 0.6154 NA 0 5 2 8

SVM 0.5333 0.00 0.80 0.00 0.6154 NA 0 5 2 8

MLP 0.6667 0.20 0.90 0.50 0.6923 0.2857 1 4 1 9

Class 2

RF 0.6111 0.6176 0.50 0.9545 0.0714 0.750 21 13 1 1

SVM 0.5833 0.60 0.00 0.9545 0.00 0.7368 21 14 1 0

MLP 0.5833 0.60 0.00 0.9545 0.00 0.7368 21 14 1 0

Class 3

RF 0.920 0.9167 1 1 0.3333 0.9565 44 4 0 2

SVM 0.880 0.880 NA 1 0.00 0.9362 44 6 0 0

MLP 0.780 0.8667 0.00 0.8864 0.00 0.8764 39 6 5 0

Class 4

RF 1 1 NA 1 NA 1 31 0 0 0

SVM 1 1 NA 1 NA 1 31 0 0 0

MLP 0.9677 1 0.00 0.9677 NA 0.9836 30 0 1 0

4. Discussion

The progress of labor can be monitored not only using traditional obstetric practices
but also using intrapartum ultrasounds [11]. In fact, in the second stage of labor, there are
ultrasound parameters that allow you to monitor the progress of the fetus’s descent into the
birth canal and may predict the labor outcome: spontaneous, whether operative VD should
be attempted, or if ICD is preferable or necessary [12]. An ultrasound examination should
include more just than the assessment of the fetal station because rotational movements
are necessary for the fetus to descend. These rotational movements of the fetal head and
shoulders are often called the cardinal movements [13]. The fetal position and rotation can
be examined with an ultrasound: the four recorded parameters that we analyzed, namely
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the midline angle (MLA), angle of progression (AoP), fetal head–symphysis distance (HSD),
and asynclitism Degree (AD), are the most reported in the literature [12,14].

The AoP is the angle identified using a line passing through the central part of the
pubic symphysis and another tangent to the fetal skull via longitudinal scanning (Figure 3A).
Using a geometric model, Barbera et al. [14] developed an algorithm to assign a specific
set of theoretical intervals of angles at the mid-point of a line drawn between the ischial
spines (at zero station: lower angle: 96◦, mean angle: 99◦, upper angle: 102◦) and at
the other intervals of angles at the other clinical stations (−5 to +5). This measurement,
initially termed the “angle of descent”, is now scientifically referred to as the angle of
progression (AoP). Upon reaching full dilatation in all women, an AoP greater than 120◦

was consistently associated with head engagement, as determined via clinical examination.
Notably, in all instances of vaginal delivery, there was a uniform increase in the AoP, and
spontaneous delivery occurred in 90% when the AoP exceeded 120◦ [15].
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Figure 3. (A) Angle of progression (AoP): the drawing on the right and the US photo on the left
show the AoP (red line) with the fetal head in the occiput anterior position; (B) fetal head–symphysis
distance (HSD): the drawing on the right and the US photo on the left show the HSD (red line)
with the fetal head in the occiput anterior position; (C) midline angle (MLA): the drawing on the
right and the US photo on the left shows the MLA with the fetal head in the left occiput posterior
position (white/black line: midline, the echogenic line between the two cerebral hemispheres; red
line: anteroposterior diameter of the pubis). Longitudinal translabial sonography detected the MLA;
(D) asynclitism degree (AD): the drawing on the right and the US photo on the left show the AD
with the fetal head in the right occiput posterior position with anterior asynclitism (white/black line:
midline, the echogenic line between the two cerebral hemispheres; red line: anterior asynclitism
degree, perpendicular to the white/black line).

