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1. Training—Correlation between Training Sets and Prediction Similarity
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Figure S1. The pair-wise correlation between the similarity of HF predictions on the validation data
(measured in MSE) and the similarity of their training data (ratio of shared images (a) or patients (b)
compared to the training dataset size of 152 samples) for the individual segmentation networks of
our ensemble. The Pearson correlation coefficients [1] for (a) and (b) are -.063 and -.041, the Spearman
rank correlation coefficients [2] are -.044 and -.037, respectively, indicating no significant correlation.

Since for our sub-ensemble we sample models based on (dis-)similarity, we analyze in
Figure S1 whether we can predict prediction similarity between two models based on the
similarity of their training subsets. This does not seem to be the case, as low Pearson [1]
and Spearman [2] correlation coefficients indicate.

2. Annotation Costs

In this work, we analyze the size of HF annotations as an indicator for the model’s
performance. While in reality, the selection of data would have to happen from raw FAF
images, we simulate the effect of different selection strategies by considering four different
sampling strategies from our pool of annotated data: 1) max, i.e. choosing the b images with
the largest HF area. 2) min, i.e. choosing the b images with the smallest HF area (empty
images are omitted). 3) med, i.e. choosing the sample with a median HF area and selecting
the next ⌊ b

2⌋ samples with a smaller and the next ⌈ b
2⌉ samples with a larger HF area. 4) mix,

i.e. selecting from the whole range of HF areas with equal step size between samples. Note
that mix is the only sampling strategy of the four, where sets for smaller b do not have to be
subsets of sets for larger b. Finally, for comparison, we also use 5) all of our available data.

Next, we examine how to best spend the budget (e.g. time/cost) available for annota-
tion. Given a set of suitable FAF images and a budget b denoting the number of images we
can annotate, it is our goal to select samples such as to optimize the expected segmentation
score of the model trained on this data.

In order to widen our pool of available data for this analysis, we combined our training
and test set into one larger training set and performed evaluation solely on our validation
data of 212 images. We analyzed budgets of 64, 96, 128, 160, and 192, training five models
for each sampling strategy and budget.
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Figure S2. Single model segmentation performance measured in Dcs (top) and mDcS (bottom) on the
single annotation validation dataset depending on the training set size and the mean annotated HF
area per image. Training set sizes are 64, 96, 128, 160, 192, and all (=212, only gray), and are visualized
by the size of the square markers (bigger marker indicates larger training set). In addition, results for
the training sets of neighboring size are connected by dashed lines (i.e., 96 to 64 and 128). The colors
indicate training set sampling approaches. Depicted are the mean scores and standard deviation
error bars for five models.

The corresponding segmentation results are depicted in Figure S2. Notably, min
is not a good sampling strategy, performing worst for each budget. max seems to be a
good sampling strategy, considering DcS, reaching the highest score for the maximum
budget of b = 192. Looking at mDcSAE, however, reveals that false segmentations for
max largely consist of area errors as might be expected from this approach being trained
on large annotations, leading to comparatively low mDcSAE scores. mix might be a good
sampling strategy for lower budgets b ≤ 128, but does not yield much improvement for
the larger budgets. Finally, med yields good results for smaller budgets and the best results
for larger budgets. For all sampling strategies, larger budgets, in most cases, lead to better
segmentation performance.

3. Robustness against Noise

We analyze the relationship between the segmentation performance and image noise
in regard to two aspects: 1) The correlation between DcSAE and image noise on our data
as is. 2) The influence of a lower peak signal-to-noise ratio (PSNR) when we manually
degrade image quality by adding Gaussian noise.

3.1. Correlation between Segmentation Score and Image Noise

We estimate image noise by the approach of J. Immerkær [3]. Figure S3 plots for
several methods HF DcSAE scores over image noise in the validation and test dataset. The
corresponding correlations scores are given in Table S1.

From the results, we see that correlation coefficients are low (maximum absolute
of 0.251 for Pearson and 0.237 for Spearman) and that generally positive coefficients for
validation data would indicate that segmentations improve with a higher noise. Taking
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(a) Ensemble
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(b) Sub-Ens10
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(c) Sub-Ens5
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(d) Sub-Ens3
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(e) one U-Net
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Figure S3. DcSAE scores over image noise [3] for each image in the validation (green) and test
(red) dataset for our proposed ensembles (a to d) and U-net baselines (e and f). The corresponding
correlation scores are given in Table S1. Please note that the graph for “mean + variance U-Net”
would be identical to the depicted graph for mean U-Net (f).

Table S1. The Pearson [1] and Spearman [2] correlations coefficients for DcSAE and image noise [3],
as depicted in Figure S3.

Pearson correlation Spearman correlation
method validation test both validation test both

Ensemble 0.135 −0.251 −0.163 0.122 −0.228 −0.093
Sub−Ens10 0.133 −0.143 −0.082 0.129 −0.131 −0.043
Sub−Ens5 0.123 −0.218 −0.134 0.150 −0.218 −0.081
Sub−Ens3 0.150 −0.134 −0.091 0.042 −0.180 −0.118
mean U−Net 0.116 −0.250 −0.160 0.192 −0.237 −0.064
one U−Net −0.060 −0.155 −0.152 0.006 −0.166 0.110

into account the generally low noise values in our data as well (see Figure S3), we conclude
that on our given data noise does not significantly affect segmentation quality.

3.2. Influence of Peak-Signal-to-Noise-Ratio on Segmentation

Since true signal-to-noise calculations requires signals, i.e., images, with no noise,
which we do not possess, we do estimations by starting from images with very little noise
and successively adding stronger noise for comparison.

From data shown in Figure S3a, we select 10 images with high DcSAE and little
noise. For this, we sort each image I by the score sc(I) = DcSAE(I) · (1 − noise(I)

noisemax
), where

DcSAE(I) is the ensemble’s DcSAE score for I, noiseI is the noise for I and noisemax is the
maximum noise over all images. The 10 images with the highest score get chosen for further
analysis.

By considering these images as pseudo-perfect images (i.e. images with no noise),
we can calculate a peak signal-to-noise ratio PSNR = 20 log10

255√
MSE

, where 255 is the
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Figure S4. HF segmentation scores of the full ensemble, depending on peak signal-to-noise ratio
for 10 images to which Gaussian noise was successively applied. Different colors indicate different
images.

maximum possible pixel intensity in the image and MSE is the mean squared error between
the pseudo-perfect image and the noisy image. We add to the 10 selected pseudo-perfect

(a) Input (b) PSNR = 1.0 (c) PSNR = 0.7 (d) PSNR = 0.4 (e) PSNR = 0.3

Figure S5. (Images are best viewed zoomed in). HF segmentation performance of the full ensemble
depending on images (a), to which Gaussian noise was applied PSNR (c-e). For comparison, original
segmentations are given in (b), where no additional noise was applied.
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images Gaussian noise such that we achieve PSNRs of [1.0, 0.9, . . . , 0.4, 0.3] and let our full
ensemble predict HF on these noisy images.

Resulting DcSAE are plotted in Figure S4. Examples for noisy images and resulting
segmentation are given in Figure S5. From the data shown, we see that our ensemble
is highly robust against noise for PSNR ≥ 0.4 and generally robust for PSNR ≥ 0.3.
Significant drops in DcSAE can only be observed on three images and very low PNSR
(light blue line in Figure S4 at PNSR = 0.4, red and green line for PNSR = 0.3).
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