Skinner et al. [14] reported a comparative systematic review and meta-analysis on the
mean differences in the AoP, at rest and with pushing, between women having complicated
OVBs and women having uncomplicated OVBs. Nassr et al. [16] reported a systematic
review evaluating eight prospective cohort studies reporting on 887 pregnancies. Subgroup
analyses were conducted based on angle of progression ranges from 108◦ to 119◦, 120◦ to
140◦, and 141◦ to 153◦. In our database, our AIDA algorithm was found for the following
AoP interval cut-off angles: ICDs for AoP < 101.5◦ and AoP >= 144.5◦ and non-ICDs for
AoP >= 101.5◦ and AoP < 144.5◦.
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The HSD is evaluated via translabial sonography in a lithotomy position of the patient
and on the midsagittal scan. On this view, two landmarks are identified: the maternal
pubic symphysis and the fetal head. The HSD is the minimum distance between the
lower margin of the maternal pubic symphysis and the fetal parietal bone (Figure 3B). If
HSD > 20 mm, the head is not engaged. If HSD < 20 mm, it is engaged, having reached
at least the ischial spines. For values less than 10 mm, the head is between +2 and +3,
according to the ACOG classification. A low HSD value associated with other parameters
(high angle of progression and midline angle <45◦) depicts a good delivery outcome [17].
In our database, our algorithms were found for HSD cut-off values of 19.5 mm between
non-ICDs for HSD < 19.5 mm and ICDs for HSD >= 19.5 mm.

In the MLA, the angle formed by the fetal head midline (the echogenic line between
the two cerebral hemispheres) and the anteroposterior diameter of the pubis is measured,
known as the “midline” angle (Figure 3C). This midline angle measurement appears to
correlate with the clinically assessed station, particularly in fetuses with an occiput anterior
position. If the midline angle is less than 45◦, the station is typically ≥+2 cm in many cases.
Conversely, in fetuses with a midline angle >45◦ or one that is not clearly measurable, the
clinical assessment often indicates the head station as <+2 cm from the ischial spines. The
midline angle value has also been shown to be helpful in predicting the success of operative
vaginal delivery, as no failures were reported in fetuses with an occiput anterior position
when the midline angle was ≤45◦. When the MLA is less than or equal to 45◦, internal
rotation has occurred and the head has rotated. If it is greater than 45◦, internal rotation
has not occurred [18].

In Skinner [14], a comparative systematic review and meta-analysis on the mean
differences in MLA, at rest and with pushing, between women having complicated OVBs
and women having uncomplicated OVBs were reported. In our database, our AIDA
algorithm identified an interval cu-off for the MLA, with a lower value of 60.5 mm and
an upper value of 62.0 mm, which delineates between non-ICDs for MLA < 60.5 mm and
ICDs for MLA >= 70.5 mm.

Asynclitism is evaluated via vaginal digital examination, but the AD can be detected
via intrapartum ultrasound, which improves the diagnosis through a transabdominal
ultrasound that diagnoses the squint sign (which is the visualization of only one fetal
orbit, which is a landmark that indicates that the head is twisted in the birth canal). With
translabial US, anterior asynclitism is defined when the midline shifts towards the sacrum,
while posterior asynclitism is defined when the midline shifts towards the pubis. To eval-
uate the degree of asynclitism, the distance in millimeters between the midline and the
presented parietal bone was evaluated using translabial ultrasound in the longitudinal
plane (Figure 3D). A moderate degree of asynclitism is considered a normal adaptation of
the fetal head in the birth canal, and it results in normal labor and spontaneous delivery,
specifically when the fetal head in the occiput anterior position engages with an anterior
asynclitism. High-grade asynclitism can be associated with maternal and fetal compli-
cations, the most common of which are arrest disorders of the fetal head during descent
into the birth canal [19,20]. In our database, our AIDA algorithm identified an interval
cut-off for AD, with a lower value of 65.5 mm and an upper value of 70.5 mm for ICDs for
AD >= 70.5 mm and non-ICDs for AD < 65.5 mm.

All these ultrasonographic parameters and rotations in the fetal position are depicted
in Figure 3.

In daily practice, the physician’s decision to perform a delivery via an ICD or not is also
based on obstetric experience but also on scientific evidence. Moreover, it is precisely this
scientific evidence that we have tried to propose a new method based on the construction
of an algorithm based on the analysis of parameters with AI. The AIDA algorithm adds
a further element of granularity by assigning one of the five AIDA classes to the case
under consideration to better understand how the ICD prediction of a machine learning
algorithm can be explained and traced back to an explanation and understanding of the
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case under consideration, foregrounding the two factors: causality and explainability of
artificial intelligence in medicine [21].

In our retrospective analysis of patients who birthed a child with the relevant ul-
trasound parameters collected, including the MLA, AoP, HSD, and AD, all the patients
involved in the study, as represented in Figure 3, were assigned an AIDA class.

Figure 4 shows the values of the four geometric parameters, AoP, HSD, MLA, and
AD, measured at the same time for the 135 cases of the patients involved in this study
and also the near impossibility of defining with just one of the four parameters which
“cut-offs” should be considered in predicting the delivery outcome. Underlying the AIDA
(artificial intelligence dystocia algorithm), the algorithm built is as follows: In our sample
of 135 patients, we identified, using a decision tree, the cut-off values for each geometric
parameter by cross-referencing the data of the four parameters in pairs of two. This process
helped delineate the boundaries between the “no ICD” zone (green) and the “ICD zone”
(red). In cases where different and close cut-off values were found, we defined the "may be
ICD" zone (yellow).
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Figure 4. The values of the four geometric parameters, AoP, HSD, MLA, and AD, measured at the
same time for the 135 cases of the patients involved in this study and grouped by delivery outcome.
(A) Angle of progression (AoP), values between min 72◦ and max 192◦. (B) Fetal head–symphysis
distance (HSD), values between min 10 mm and max 51 mm. (C) Asynclitism degree (AD), values
between min 4 mm and max 95 mm. (D) Midline angle (MLA): values between min 26◦ and max 90◦.

The AIDA algorithm’s ability to classify and predict the outcome of delivery (ICD or
non-ICD) was tested. Our dataset was subjected to delivery outcome classification using
five machine learning algorithms: random forest, XGBoost, logistic regression, decision tree,
support vector machine (SVM), and a neural network called multi-layer perceptron (MLP).
The results displayed in Table 2 were quite impressive, with MLP, SVM, and RF classifying
ICD (TP) in 77, 76, and 75 of the 78 patients with ICD delivery outcomes, respectively.
The delivery outcome prediction of our dataset was performed using the same machine
learning algorithms.
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In AIDA class 4 and AIDA class 0, the three algorithms also provided almost equal
predictions. AIDA class 4 highlighted a series of negative parameters for a spontaneous
vaginal birth or operative VD, as the HSD and AoP did not assume an adequate value for
a spontaneous delivery, therefore the MLA and AD were excessively unfavorable for the
progression of the fetal head into the birth canal. All four geometric parameters had a value
in the ICD zone (red) or “may be in the ICD zone” (yellow). For all three algorithms, the
precision or positive predictive value (PPV) was 1.0; for the MLP, the accuracy and recall
were 0.9677, and the F1 score was 0.9836; and for RF and SVM, the accuracy, recall, and
F1 scores were 1.0. It is practically certain that the delivery was ICD. Of the 23 cases in
AIDA class 4 in our database, as many as 18 were drawn in the 5 70/30 samples, of which
13 were present multiple times, for a total of 31 predictions for each algorithm. Out of the
total 93 predictions made by the three algorithms, only the MLP was classified as a FN
when classifying an ICD (ICD classified as non-ICD).

On the contrary, the AIDA class 0 highlighted a series of positive parameters for a
spontaneous vaginal birth or operative VD. All four geometric parameters took a value in
the “no ICD” zone (green). For all three algorithms, the negative predictive value (NPV)
was 1.0; for the SVM, the accuracy and specificity were 0.9853; and for RF and MLP, the
accuracy and specificity were 1.0. These values demonstrated the absolute non-necessity of
carrying out an ICD. Of the 40 cases in AIDA class 4 in our database, as many as 38 were
drawn in the 5 70/30 samples, of which 30 were present multiple times, for a total of
68 predictions for each algorithm. Out of the total 204 predictions made by the three
algorithms, only SVM classified a non-ICD as a FP (non-ICD classified as ICD). In AIDA
class 3, three geometric parameters took a value in the ICD zone (red) or “may be the ICD
zone” (yellow), and one in the no ICD zone (green).

Of the 38 cases in AIDA class 3 in our database, 35 were ICD, and 3 were non-ICD,
and as many as 30 were drawn in the 5 70/30 samples, of which 20 were present multiple
times, for a total of 50 predictions for each algorithm. Two algorithms provided almost
equal predictions. For both RF and SVM, the TP was 44, equal to 27 delivery outcome
ICDs, confirmed as multiple predictions and FNs (the delivery outcome was ICD and
was classified as non-ICD), which was zero, and the recall was 1. Of the three non-ICDs
(operative VDs) contained in our database, there were two presentations in the samples,
and RF classified it as non-ICD (TN = 2) in one case, while it classified the other two cases
as ICD (FP = 4). SVM, on the other hand, classified them all as ICD (FP = 6).

The 20 cases in AIDA class 2 and the 14 cases in AIDA class 1 in our database were
not sufficient for any definitive conclusion, but they are data to reflect on and think about
in future clinical ultrasound studies.

In our study, having simultaneously measured four geometric parameters, it was
possible to build an AIDA (artificial intelligence dystocia algorithm), which can be a
helping decision support system in the binary prediction of ICD or non-ICD, with a high
likelihood for those cases falling in AIDA class 0 and AIDA class 4, and a useful comparison
for those falling in AIDA class 3.

Further investigations could be conducted on larger data samples investigating the
interference and prevalence phenomena between geometric parameters, even in the in-
termediate AIDA classes, i.e., results like those obtained for the two extremes AIDA
classes 0 and 4. A final notation regarding the type of algorithms used: the MLP algorithm,
which uses a neural network, not only provided classifications but also assigned a probabil-
ity to each examined case as ICD or non-ICD and was expressed based on the prevalence
of either prediction.

Highlights from the AIDA

In the AIDA, there are four aspects to highlight: the method, the data, the training, the
predictions, and their reliability.

The method is divided into the four described steps. The first step is to verify that
the four geometric parameters are uncorrelated or have non-significant correlations. The
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second step is to choose at least three of the best-performing supervised machine algorithms
to have higher reliability if at least two of the three algorithms provide the same performing
outcome. The third step is to identify, in the dataset under consideration, the cut-off values
of the four geometric parameters associated with the ICD delivery outcome and those
associated with the non-ICD delivery outcome. The fourth step is to perform the prediction
of the outcome and its reliability.

Regarding the data, there is no consensus on which intrapartum ultrasound measures
are more accurate and which “cut-offs” should be considered in clinical practice [14]. The
cut-off values may change as the countries and datasets are analyzed, and the use of
historical clinical data may contain inaccuracies or biases. A larger dataset than the one
used in this paper could allow all techniques for eliminating data containing inaccuracies
or biases so that the AIDA method would be applied to data purified of biases.

Regarding the training, predictions, and reliability, the research highlighted that if all
four geometric parameters are in the red or yellow zone, there is a high likelihood that
the delivery outcome will be ICD (AIDA class 4). In our dataset, the physician-practiced
delivery outcome and AIDA prediction agreed 100% two times, with the algorithms RF and
SVM achieving accuracy, PPV, F1 score, and recall values of 1. Slightly lower agreement
was observed with MLP, with an accuracy of 0.9677, PPV of 1, recall of 0.9677, and F1 score
of 0.9836). On the other hand, if all four parameters are in the green zone, there is a high
likelihood that the delivery outcome will be non-ICD (AIDA class 0). In our dataset, the
physician-practiced delivery outcome and AIDA prediction agreed 100% two times, with
the algorithms RF and MLP achieving accuracy, NPV, and specificity scores of 1. This was
observed to a lesser extent with SVM (accuracy = 0.9853, NPV = 1, specificity = 0.9853).
For both AIDA classes 4 and 0, the AIDA method agreed with the physician’s decisions,
making their predictions reliable and explainable. If three geometric parameters are in the
red or yellow zone and one is in the green zone (AIDA class 3), there is a high likelihood
that the ICD physician-practiced delivery outcome and AIDA prediction agreed 100%
two times using the RF and SVM algorithms (recall = 1); the differences in the predictions
were regarding the delivery outcome, i.e., non-ICD for the physician and ICD for the AIDA,
classified as a FP or FN. There are too few cases to be able to make considerations and draw
conclusions, but with a larger dataset, it would be possible to investigate both FPs and FNs
to see whether the current clinical decision-making process outperforms the AIDA or not.
In our database, the total number of cases falling into these three AIDA classes was 101 out
of 135. The remaining 34 cases, divided into AIDA classes 1 and 2, were not sufficient for
calculations or considerations.

5. Conclusions

The results achieved with the AIDA are preliminary but are useful for building a
larger database on which to study a large number of labors and their birth outcomes based
on the four geometric parameters reported in this paper. It is a major limitation that the
inclusions and outcomes vary in the papers, and no studies have a randomized design [13].
An unresolved question is whether a prediction should influence clinical management [12].
The AIDA could be a method to investigate whether and how we could arrive at a robust
ground truth or gold standard.
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